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With the increase of wind power penetration, the deviation caused by its volatility and
intermittency poses a growing threat to the grid. Energy trading in short-term markets
for wind power and backup storage helps compensate for the deviations. Furthermore,
the introduction of peer-to-peer (P2P) energy trading can effectively reduce the risk of
centralized market management. However, the higher cost of energy storage are not
conducive to wind power producers (WPPs). And P2P trading also suffers from trust
and efficiency problems. This paper provides a blockchain based short-term energy
trading market, which resolves generation deviations through efficient and trusted real-
time transactions between WPP and prosumers. The blockchain-based energy trading
market is a trustless P2P structure, and the trading is triggered by smart contracts to
ensure efficiency. Furthermore, a reputation mechanism is designed to incentivize WPP’s
generation forecasts to be accurate and prosumers to participate in the market. A bilevel
optimization method is designed to increase the revenue of WPP and reduce the costs of
prosumers. The market can effectively balance the deviation of wind power generation,
increase the revenue of WPP by 9.55%, and reduce the costs for consumers by 5.6%.

Keywords: wind power producer, blockchain, bilevel, energy trading, short-term market

1 INTRODUCTION

With the increasing penetration of wind power, its volatility make the impact on power quality
and grid stability more critical (Shin et al., 2018). Wind power producers (WPPs) should take
measures to ensure the stability of wind power generation to avoid power generation deviation
between the actual and the forecasted caused by the above conditions. Researchers believe thatWPP’s
participation in the electricity market is one of the effective ways to address wind power deviation
and promote wind power consumption (Skajaa et al., 2015).

Electricity markets in many countries have established the short-term market. For example,
the European short-term market determines the energy clearing price based on the positive
or negative energy adjustment. Many researchers focus on WPPs for electricity energy trading
on the short-term market trading floor including day-ahead (DA) and real-time (RT) markets.
The RT market has attracted the growing attention of researchers, which may provide possible
solutions addressing the above challenges because it can compensate for the high uncertainty
of generation forecasts in DA markets (Homa et al., 2017). The independent system operator
(ISO) is responsible for regulating the energy for the deviating wind producers, ISO imposes
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penalties on WPP when it fails to deliver power as promised.
H. Shin et al. (Shin et al., 2018) built an advanced offer curve
that considers correlations between wind power and RT price
under the hypothesis that the wind power and RT price
follow the bivariate normal distribution. Compared with the
typical offering curve, this curve can slightly increase the
expected profit. Although the offering curve can increase the
expected profit of WPP, penalties for mispredicted wind power
producers are expensive in RT markets (Fabbri et al., 2005). The
centralized power transaction conducted by the system operator
has disadvantages such as high information management
cost, insufficient communication transmission capacity,
and single point of failure when dealing with the above
scenarios.

In addition, researchers propose to combine wind energy
with other power generation methods to solve the volatility of
wind energy. On the one hand, reserves are provided by the
supply side, these power generationmethods are pumped-storage
hydroplanes, thermal energy, compressed air energy storage (Al-
Awami and El-Sharkawi 2011; Sánchez de la Nieta et al., 2013;
Cheng et al., 2019). However, some thermal units have high
generation costs which reduce the revenue of WPP. Moreover,
purchasing reserves from the demand side can also balance the
deviation of wind power. Demand response (DR) and electric
vehicle (EV) were proposed by relevant researchers as more
economical reserve energy. In the face of the intermittent wind
energy, N. Mohammad et al. (Mohammad and Mishra 2018)
aimed to design a plan in which market operators seek suitable
DR as reserve energy to cope with the deviation of wind power.
EV aggregators are applied as entities to balance the deviation
from the uncertainty of renewable energy (Cheng et al., 2019).
However, the greater deviation of wind power consumption
in RT markets, the more prominent the problems caused
by the high adjustment cost. Consequently, higher frequency
transactions help balance wind power generation deviation
better.

