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The worldwide coronavirus disease 2019 (COVID-19) pandemic has greatly affected the
power system operations as a result of the great changes of socio-economic behaviours.
This paper proposes a short-term load forecasting method in COVID-19 context based on
temporal-spatial model. In the spatial scale, the cross-domain couplings analysis of multi-
factor in COVID-19 dataset is performed bymeans of copula theory, while COVID-19 time-
series data is decomposed via variational mode decomposition algorithm into different
intrinsic mode functions in the temporal scale. The forecasting values of load demand can
then be acquired by combining forecasted IMFs from light Gradient Boosting Machine
(LightGBM) algorithm. The performance and superiority of the proposed temporal-spatial
forecasting model are evaluated and verified through a comprehensive cross-domain
dataset.
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INTRODUCTION

Accurate short-term load forecasting can reduce unnecessary power loss and dispensable cost, which
is the premise to ensure the supply-demand balance and the stability of the power system (Yang et al.,
2022; Yao et al., 2022). With the volatility of power load and the complex external factors, it is critical
to improve the forecasting accuracy, especially in extreme conditions (Shi et al., 2020). Most
countries and regions were forced to implement strict blockade measures during coronavirus disease
2019 (COVID-19), which only opened a few essential enterprises and isolated residents at home. The
major interruption caused by this policy will greatly change the load consumption patterns of various
industries compared with the past. Because the training process of traditional load forecasting
models relies heavily on historical data of calendar, meteorological information and power load. they
have performed poorly from the beginning of COVID-19.

Traditional methods mainly include a variety of mathematical statistical methods, such as
generalized exponential smoothing (Christiaanse et al., 1971), grey forecasting model (Tsai and
Hsu, 2010), autoregressive comprehensive moving average (ARIMA) (Amjady et al., 2001;
Wang et al., 2014), multiple linear regression analysis (Jiang et al., 2018), etc. Although these
methods can perfectly capture the linear characteristics of the data set, nonlinear and non-
stationary characteristics still remains unsolvable. Nowadays, machine learning methods have
been found by researchers to be effective in forecasting scenarios, such as support vector
regression (SVM) (Che and Wang, 2014), convolutional neural networks (CNNs) (Zhang et al.,
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2018), long short-term memory (LSTM) (Li et al., 2021),
graph attention networks (GATs) (Zhang et al., 2022).

Intelligent evolutionary algorithm (Li et al., 2020) is also
adopted to predict short-term power load. There is no
consensus over a particular forecasting model and the use of a
method over another is often the result of the authors’
preferences. Since individual forecasting model has its own
forecasting shortcomings, more and more hybrid forecasting
methods are utilized to make an obvious improvement on
forecasting performance. Hybridization of multiple forecasting
methods can inherit advantages of individuals, including
convergence performance, sensitive on small-scale variation,
showing remarkable complementary characteristics in dealing
with complex forecasting problems. For instance, through using
CNN to reduce dimension and LSTM to dynamically model the
forecasting time series, CNN and LSTM are combined to improve
the forecasting accuracy (Jiang et al., 2021). Various boosting
algorithms inspired by gradient lifting decision tree (GBDT),
including extreme gradient lifting (XGBoost) (Chen and
Guestrin, 2016) and light Gradient Boosting Machine
(LightGBM) (Wang et al., 2020), are also applied in handing
time series. As a result of parallel learning, and strong
adaptability, and robustness, they have played a significant
role in the performance improvement of other types of models
in various fields, showing remarkable performances on time-
series problem (Park et al., 2021).

Short-term power load involves complex characteristics,
including chaos, periodicity and volatility. The function of
time series decomposition technique is to decompose and
extract several subsequences from the original load sequences.
By considering of the non-linearity and non-stationarity
characteristics, Empirical mode decomposition (EMD)
(Flandrin et al., 2004) could extract the main mode
components and the intrinsic mode functions (IMFs).
However, it has many disadvantages, including unable to
establish accurate mathematical model, difficult to determine
the optimal interpolation, and poor anti-interference ability to
noise. The signal decomposed by EMD will be mixed with
discontinuous signals with high frequency and small
amplitude, which can not be effectively separated according to
the time scale. Such modal aliasing is detrimental to the
forecasting performance enhancement. Then, a new multi-
resolution variational mode decomposition (VMD) algorithm
is introduced to overcome the limitations of EMD algorithm.
VMD can separate the limited-bandwidth load data components
with different center frequencies into modal functions with
different characteristics (Lahmiri et al., 2015). Comparisons of
extensive literatures (Huang et al., 2004; Zhu et al., 2017; He et al.,
2019) show VMD has better prediction accuracy than EMD after
decomposing and modeling time series data.

