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INTRODUCTION

The continuous progress of the internet and microelectronics, especially portable devices such as
smartphones, tablet computers, and smartwatches, has resulted in compact, integrated, and
miniaturized tools, consuming high power. The 11th and 12th generation CPUs are the main
CPUs used in laptops in the past 2 years. The operating power consumption has reached 180W with
a size of 50 × 25 mm. The surface heat flux can be up to 14.4 W/cm2 (Liu et al., 2013). The
miniaturization of electronic devices has greatly reduced the effective area of heat dissipation. With
the continuous upgrading of the power consumption of electronic devices, the surface heat flux will
inevitably increase rapidly, bringing tough challenges against the safe cooling limits of portable
electronics due to the limited space (Micheli et al., 2013; Tang et al., 2018).

The reliability of electronic devices is apparently sensitive to temperature that should be reserved
within safe operational limits. Therefore, developing the advanced heat dissipation technology is
continuously required to avoid damage and failure of electronic devices due to overheating. As a
passive cooling technology, heat pipe has become an effective approach for electronic cooling,
considering high thermal conductivity, simple structure, and no external driving force (Su et al.,
2018). However, traditional heat pipes, such as loop heat, pulsating heat, and oscillating heat pipes,
can no longer satisfy high heat dissipation in a limited space for portable electronic devices, which are
lighter and thinner (Dai et al., 2020). Therefore, ultra-thin heat pipes (UTHP) have been widely
investigated and used in high heat flux portable electronic cooling due to their compact size, high
stability, and effective temperature uniformity. This study summarizes the recent development of
UTHP technology and wick structures and analyzes the challenges and future prospects (Zhong et al.,
2020).

CURRENT RESEARCH STATUS OF UTHP

Types of UTHP
UTHP is defined as a flat heat pipe with a thickness of less than 2 mm. UTHP can effectively remove
the heat generated by electronic devices because of its thin thickness, high equivalent thermal
conductivity, and being closely attached to the electronic devices. The thickness of UTHP for laptops,
tablets, and smartphones/watches is 1–2, 0.8–1.2, and 0.4–0.6 mm, respectively (Hong et al., 2017).

Compared with the conventional heat pipe, the structure and wick of the UTHP are quite different
due to the miniaturization of the size. At present, UTHP can be divided into flattened heat pipe
(FHP), vapor chamber (VC), and ultra-thin loop heat pipe (UTLHP) (Li and Lv, 2016), as shown in
Figures 1A–C.

As demonstrated in Figure 1A, the FHP usually is composed of the evaporation section, the
insulation section, and the condensation section along the axial direction, which are similar to
those of the conventional heat pipe (Cui et al., 2022). The liquid working medium absorbs heat,
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evaporates in the evaporation section, and condenses into liquid
in the condensation section. The liquid working medium flows
back from the condensation section end to the evaporation
section by capillary force in the wick. The long flat structure
manufactured by flatting cylindrical copper pipes enables the
FHP to achieve multiple heat sources and long-distance heat
transfer. The FHP is widely applied in small mobile devices such
as smartphones and tablet computers. However, FHP has the
defects of small surface area, single shape, and poor adaptability.
The VC consists of a closed container with a plate-like structure
(Li et al., 2021). The evaporation and condensation sections are
located on both sides of the container while the inner wall is
covered with a wick structure, as shown in Figure 1B. The VC
has the advantages of lighter weight, larger condensation area,
and more flexible structure, which makes the VC widely applied
in electronic cooling with high heat flux. The UTLHP is deemed
to be more adaptive, and it usually consists of an evaporator,
vapor passage, condenser, and liquid return passage, which is in
a ring structure as a whole, as illustrated in Figure 1C. All
components of the UTLHP are made of smooth walls because of
the lower resistance of the working fluid flow, except for the
wick structure (Hong et al., 2016). The smooth-walled tube is
conducive to the long-distance heat transfer of the UTLHP. In
addition, different from other UTHP, separate evaporators and
condensers of UTLHP cannot only eliminate possible
entrainment effects but also remove more heat generated by
electronic devices.

Wick Structure of UTHP
As a core part of the UTHP, wick supplies capillary force through
the gas-liquid interface to actuate the working fluid circulation.
The heat transfer characteristic of UTHP primarily depends on
the wick capillary flow phase transition behavior. At present, the
wick structure of UTHP mainly includes the sintered wick,
microgrooved wick, and composite wick, as demonstrated in
Figures 1D–F.

Currently, most UTHP uses sintered wick structures because
of their excellent capability and low cost. The sintered wick can
be divided into sintered powder wick, sintered mesh wick, and
sintered fiber wick, as shown in Figure 1D for sintered mesh
wick (Zu et al., 2021). The most widely used sintered powder
wick in the traditional heat pipe has almost been substituted for
sintered mesh/fiber wick that is employed to fabricate ultra-high
temperature polymers due to thicker powder layers and cracks
caused by leveling in UTHP. Using sintered mesh/fiber as wick,
thinner, more flexible flat heat pipe can be obtained. The
microgrooved wick structure has gradually become the
preferred option for UTHP because of unique advantages
such as high permeability and low thermal resistance, as
shown in Figure 1E (Zeng et al., 2017). The shells of UTHP
with the microgrooved wick structure are usually made of non-
metallic materials. Moreover, the microgrooved wick structure
is mostly fabricated by laser micromachining and plasma
etching. Although the micromachining process can obtain
thinner UTHP with higher heat transfer characteristics, its
high cost, unstable quality, and complicated process limit the
applications. The wick of UTHP with good thermal
performance should ensure high permeability and large
capillary force. The sintered wick structure has higher
capillary pump force with lower liquid permeability, while
the microgrooved wick structure has the opposite
performance. Therefore, composite wick structures that
combine two or more types of single wick structures have
been investigated to equilibrate the contradiction between
high permeability and large capillary force (Jiang et al.,
2014). At present, the most used composite wick in UTHP
are the sintered mesh-groove composite wick and sintered
powder-groove composite wick, as shown in Figure 1F.
However, owing to the complicated manufacturing
procedure, high cost of manufacture, and low production
efficiency, the application of composite wick structure is
limited in ultra-thin electronic cooling.

FIGURE 1 | Schematic diagram of UTHP: (A) FHP, (B) VC, (C) UTLHP, (D) sintered wick structure, (E) microgrooved wick structure (Gillot et al., 2003), and (F)
composite wick structure (Li et al., 2016)
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OPPORTUNITIES AND CHALLENGES

Recently, increasing heat dissipation demands in portable electronic
devices with high heat flux has unveiled opportunities and challenges
that can affect the progress and applications of UTHP. Considering
the research actuality and application requirements of UTHP, the
following aspects need to be further studied:

1) Develop more accurate and reliable machining technology
and packaging technology for UTHP. Traditional machining
methods such as cylindrical heat pipe flattening technology
have certain defects, which will cause deformation of the shell,
poor sealing performance, and low manufacturing yield. It
greatly increases the manufacturing cost and restricts its large-
scale development and applications of UTHP.

2) Due to the increasing integration of portable electronic
devices, the operating environment of UTHP is becoming
continuously complex. It is indispensable to design UTHP
with different cross-sectional shapes suitable for the surface

structure of the heat source according to the specific operating
environment. In addition, the research on the reliability and
stability of the UTHP in intermittent operation under the
location and conditions of variable heat fluxes and variable
heat sources should be carried out, which lays a scientific
foundation for further development and applications
of UTHP.
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