Two-way information flow and peer-to-peer (P2P)
mechanisms of the distributed system contribute to the
development of energy trading. In the P2P energy trading
mechanism, operators do not need to play the role of
energy dispatching, a win-win result with direct electricity
trading between consumers (Zhou et al., 2018). E. Sorin et al.
(Sorin et al., 2018) introduced the variable economic dispatch to
build a P2P energy trading market and proposed a method that
considers Consensus and Innovation to address the problems in
the market in a distributed manner. This plan shared the power
trading information well handled and improved social welfare
and user satisfaction. C. Zhang et al. (Zhang C. et al., 2018)
proposed a hierarchical system architecture model to identify the
relevant content involved in P2P energy trading and simulated
P2P energy trading using game theory. Experimental tests
showed that P2P energy trading can promote consumption
balance. H. Rashidizadeh-Kermani et al. (Rashidizadeh-
Kermani et al., 2021) considered a P2P transaction framework
in which WPP can conduct P2P transactions with the main grid
and rival load-serving entities. Through P2P direct transactions,
WPP can offset part of the energy deviation and maximize

its interests. H. Rashidizadeh-Kermani et al. (Rashidizadeh-
Kermani et al., 2020) explored that WPP purchased reserves
from energy storage aggregators on the P2P trading floor to
compensate for the volatility of wind power, and at the same
time introduced conditional value at risk (CVaR) to hedge
the randomness of wind energy. Previous work has shown
that prosumers take crucial roles in P2P trading. A prosumer
is a flexible role that can consume and generate electricity
in the meantime (Luo et al., 2019). As shown is Figure 1, in
conventional models of power systems, only energy consumers
existed. However, renewable energy generation technologies are
developing rapidly. Its construction cost and equipment size are
gradually decreasing and coming into homes (Li et al., 2021).
For example, in recent years, solar panels have been installed
on the roof of a building and supply it with electricity. Because
of the small capacity and fast regulation of prosumers, they are
suitable for small-scale regulation of electricity in decentralized
mechanism. As a result, WPP can engage in P2P transactions
with prosumers to better cover their uncertainty due to their
responsiveness and flexibility, but their data on the transaction
process lack a transparent management method.

In recent years, blockchain has been proposed as a distributed
ledger technology, and its characteristics of trustlessness,
traceability, transparency, and irreversibility make it widely
used in the energy trading field (Li et al., 2017). Energy
trading based on blockchain is not similar to the traditional
centralized power trading mechanism with poor information
trading. More specifically, blockchain technology can realize
the decentralization of electricity (Zhang T. et al., 2018). Each
user can realize distributed automatic verification, transmission,
and management of transaction information, so as to quickly
respond to market information and formulate the most excellent
bidding strategy to promote P2P trading of electric energy
(Cui et al., 2020).

In summary, we propose a blockchain-based P2P energy
trading short-termmarket between theWPP and prosumers.The
market includes the DA market, RT market, and balancing (BL)

FIGURE 1 | Energy trading between WPP and prosumers.
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market. Prosumers regulate deviations in the RT market. The BL
market is responsible for regulating the remaining energy after
the RT market transaction. The blockchain-based wind energy
trading market can realize the decentralization of transactions
and ensure data transparency and information security, so it does
not require the management of a third-party trust mechanism
and reduces the cost of adjusting the market. In addition, we
introduce the concept of prosumers into the system, which
can directly trade with the WPP when there is a deviation,
balancing the real-time power of the system. When there is
a deviation in WPP power generation, the smart contract on
the blockchain is triggered. After that, the smart contract will
arrange for prosumers with high reputation value to give priority
to energy trading and publish preferential balancing price to
WPPwith high reputation value (Huang et al., 2022a). Given that
fact, the behavior of prosumers affects the stability of power
system. To ensure the accuracy of the real-time transaction
balance between prosumers with WPP, we design a reputation
mechanism for prosumers and WPP to regulate their trading
behavior, respectively.