In this study, a temporal-spatial model for short-term power
load accurate forecasting in the context of COVID-19 is
proposed. In addition to weather, calendar and other
traditional factors, the nonlinear correlation between public
health factors, including the confirmed and dead cases’
numbers, the proportion of migrant workers under COVID-19
and power load are also considered. Here, the importance of

meteorological and COVID-19 related factors is analyzed based
on copula theory to obtain the corresponding key influencing
factors in the spatial scale, while the VMD algorithm decomposes
the original load time series into various IMFs with different
characteristics in the temporal scale. Then, each subsequence is
forecasted with the help of light Gradient Boosting Machine
(LightGBM), and the final forecasting result is obtained by
synthesizing multiple subsequences’ forecasting values. The
effectiveness and superiority of the above scheme have been
benchmarked on a COVID-19 related dataset.

VARIATIONAL MODE
DECOMPOSITION-COPULA BASED
TEMPORAL-SPATIAL ANALYSIS
Variational Mode Decomposition
As a new complex nonlinear high-order time series
decomposition tool, VMD has non-recursive and adaptive
characteristics. By constantly updating the central frequency
and iteratively searching the optimal solution of the mode
function, VMD can extract the corresponding smooth
amplitude modulation sub-modal function with different
sparse features after determining the relevant finite frequency
band and central pulsation. The overall flow of VMD algorithm is
actually to solve the constructed variational problem: 1) since
each modulus function is near the central frequency, the solution
process of variational problem is essentially to seek the minimum
of each sub-mode’s estimated bandwidth on the basis that the
superposition of subsequences can restore the original signal
equivalently; 2) the corresponding unilateral spectrum
corresponding to each modal component is extracted by
Hilbert transform; 3) the corresponding center frequency and
exponential term are aliased to adjust the spectrum to the
corresponding fundamental frequency band; 4) the
decomposed signal gradient’s square L2 norm is obtained by
H1 Gaussian smoothing (Dragomiretskiy and Zosso, 2013), so as
to appraise the bandwidth of the subsequence. The constructed
variational problem is expressed as:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min
uk,wk

{∑K

k�1

�������zt[(z(t) + j

πt
) ⊗ uk(t)]e−jωkt

�������22}
s.t∑

k

uk � f
, (1)

where uk represents the kth mode; wk corresponds to center
frequency of kth mode;K denotes the number of total modes; δ(t)
means Fermi-Dirac distribution; ⊗ denotes the convolution
operator; f(t) is the primitive timing signal.

Based on the Lagrange multiplier method, an unconstrained
problem can be reformulated as:

L(uk,ωk, λ) � α∑K

k�1

�������zt[(δ(t) + j

m
) ⊗ uk(t)]e−jωkt

����22
+
���������f(t) −∑K

k�1uk(t)
���������2
2

+ 〈λ(t), f(t) −∑K

k�1uk(t)〉.
(2)
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where λ is Lagrange multiplier and α is penalty factor.
The alternate direction method of multipliers method is used

to the above minimization optimization problem. After iteration
optimization, uk, wk and λ can be updated as:

f̂(ω) −∑i≠kûi(ω) + η(ω)
2

1 + 2α(ω − ωk) → ûn+1
k (ω). (3)∫∞

0
ω
∣∣∣∣ûn+1

k (ω)∣∣∣∣2dω∫∞

0

∣∣∣∣ûn+1
k (ω)∣∣∣∣2dω → ωn+1

k . (4)

λn(ω) + γ⎛⎝f̂(ω) −∑
k

ûn+1
k (ω)⎞⎠ → λn+1(ω), (5)

where n represents number of iterations, λ is the noise tolerance;
f̂(ω), μ̂(ω) and λ̂(ω) are the mapping of f(ω), μ(ω) and λ(ω)
respectively in the frequency domain converted from the time
domain.