The main contributions and organization are given as follows:

• A blockchain-based energy trading market is established,
which supports real-time direct transactions between WPP
and prosumers without a central authority or third parties.
It reduces transaction costs and increases the effectiveness
of power balancing. Furthermore, blockchain guarantees
trustworthiness, transparency, and traceability in the
transaction process.
• The reputation mechanism is proposed. The mechanism

allows prosumers who actively participate in the transaction
to obtain more profits in the RT market, and reward
accurate forecasted WPP in the BL market. It facilitates real-
time wind energy trading in the market and rationalizes
costs.
• A bilevel optimization method is used to maximize WPP

revenue and prosumer gains. WPPmanages the uncertainty of
wind energy by buying and selling electricity to prosumers. In
the process, WPP lowers the cost of direct transactions from
the BL market while prosumers also get relatively low energy
prices.

The rest of our article is organized as follows. Section 2
describes the mathematical model of trading entities in the
market. In section 3, a bilevel stochastic problem is proposed to
construct optimal trading strategies (Yang et al., 2019). Section 4
gives the result of the digital simulation. Finally, section 5
summarizes the main work of this article.

2 SYSTEM FRAMEWORK

In this section, we model the relevant entities in P2P power
trading in a bilevel framework.

2.1 Wind Power Producer
Wind power generation is subject to the uncertainty of wind
energy and therefore is greatly affected by environmental factors

(Wang et al., 2018). WPP makes a profit by selling the total
electricity generated by the turbines in their jurisdiction. And
from the viewpoint of the understudy WPP, it participates in the
market to maximize its own interests. Let Ji ∈ J denote the ith
WPP. The trading volume of wind power is described as

PW
t − PDA

t − ∑
Ki∈K
(PSell

t,Ki
− PBuy

t,Ki
) − PB+

t + PB−
t

= PDR
t + ∑

Ki∈K
Pt,Ki

(1)

where PW
t represents wind power generation. PDA

t is the amount
of power generation determined by DAmarket.The PSell

t,Ki
and PBuy

t,Ki
denote WPP sells (buys) energy to (from) prosumers in order to
compensate for generation deviations. PB+

t and PB−
t are positive

(negative) BL market energy. Pt,DR is total demand of loads. Pt,Ki
presents demand of prosumers.

WPP’s trading volume range in DA and RT markets is given
by

0 < PDA
t ≤ P

DA
lim (2)

0 ≤ PB+
t ≤ P

B+
lim (3)

0 ≤ PB−
t ≤ PB−

lim (4)

2.2 Prosumer
The prosumers are the integration of producer and consumer.
They play the role of consumers when buying electric energy, and
they becomeproducerswhen selling electricity. Taking ourmodel
as an example, users make themselves a prosumer by installing
solar power on top of the house, home energy storage and other
facilities. Let Ki ∈K = {K1,…,Km} denote the prosumer node of
the distribution system. If there is excess power after the power
generation of the prosumer in the distributed network meets its
demand, its PV power will connect to the grid, and if the power
generation of the consumer cannot meet its demand, it needs to
buy energy from the producer (Huang et al., 2022b).

PSell
t,Ki
= 0,PBuy

t,Ki
≠ 0, ifPpre > Pact (5)

PSell
t,Ki
≠ 0,PBuy

t,Ki
= 0, ifPact > Ppre (6)

PSell
t,Ki
= PBuy

t,Ki
= 0, ifPact = Ppre (7)

Plim ≤ Pt,ki ≤ Pmax (8)

where, PSell
t,Ki

and PBuy
t,Ki

are the power generations that WPP
sells (buys) to (from) prosumers, respectively. λSellt,Ki

and λBuyt,Ki
are prices that WPP sells (buys) to (from) prosumers. when
the system imbalance is positive (excess of generation),
then WPP can sell the power generation to consumers, vice
versa.
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2.3 Load
Unlike the prosumers, there are many loads that cannot
store energy. As a consumer, it purchases energy to provide
its own needs. In this paper, this type of load is not the
focus of the study, so this part of the load is simplified to
data.

2.4 Power System Operator
The operator is the power system dispatcher, which holds and
operates the network that delivers electricity. In the traditional
model, it implements market trading plans and is responsible
for the operational scheduling of the power system and the
real-time balancing of the power system to ensure the safe and
stable operation of the power system. In this paper, WPP prefers
to trade energy under a P2P mechanism, followed by trading
in an operator-operated trading floor, due to the high cost of
regulation under operator-based scheduling and WPP’s loss of
profit.

3 DESIGN GOALS OF THE BILEVEL
PROBLEM

In this section, we propose a bilevel model (Wang et al., 2022),
which can maximize WPP’s profits, reduce prosumers’ costs, and
provide WPP with a reasonable trading strategy.

3.1 Design Goals of the Bilevel Problem
3.1.1 The Objective Function of the Upper-Level
Problem
From perspective of WPP, the objective function at this level is to
maximize WPP’s profit as follows:

Max∑
ω∈Ω

πω∑
t∈T

[[[

[

PDA,Sell
t λDAt

+ ∑
Ki∈K
(PSell

t,Ki
λSellt,Ki
− PBuy

t,Ki
λBuyt,Ki
)

+(PB+
t λ+t − PB−

t λ−t )

]]]

]
s. t. (1) − (4) (9)

In the above model, the first item represents WPP’s revenue
from selling energy in DA market. The second item stands for
WPP makes profits from selling to prosumers. The third item
presents cost from purchasing energy from prosumers. Also,
WPP needs to take the cost of penalties in the regulation market.

3.1.2 The Objective Function of the Lower-Level
Problem
The objective fuction of lower level is defined as

Min∑
ω∈Ω

πω∑
t∈T

[[[[[[

[

∑
Ki∈K

PSell
t,Ki

λSellt,Ki

+ ∑
Ki∈K
(λm+t,Ki

Rm+
t,Ki
+ λm−t,Ki

Rm−
t,Ki
)

− ∑
Ki∈K

PBuy
t,Ki

λBuyt,Ki

]]]]]]

]
s. t. (5) − (8) (10)

where, the first item represents the costs of purchasing energy
from WPP. The second and third items represent the costs of

charging and discharging for prosumers. The last item is the
revenue from prosumers selling energy to WPP.

3.1.3 Combination of Upper and Lower Levels
The lower level objective function (10), and constraints (5)-(8) are
replaced by their Karush-Kuhn-Tucker (KKT) conditions. The
dual theorem of linear programming considers that the objective
function of the dual problem is equal to the objective function
of the original problem, and the value of this objective function
is also optimal (Song et al., 2017). Subject to KKT condition, the
upper-layer objective function formula becomes a formula that
is linear with respect to the decision variables, and finally, the
upper-level optimization process is transformed into the optimal
solution problem of solving a single-level mixed integer linear
programming.

3.2 Reputation Design
In order to stimulate the accuracy ofWPP’s forecasted generation
and regulate the behavior of the prosumers to participate in
the P2P mechanism, we propose their reputation mechanism.
The blockchain-based distributed energy trading system has a
reputation value for both WPP and prosumers to ensure the
proper operation of trading. ForWPP, the balancing penalty cost
is changed accordingly to its reputation value. For prosumers,
the system ranks the prosumers with good reputation value
according to the real-time reputation value to motivate them to
trade firstly and removes the inactive or malicious prosumers to
ensure the regular operation of the distributed energy trading
system.

3.2.1 Reputation of Wind Power Producer
The WPP reputation value consists of two parts, one is the
generation accuracy and the other is generation efficiency of the
wind turbine.

RJ = α1
1
24
∑
t∈T

min{Ppre,t ,Pact,t}

max{Ppre,t ,Pact,t}
+ α2

WTact

WTth
(11)

where, min {Ppre,t ,Pact,t}

max {Ppre,t ,Pact,t}
presents the prediction accuracy of WPP at

time t, the more accurate the WPP prediction, the closer this
term is to 1. WTact

WTth
presents the power generation efficiency of the

wind turbine during its life cycle. α1 represents how much RT
attaches to the first item, α2 represents how much RT attaches to
the second item, and α1+α2 = 1. Note that the reputation value
of a WPP the day before a transaction affects the balancing price
on the day of the transaction. Therefore, in order to increase the
profit of power generation, WPP strives to improve its reputation
value.