VMD decomposes the non-stationary and nonlinear original
complex load sequence from the perspective of signal, and finally
obtains multiple groups of stable natural mode functions, which
has strong adaptability and anti-noise performance. Because there
is no modal aliasing between modal components, the method has
great advantages for extracting the local features of load series. The
natural mode function and residual obtained by decomposition
analyze the power load series frommultiple temporal scales such as
random information, periodic component and long-term change
trend, which can greatly avoid the impact of the fluctuation and
randomness of power load series on the prediction.

Definition and Derivation of Copula
Function
External environmental factors, including real-time local
electricity price and temperature will affect the power load. In
the context of COVID-19, public safety data, including confirmed
cases and public measures can also affect the power load. In order
to analyze the inherent couplings among above factors, it is
necessary to study the dependence of power load on each
influencing factor. By introducing the copula function to
connect the marginal distribution function, multiple variables
can be flexibly formed into joint distribution, and the complex
process of deriving the analytical expression of the joint
distribution function can then be avoided.

The multivariate Sklar theorem (Zhao et al., 2021) points out
that an n-dimensional joint distribution function can be
represented by an integration of N univariate marginal
distribution functions and Copula Functions. The classical
copula model can be stated as (6).

F(x1, x2,/, xN) � C(F1(x1), F2(x2),/, FN(xN)). (6)
where F1 (x1), F2 (x2),. . ., FN(xN) are marginal distribution
function of power load and various influencing factors whose
joint distribution function is F (x1, x2, . . . , xN). When F1 (x1), F2
(x2), / FN(xN) is persistent, the copula function C is uniquely
determined.

Copula function is different from the marginal
distribution of traditional linear correlation analysis. It
can accurately and quantitatively describe the correlation
and consistency between nonlinear and asymmetric
variables and input variables, and will not be affected by
the enlargement of variable values. In addition, Copula
function accurately describes the nonlinear correlation
between variables and retains the analysis and estimation
of the linear correlation between variables. In this paper, the
tail and rank coefficients of correlation between variables are
calculated by binary t-copula function, and their distribution
characteristics are displayed by corresponding density
function. Power load time series and external influencing
factors are regarded as the inputs of Copula function, which
provides Kendall and Spearman coefficients between input
variables finally.

The quantitative relationship between the copula function
C and Kendall rank correlation coefficient τ, Spearman’s rank
correlation coefficient ρS, and tail correlation coefficient λ can
be described by the following formulas:

τ � 4∫1

0
∫1

0
C(u, v)dC(u, v) − 1, (7)

ρs � 12∫1

0
C(u, v)dudv − 3. (8)

λup � lim
u→1−

C(1 − u, 1 − v)
1 − u

, (9)

λlo � lim
u→1−

C(u, u)
u

. (10)

where F(x), G(y) represent the marginal distribution of X, Y
which are persistent random variables; Ĉ(u, v) � u + v +
C(1 − u, 1 − v) means the existing copula function of X
and Y.

Through the calculation of Copula theorem, the rank
correlation coefficients of Kendall and Spearman reflect the
consistency of random variables X and Y, and tail correlation
coefficient can feed back the probability that X and Y change in
direct proportion to each other. The size of the rank
correlation coefficient is independent of the marginal
distribution of X and Y, and remains constant with random
variables’ strictly monotonic transformation, indicating its
wider application range than the traditional linear
correlation coefficient.

The density function of the joint distribution function
constructed by copula function accurately depicts the
correlation structure between variables, and the derived
rank phase relationship number ρS quantitatively analyzes
the overall correlation and nonlinear coupling between
power load and multiple external influence factors. By
retaining the influence factors strongly related to power
load and forming the input sample set of multiple load
forecasting model, the dimension of the input data set can
be reduced from the spatial scale, so as to efficiently abate the
redundancy of the dataset and improve the forecasting
accuracy and correctness.
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SHORT-TERM POWER LOAD
FORECASTING

Light Gradient Boosting Machine
Due to its parallel learning, low memory utilization and fast
training speed of distributed learning framework, LightGBM has
a good performance in machine learning tasks. The technological
innovation of LightGBM based on gradient unilateral sampling
and exclusive feature bundling has been proved to ensure the
accuracy of integrated learning algorithm and greatly save
operation time.