3.2.2 Reputation of Prosumer

RKi,t = β1

t

∑
t0

xi,t

Itot
+ β2

t

∑
t0

PKi,t

Pday
(12)
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TABLE 1 | Notations.

Notation Description

J Set of WPP nodes j
K Set of prosumer nodes k
PW
t Wind power generation at time t

PDA
t Power generation of DA market at time t

PSell∕Buy
t,Ki

WPP sells/buys energy to/from prosumers at t

PB+/−
t Positive/negative balancing energy at t

PDR
t Total demand of loads at t
Ppre The forecast power generation
Pact The actual power generation
λDAt Selling DA market price at t
λSellt,Ki

Offering price by WPP at t

λBuyt,Ki
Offering price by prosumers at t

λ+/−t Positive (negative) balancing market price at t
λm+/−t,Ki

Price of charging and discharging of prosumer at t

Rm+/−
t,Ki

Energy of charging and discharging of prosumer at t
t(T) set of time periods
RJ The reputation value of WPP
RK The reputation value of prosumer
ΔP+/− Positive (negative)generation deviation

ΔRKi
= β1

xi,t+1
Itot
+ β2

ΔPi,t+1

Pday
(13)

xi,t = {
1 , transaction completed
0 , not completed (14)

α1 + α2 = 1,β1 + β2 = 1 (15)

where, RKi
is reputation value of prosumer, it consists of two

parts. The first term ∑t∈TIi,t
Itot

expresses the proportion of the
number of times the ith prosumer participated in transaction
from t0 to t to the total number of times. xi,t as a Boolean
variable, when a transaction is completed, xi,t is 1, when a
transaction is not completed, xi,t is 0. The second term∑t∈TPKi,t

Pday

is defined as the ratio of the total transaction volume of the
ith prosumer to the total transaction volume in a day. β1 and
β2 are reputation weighting factors, which indicate how much
RT market attaches importance to ∑t∈TIi,t

Itot
and ∑t∈TPKi,t

Pday
. The sum

of the two weightings is 1. Let the reputation value of the
consumer is updated once an hour. Eq. 13 gives the incremental
reputation value of the prosumer. xi,t+1 represents the prosumer’s
Boolean function at the next transaction moment. ΔPi,t+1 is the
transaction volume of prosumers at the next moment. Specially,
when the prosumer does not participate in a transaction at the
nextmoment, the incremental reputation value of the prosumer is
zero. Table 1 lists some important symbols.

4 BLOCKCHAIN NETWORK
IMPLEMENTATION

The proposed market consists of four phases: upload initial
information, manage real-time information, publish RT market
transaction plans and BLmarket transaction.The frame is shown
in Figure 2. The figure shows that blockchain is a platform
for trading between buyers and sellers, which contains the
real-time reputation value of WPP and prosumers, real-time
generation, forecasted generation of WPP, and demand
of prosumers and loads. Blockchain can realize trustless,
decentralized, and efficient P2P transactions between nodes
through data encryption, time stamps, and smart contracts
(Gong et al., 2020). The blockchain-based real-time trading
market supports trustless P2P direct transactions between
WPP and prosumers, and the results of the transactions can
be published on the chain.

Blockchain acts as a distributed database system that acts as
an open ledger to store and manage transactions. It contains the
historical records of all transactions (Shan et al., 2019). Before
the transaction, the buyer and seller must upload the transaction
information to the blockchain. The detail of the algorithm is
shown in Algorithm 1.

FIGURE 2 | The trading framework based on blockchain and smart contract.
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Algorithm 1: Real-time market energy trading algorithms.

• Phase 1: Upload initial information.

Before the DA market opens, WPP uploads its electricity
generation forecast data, while the load also uploads the demand
forecast information.WPP submits energy bidding on the trading
floor of the wholesale market. WPP buys energy at certain times
and sells energy at certain times, depending on WPP’s forecast
accuracy and load demand. After DA market is cleared, the day-
ahead prices are uploaded to the blockchain. Finally, the above-
mentioned on-chain data are stored and used as the basis for RT
market trading.