Assuming that there are N � {1, 2, . . . , n} samples and a
LightGBM model with T � {1, 2, . . . , t} trees. The process of
t iterations can be described as

ŷ(t)
i � ŷt−1

i + fi(xi), (11)
where ŷ(t)

i is the forecasting value of ith example during the tth
iteration. f(t) represents the residuals of the construction tree in
this iteration.

The forecasting value of the new spanning tree branch is
obtained by the superposition of its residual and the previous
prediction. The complete process is (12), with objective function
and residual in (13):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ŷ(0)
i � 0,

ŷ(1)
i � f1(xi) � ŷ(0)

i + f1(xi),
ŷ2
i � f1(xi) + f2(xi) � ŷ(1)

i + f2(xi),
(12)

L(t) � ∑n
i�1
l(yi, y

(t−1)
i + fi(xi)) +∑T

t�1
Ω(ft)

Ω(f) � γT + 1
2
λ‖ω‖2.

(13)

where yi denotes the true value. ∑ l denotes the cumulative sum
of loss between real values and forecasting ones of each node.∑Ω
is equal to the penalty item of generated tree nodes.

The tree that minimizes the sum of losses in (13) can be found
and retained by continuously enumerating new tree branches
with different structures. This process is repeated until the
number of trees reaches the preset value. In other words, in
each iteration, the optimal segmentation points and features are
determined with the aid of the s splitting gain in (14), so as to
determine an optimal structure tree.

Gain � 1
2
[ G2

L

HL + λ
+ G2

R

HR + λ
− (GL + GR)2
(HL +HR) + λ

− γ]. (14)

where GL, HL and GR, HR respectively represents the first, second
derivatives of the left and right branch sample nodes. If the gain is
positive, it can ensure that the leaf nodes of the tree branches can
be segmented only at the best feature segmentation point, so as to
enhance the performance of the segmented model. If gain is
negative, tree splitting will be stopped and the segmentation and
optimization will not be carried out.

In order to accurately determine the best splitting point,
GBDT algorithm uses presorting method to select

and segment indicators, which needs a lot of time and
memory. LightGBM adopts gradient-lifting one-side sampling
and leaf-wise growth strategy with maximum depth limit to
optimize GBDT, which reduces the number of samples and
features, and improves the training speed. It can not only find
the splitting points with better feature, but also cut down memory
consumption. The main advantages of LightGBM are as follows:

1) Reduce the number of samples. The samples are sorted
according to the absolute value of the gradient. In this
process, the first a% of the whole sample is retained, and
then b% of the remaining samples is selected. The information
gain of the enlarged gradient sample is amplified (1 − a)/b
times. That is to ensure that the larger the gradient, the greater
the weight of the sample in calculating the splitting gain. The
possibility of optimal splitting in GBDT can be discussed
without traversing the whole data set, which greatly reduces
the computational complexity.

2) Reduce the splitting of the leaves with lower gain. The growing
tree strategy is different from the traditional level-wise strategy,
which avoids the division of redundant leaves with low gain and
reduces the undue computing resources consumption. The leaf-
wise growth will select the leaves with the largest splitting gain
among all leaves for splitting and repeat this step. Then, more
errors can be reduced and better accuracy can be obtained.

To sum up, LightGBM has the characteristics of distributed
operation, faster training efficiency, lower memory use and better
accuracy. When dealing with complex, massive and highly
volatile data sets such as public health data and social
distancing data under COVID-19, it can ensure the prediction
accuracy and save a lot of prediction time.

Variational Mode
Decomposition-Copula-LightGBM
Forecasting Framework
Figure 1 illustrates the specific flow chart of the proposed short-
term prediction scheme.

It mainly includes the following four steps:

1) Copula theorem is introduced into the quantitative analysis
of the relationship of nonlinear correlation and tendency
interlinkages between each external influencing variable
during COVID-19 and power load so that the key
influencing factors can be obtained for the next short-
term forecasting during COVID-19.

2) After determining the optimal number of decomposition
modes by permutation entropy and stable center frequency,
the subsequences are decomposed from the original load data
through VMD.

3) Different subsequences of the VMD decomposition have their
own periodicity and volatility, which can fully reflect the data
characteristics of power load. The forecasting results are obtained
by superimposing the electric load subsequences forecasted by
LightGBM, which determines whether the optimal splitting state
is achieved by observing the gain.
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4) The root mean square error (RMSE), mean absolute error (MAE),
and mean absolute percentage error (MAPE) are used as the
performance indexes to calculate the forecasting accuracy, as follows:

RMSE �

������������
1
N

∑N
i�1
(yi − yi)2√√

, (15)

MAE � 1
N

∑N
i�1

∣∣∣∣yi − yi

∣∣∣∣, (16)

MAPE � 1
N

∑N
i�1

yi − yi

yi
× 100%. (17)

CASE STUDY

Dataset Formulation
The original US COVID-19 data is obtained from (Ruan G
et al., 2020), which includes the electricity market data,

weather data, public health data, and mobile equipment
position data. As shown in Figure 2, in addition to
meteorological factors, power load patterns are closely
related to the social, economic and productive activities
and policies. For example, strict blockade measures during
COVID-19 would force regions to open a few essential
enterprises and isolate residents at home. In order to
effectively analyze the effects of the cross-domain
couplings analysis between these factors on load changes, a
restricted vector autoregression model is selected to strictly
evaluate the influence degree of relevant factors. The final
results show that social and public measures such as retail
liquidity have the strongest explanation for the power load
change.

Temporal-Spatial Analysis Results
Here, the nonlinear and trend correlation between
environmental factors and power load series is evaluated
based on Copula theory. The empirical copula function is
used to establish the empirical joint distribution model of

FIGURE 1 | Temporal-spatial load forecasting model.
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influencing factors and loads, and the square Euclidean
distance is adopted to quantify their distance between the
empirical copula model and other copula model. According
to the square Euclidean distance criterion, the binary t
copula function is more suitable for correlation analysis.
The correlation analysis results can be found in Table 1. In
order to better screen out the influencing factors with strong
correlation with power load, the threshold of Spearman
correlation coefficient of t-copula function is set to 0.1. As
shown in Table 1, locational marginal power price has the
highest correlation with electric power load, which is much
higher than that of other factors with power load. Thus, the
locational marginal price, relative humidity, wind speed,
access rate of entertainment and retail industry,
percentage of home working hours, percentage of part-
time work behavior equipment, COVID-19 pandemic’s
infection rate, fatal rate and so on can be chosen as key

input factors, which have the most direct impact on the
accuracy of the model.

Then, VMD decomposes the primary short-term power
load sequences. Until the center frequency of sub-modal
component of the last layer maintains strong stability, the
optimal value of mode number K is determined. Through
calculation, for COVID-19 specific dataset, optimal modal
number K is determined as 6. The decomposition
component in Figure 3 shows that the fluctuation
frequency increases gradually from IMF1 to IMF6. Among
them, very stable IMF1 represents low-frequency components
and reveals the trend of the original power load time series’
overall cycle. The intermediate frequency component IMF2-
IMF5 contains the original sequence’s details, which reflect the
effect of different factors on the electric load time series under
different frequencies. The last mode with high frequency and
small amplitude fluctuation captures short variations of power
load series and reflects white noise in the electric load,
indicating that the VMD has completely decomposed the
high-frequency part.

Comparative Analysis
This paper adopts dataset with hourly resolution from 2020 to
2021. All the experimental models run in Python 3.7
programming environment, and super parameters such as
maximum depth, learning rate, feature score and so on are set
in advance. This section provides three schemes:

1) Scheme 1 is the LightGBM forecasting method with all
influencing factors.

2) Scheme 2 is the proposed forecasting method based on copula
and VMD.

3) Scheme 3 is the XGBoost, GBDT and SVM method.

Figure 4 and Table 2 show the power load forecasting error
and the corresponding comparison calculated through MSE,
MAE and MAPE. By comparison with the single LightGBM

FIGURE 2 | Coupling relationship between COVID-19 related factors.

TABLE 1 | Correlation analysis between influencing factors and power load during COVID-19.