• Phase 2: Manage real-time information.

At the retail level, WPP trades real-time energy with the
electric loads in its jurisdiction.WPP uploads the actual output to
the blockchain, and the deviation between the actual generation
and the predicted generation will cause a high adjustment price.
As a result, WPP has an incentive to participate in a RT
market with a P2P mechanism to trade energy with prosumers.
Under the P2P tradingmechanism, the interaction betweenWPP
and prosumers provides a new solution for the management
of renewable energy consumption. Understudy WPP submits
energy bid to RT market, let the difference between the actual
and forecast generation be the generation deviation (ΔP), which
is positive (ΔP+), and vice versa. According to the positive or
negative value of ΔP, WPP will enter the positive or negative
RT market under the P2P mechanism, respectively. At this
point, WPP uploads the latest reputation value to the blockchain
information system, which is determined by the accuracy of
WPP’s forecasts and the efficiency of its wind turbines. The
prosumers upload their real-time power information: up and
down reserves, reputation value Rt,Ki

, Charging and discharging
costs to the chain.

• Phase 3: Publish RT market transaction plans.

At the beginning of a period, the smart contract generates
specific transaction results for prosumers based on on-chain
data and algorithms. Based on the positive/negative deviation
of the WPP, the producers or prosumers who need to purchase
power/have excess power generation will be ranked from highest
to lowest reputation value and will be calculated to match a series
of prosumers forWPP.The prosumers will trade in order with the
WPP, and the blockchain will then return the scheduling results
to the WPP. After the prosumers finish the scheduling task, they
update the remaining capacity and reputation value on the chain.
If WPP has questions about the scheduling assignment, they can
get all the data of that scheduling task from the blockchain.

• Phase 4: BL market transaction.

After completing the RT market tradings, there are still
deviatedWPPs entering the trading floor managed by BL market
to receive punishment. Such punishments are costly. We often
hope that minimize the number of penalties to increase WPP’s
profits. During several of the above tradings, if WPP’s reputation
value decreases, it will affect the balancing price. ForWPP to gain
a higher profit, WPP should improve the forecast accuracy and
timely attention to the generation efficiency of wind turbines to
ensure their proper operation during their life cycle.The updated
WPP reputation valuewill be uploaded to the blockchain after the
trading.

5 NUMERICAL RESULTS

5.1 Input Data
The proposed energy market design is implemented based on
realistic data to give the optimal bidding strategy of WPP. The
predictedwind output power and actual power ofWPP are shown
in Figure 3. Due to changingweather conditions,WPP’s forecasts
deviation significantly from actual generation during some time
periods. Drastic wind speed changes will affect the accuracy of
wind power prediction. The generation offset caused by forecast
errors impacts the active power balance of the power system. In a
power systemwherewind power is the dominant source of power,
the above phenomenon will cause a significant impact on the
frequency of the grid and thus affect the stable operation of the
system. At 4:00 a.m., 12:00, 1:00 p.m., WPP’s actual generation
significantly exceeds forecasted generation,When thewind speed
fluctuates greatly, the wind turbine will output active power
fluctuations. If large-scale electric energy is injected into grid
during the wind power generation process, it will not only affect
the transient stability of the power grid, but also affect the
stability of the power grid frequency. bring serious impact. To
solve the above phenomenon, WPP trades with prosumers in
RT market to reduce fluctuations on the grid. Figure 4 shows

FIGURE 3 | Actual and forecasted wind power.
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FIGURE 4 | Selling energy to prosumers.

FIGURE 5 | Buying energy from prosumers.

the excess of generation, prosumers and operator use the RT
and BL markets to repurchase the energy. Figure 5 shows the
deficit of generation, WPP purchase energy from prosumers and
operator. Furthermore, DA and balancing prices are generated
according to scenarios. The data mentioned above is uploaded
to the blockchain. Simulations were operated with an Intel Core
CPU i7-9750H@2.6 GHz, 16 GBRAMto verify the performance
ofmodel. Also, we use EthereumGeth client to build a blockchain
system to simulate our energy trading system, and calculate the
overhead in the chain.

5.2 Results and Discussions
5.2.1 Blockchain Test
Figure 6 shows a prototype of the P2P trading platform
implemented using the Ethereum Geth client, which supports
direct transactions between prosumers and wind power
producers. It also shows the transaction accounts of WPP
and prosumers, that is, the Ethereum address. The address is
represented by a hash value and has privacy protection. The gas
consumption of the operation is also included.

FIGURE 6 | Ethereum test.

FIGURE 7 | Gas consumption.

In Ethereum’s smart contracts, each data transfer requires a
certain amount of gas, gas consumption implies the overhead
of performing operations on the blockchainLiu et al. (2020)
Usually, this is an important criterion for measuring whether
a blockchain network design is reasonable. Figure 7 illustrates
the gas overhead for the operation of entities in our framework
structure. In the process of energy trading based on blockchain,
WPP and prosumers need to upload information and operate
on the chain. Moreover, we can see how much gas is mainly
consumed by the smart contract by sorting the reputation value of
the prosumers. As shown in Figure 7, due to the large amount of
information that WPP needs to upload, the reputation ranking
of prosumers by smart and contract processing information is
relatively large, consuming about 600,000 units of gas.The rest of
the operations are mainly to store data on the blockchain. Their
gas consumption is less than 150,000, which is acceptable to all
nodes in the system.

5.2.2 Trading Result
Assuming that a trading cycle T = 24 h, Figure 3 shows the
deviation between the predicted output and the actual output of
WPP during some periods (for example during 4 a.m..–6 a.m.,
11 a.m..-2 pm. and 7 p.m..–9 p.m.). Formentioned wind forecast
errors, WPP conducts P2P tradings with prosumers to decrease
the size of the value of ΔP.

As shown in Figure 4, as it can be seen, when wind
power production is high, WPP sells surplus energy. At 4 a.m.,
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Prosumers consumemost of the electricity, andWPP sells a small
portion to the operator. At 12:00, WPP tends to sell more energy
to prosumers, however, there is a limit to the amount of electricity
that can be consumed by prosumers underWPP’s jurisdiction. So
WPP sells the rest of its energy at a lower price positive BLmarket.
At 2 p.m., there is enough surplus energy in the energy storage
of the prosumers, and WPP sells all the surplus energy to the
prosumers. In fact, Prosumers makeWPP avoid selling all excess
energy to BLmarket. Without using our model, WPP’s profits are
lower due to the fact that the revenue from selling to consumers
is greater than the revenue from selling to the BL market. To
be more specific, prosumers promote the consumption of wind
power.

As shown in Figure 5, in some periods, deviation represents
a deficit of production. The producer sells electricity to WPP,
and since the amount of electricity sold by the producer is not
enough to reach the amount of electricity thatWPP wants to buy,
WPP buys a small portion of the electricity from the operator
at 4 a.m. At 3 p.m. Prosumers’ power generations are within a
certain range, if prosumers cannot supply WPP, then WPP buys
from the BLmarket at a high price. At 6 p.m., the power generated
by the prosumers is sufficient to supply the offset of the WPP,
as a result, the WPP purchases all the required power from the
prosumers. Generally, the prosumers sell toWPP at a price below
the BL market, which reduces WPP’s losses.

In our P2P trading mechanism, prosumers cover most of the
uncertainty of wind power generation, which not only improves
WPP’s earnings but also reduces its power purchase costs, thereby
reducing the impact of wind power on the grid, ensuring that the
stable operation of the power grid.

Table 2 is added to show the profit of WPP and prosumers
with andwithout ourmodel. Comparedwith the previous trading
model, due to the introduction of the real-time market with
prosumers, the profit of WPP under our model has increased
by 9.55%. In this paper, we consider that the benefits of the
prosumers are divided into two aspects, on the one hand, the
proceeds from selling toWPP, and on the other hand, the savings
from the producer and consumer’s direct dealings with WPP,
noting that the above earnings minus the discharge costs of the
prosumers.