Scheme Kendall Spearman

Normal copula t-copula Normal copula t-copula

Locational marginal power price 0.4755 0.4833 0.6620 0.6710
Dew point 0.0704 0.0672 0.1054 0.1000
Relative humidity -0.0913 -0.0986 -0.1366 -0.1474
Wind speed 0.0819 0.0859 0.1225 0.1285
Temperature 0.1187 0.0541 0.1773 0.0773
Confirmed cases 0.0402 0.0450 0.0603 0.0675
COVID-19 infection rate 0.0402 0.0450 0.0603 0.0674
Deaths cases 0.0599 0.0679 0.0897 0.1016
COVID-19 fatal rate 0.0941 0.1081 0.1407 0.1615
Patterns to eatery 0.0663 0.0689 0.0993 0.1031
Patterns to general store 0.0175 0.0182 0.0263 0.0273
Patterns to sell retail 0.0718 0.0745 0.1075 0.1115
Completely home device count -0.0808 -0.0837 -0.1209 -0.1252
Median home dwell time -0.1123 -0.1159 -0.1677 -0.1732
Part time work behavior devices 0.1232 0.1279 0.1840 0.1909
Full time work behavior devices 0.0763 0.0804 0.1143 0.1204
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model, the MAE, MAPE, and RMSE of the proposed VMD-
copula-LightGBM method are decreased by 29.46%, 13.06%,
and 16.99%. It is thus found that the proposed VMD copula
light GBM method can greatly enhance the prediction
accuracy by selecting influencing factors with
stronger correlation as the input and decomposing the
primary electric load time series into stable sub-modal
components.

The comparisons of SVM, GBDT, LightGBM and VMD-
copula-LightGBM methods are displayed in Figure 5. As a
result of discarding low correlation factors, the randomness
and fluctuation of power load can be reduced. The VMD-
copula-LightGBM method performs best in forecasting
error, and the MAPE is only 1.73%. On the other hand,
using the accessional measured key factors as training set
and reducing the non-stationarity of the original power load
series by VMD can improve forecasting performance. By
comparison with the XGBoost algorithm, the MAE, MAPE,
and RMSE of the proposed method are decreased by 33.69%,
29.39% and 33.04%. As for the GBDT method, the proposed
method improved the MAE, MAPE, and RMSE decreased by
31.89%, 28.22% and 32.43%. In terms of SVM, the MAE,
MAPE, and RMSE of the proposed method are decreased by
31.56%, 27.92% and 32.04%. All in all, the comparative
results can demonstrate the superior performance of the
proposed VMD-copula-LightGBM method on load
forecasting, especially in the context of COVID-19.

FIGURE 3 | VMD decomposition results for original time series of power load.

FIGURE 4 | Forecasting results with LightGBM algorithm, copula and
VMD theory.

TABLE 2 | comparison of evaluation results with three schemes.

Method MAE (MW) MAPE (%) RMSE (MW)

XGBoost 107.81 2.45 94.39
GBDT 104.96 2.41 93.53
SVM 104.45 2.40 93.00
LightGBM 101.35 1.99 76.14
LightGBM with copula and VMD 71.49 1.73 63.20

The best values in these tables are highlighted in bold.
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CONCLUSION

In this paper, a short-term load forecasting method in COVID-19
context is proposed on the basis of temporal-spatial model. The
forecasting methods are achieved by selecting the best input
dataset strongly linked to power load with the aid of copula
function, and then decomposing the original complex data into
simple sequences with VMD. Comparative analysis has shown
the effectiveness and superiority of the proposed temporal-spatial
forecasting method. It can be concluded:

1) In addition to being closely related to traditional factors like
calendar and weather, the electricity consumption will also be
affected by social and economic factors such as COVID-19
confirmed cases, social distance, business rate of shopping
malls and so on. In more detail, the accuracy of power load

forecasting can be further improved by cross-domain analysis
of public safety data, social intervention and mobility data
under COVID-19.

2) Based on VMD and Copula theory, the complexity of short-
term load forecasting problem can be reduced with the
temporal-spatial analysis. The short-term power forecasting
accuracy is largely improved compared to the traditional
prediction methods, such as GBDT and SVM.

Though satisfying forecasting results can be obtained with the
proposed model in COVID-19 context, different countries have
different social-economic activities and policies. Along with it
comes the more complex feature selection and nonlinear
relationships, which would be our future work.
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