5.2.3 Reputation Experiment
Finally, we test the effect of reputation value about prosumers
and WPP. we set 20 prosumers, these prosumers buy and
sell electricity in the RT market to compensate for generation
deviations, and if the prosumers are unable to cover deviations,
then the WPP will trade electricity with the main grid in
BL market. For prosumers, We set two scenarios to simulate
situation. For WPP, we set two scenarios and three situations

TABLE 2 | Profit of WPP and prosumers.

Entity With Our Model ($) Without Our Model ($) Gain (%)

WPP 4579.63 4180.57 9.55
Prosumers 208.61 — 5.6

to simulate. For WPP, we set up one scenario with three
situations.

We track the impact of changes in one prosumer’s reputation
value on the success rate of a transaction. we set up two scenarios
to highlight the influence of the weight factors β1 and β2 on the
weight terms where they are located. In scenario 1, both β1 and
β2 are 0.5. In scenario 2, β1 is 0.8, β2 is 0.2. In scenario 1, as
shown is Figure 8, varying the magnitude of the value of the
corresponding term of ∑tt0 xi,t , specifically, the frequency of the
total number of transactions in which the prosumer participates
from t0 to t for low, medium, and high frequencies. The results
show that the prosumer with a high number of participations
has a higher probability of successful transactions. Similarly,
changing the magnitude of the value of the corresponding term
of ∑tt0 PKi,t . Specifically, the value of the weight factor and its
corresponding reputation item can affect the reputation value. In
our experiments, we set three sizes of reputation items from t0 to
t by the prosumer to highlight the influence of reputation item
changes on reputation value. In the second scenario, as shown
is Figure 9, it is obvious that the change in transaction volume
has a larger impact on the transaction success rate because

FIGURE 8 | Prosumers scenario 1.

FIGURE 9 | Prosumers scenario 2.
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FIGURE 10 | Balancing price of WPP under different reputation values.

we set the weight factor of transaction volume to 0.8. When
the transaction increases, the reputation value of the prosumer
improves significantly, and then the trading success rate increases
significantly.

Figure 10 shows that the price of electricity traded in the BL
market differs when the WPP has different reputation values.
WPP trades power with the main grid to compensate for
generation deviations. We compared WPP’s balancing prices
at low, medium and high reputation values. The higher the
reputation value of WPP, the lower the price of electricity it
buys from the main grid in the BL market, the higher the
price of electricity it sells, and the higher the profit it earns.
Therefore, WPP has to increase the forecast accuracy to increase
the reputation value to increase its profit.

6 CONCLUSION AND FUTURE WORK

In this study, a blockchain-based P2P energy trading short-
term market is proposed. It supports direct transactions between
WPP and prosumers without the third parties or the central
agency while ensuring efficient and trustless. In the blockchain-
based energy trading market, the participation of prosumers
reduces WPP’s balancing costs due to generation deviation
caused by inaccurate forecasts. At the same time, the benefits
of prosumers in the real-time market reduce their electricity
purchase costs. In addition, we designed a reputationmechanism
to promote more active participation of prosumers in the market
and more accurate forecasts of WPP. This mechanism ensures
that professional consumers with a high number of participants

and a high historical trading capacity will receive more benefits.
The pricing of energy transactions is determined by a two-
level optimization algorithm, which makes the optimal solution
satisfy the maximum WPP revenue and the lowest electricity
purchase cost for prosumers. Through numerical simulation
experiments, in a given scenario, our scheme can effectively
increase the revenue of WPP by 9.55%, reduce its adjustment
cost, and increase the profit of prosumers by 5.6%. In the future,
we intend to expand the use cases of our solution. On the
power generation side, the trading environment of WPPs is
complicated, and competition among WPPs is introduced. Seek
mutual transactions between WPPs to compensate for power
generation deviations and further reduce balancing costs. In
addition, we will introduce a variety of renewable energy into
the market pricing to promote the consumption of a variety
of renewable energy. On the demand side, we will incorporate
electric vehicles into our market and participate in transactions
to balance wind energy fluctuations.
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