
Identifying Risk Transmission in
Carbon Market With Energy,
Commodity and Financial Markets:
Evidence From Time-Frequency and
Extreme Risk Spillovers
Yufeng Chen1,2, Chuwen Wang1, Jiafeng Miao1* and Tanjun Zhou3

1School of Economics, Center for Studies of Modern Business, Zhejiang Gongshang University, Hangzhou, China, 2College of
Business Administration, Capital University of Economics and Business, Beijing, China, 3School of Statistics and Mathematics,
School of Management and E-business, Zhejiang Gongshang University, Hangzhou, China

The carbon market is a vital tool to achieve carbon neutrality. This paper uses daily closing
price data of Shenzhen carbon trading market, energy, commodity and financial markets
from 18 October 2018 to 19 August 2021, examining the transmission of risk/information
from the perspective of market volatility spillover and tail risk transmission based on
quantile spillover. The stockmarket crash and COVID-19 have increased the volatility of the
system substantially. Next, the increase in trading frequency is accompanied by an
increase in total volatility connectivity, and the carbon market transforms into a
recipient of systemic shocks. Finally, the results of tail risk transmission reveal that the
net effect of carbon reception increases significantly. These findings have implications for
policymakers to improve the carbon market and provide important insights for investors to
trade in turbulent periods.
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1 INTRODUCTION

In the past 40 decades, China’s reform and opening-up level of high-speed development have made it leap
to the second-largest energy economy in the world, while industries and enterprises also burn and utilize
fossil fuels in large quantities without restraint, emitting considerable amounts of greenhouse gases (An
et al., 2021; Chen and Zhu, 2022; Xian et al., 2022). To strengthen ecological protection and promote
sustainable development, the issue of carbon emission management from an economic perspective has
been considered by the government (Liu et al., 2021; Yu et al., 2021). China’s first carbon emissions trading
market was officially launched in Shenzhen on 18 June 2013. It has gradually formed the most complete
legal institutional framework for carbon trading in China, laying a good foundation for the smooth
operation of China’s overall carbon market construction (Jiang et al., 2014; Cong and Lo, 2017). In the
context of low-carbon environmental protection, the operation of the carbon trading market has greatly
supported the financial instruments to achieve China’s “double carbon” goal. However, the current
development of China’s carbon emissions trading market is still immature and investors do not choose
carbon as their investment and financial management tool, which makes it difficult for the carbonmarket,
a market-based environmental regulation policy, to be effective.

The energy market is closely related to the carbon emission trading market. Looking at the current
situation of energy consumption and carbon emissions in China, the energy structure of China is still
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dominated by fossil energy under the constraint of resource
endowment. In 2019, China’s coal consumption accounted for
57.5%, oil consumption for 18.9%, and natural gas consumption
for 8.1%, with a total fossil energy consumption share of nearly
85%1. Energy markets are vulnerable to various uncertainties and
volatility (Maneejuk et al., 2021). In turn, the energy market is
used as a medium to transmit this volatility to the carbon trading
market. Therefore, identifying the spillover effects of energy
shocks on the carbon market is of great relevance. In addition,
it is crucial to analyze the volatility between some high carbon
product markets and carbon trading markets. As basic
consumables for industrial raw materials, fluctuations in
copper and iron ore prices have severely affected the economy
as well as other markets (Guo et al., 2020; Chen and Yang, 2021).
With the trend of financialization in the metals market, precious
metals have become a popular hedge asset for investors. To
achieve effective development of the carbon market, there is a
real need to consider the relationship of risk transfer between the
precious metals and the carbon market in the future (Adekoya
et al., 2021). In addition, there is a linkage between the stock
market and the carbon market, both at the overall and industry
level (Wen et al., 2020). Given this, we will construct a system of
the markets as mentioned above to analyze the volatility spillover
relationship between the markets, with the carbon market as the
main object of study.

In recent years, scholars have extensively discussed the risk
contagion of carbon markets (Balc et al., 2020; Yuan and Yang,
2020; Zhu et al., 2020; Xu, 2021), analyzing the spillover effects
of carbon markets with energy, commodity and financial
markets (Ji et al., 2018; Wang and Guo, 2018; Gong et al.,
2021; Ma and Wang, 2021; Jiang and Chen, 2022).
Nonetheless, most studies on risk contagion in previous
generations lack a systematic framework. In addition, the
impact of tail risk is often neglected in existing studies on
the spillover effects of the system.

To fill the gap in previous studies, this paper analyzes the
volatility spillover relationship between carbon market and
energy, commodity and financial markets by time-varying,
time-frequency and quantile spillover methods, taking the
Shenzhen carbon emission trading market as the main
research object. In today’s financial world, modeling analysis
of information/risk spillover from one market to another is
important for asset pricing, investment decisions, leverage
decisions, portfolio allocation in international markets, and
macroeconomic strategy formulation by government
policymakers. This study aims to present empirical methods to
identify the volatility risk transmission from carbon markets with
energy, commodity and financial markets to reduce the risk of
related market transactions. It not only facilitates carbon trading
investors to choose reasonable investment instruments but also
provides a strong scientific basis for carbon market policymakers
to regulate the development of the carbon market more ideally by
formulating appropriate carbon finance plans.

The main contributions are as follows. Firstly, a wavelet
decomposition approach is used to process the signal into four
time-lengths to describe the volatility spillover constructs within
the system. This approach enriches the perspective of investors by
classifying them by trading duration. Previous related literature
also demonstrates that carbon has a different structure from other
markets in terms of spillovers at different frequencies (Adekoya
et al., 2021). Second, the spillover of the bull, as well as bear
market systems, are explored to obtain more scientific and
comprehensive results. The occurrence of tail quantile-extreme
events is also a part of greater interest to investors and
governments. In the Chinese carbon trading market, the
transmission of market risk is exacerbated by extreme events
and the market suffers severe shocks (Zhu et al., 2021; Jiang and
Chen, 2022; Zhao andWen, 2022). Third, this paper also presents
novel information/risk transmission findings in the carbon
market with energy, commodities and financial markets. The
impact of the stock market crash and COVID-19 has exacerbated
risk transmission within the system. As the frequency of trading
increases, the carbon market turns into a net recipient. Under
extreme conditions, the negative spillover effect of the carbon
market intensifies. The identification of volatility risk
transmission in the Shenzhen carbon market helps provide a
relevant theoretical basis for other carbon markets in China to
implement efficient operations in the future.

The structure of this article is as follows. The relevant literature
review is described in Section 2. The methods and data are
present in Sections 3 and 4. Section 5 is the analysis of empirical
results. Finally, the conclusions and policy implications are
reported in Section 6.

2 LITERATURE REVIEW

In this section, we summarize relevant recent research examining
the linkages between carbon markets and other markets. Energy
and carbon prices are interconnected and are relatively complex
systems. There are significant spillovers between carbon and fossil
energy markets, with the strongest volatility spillover between
coal and carbon markets (Zhang and Sun, 2016; Wu et al., 2020;
Gong et al., 2021). Evidence of synchronization between the
China carbon and coal markets has also been found (Yin
et al., 2021). Oil prices influence carbon prices in terms of risk
and volatility (Ji et al., 2018). Xu (2021) used the conditional
volatility of Daqing crude oil returns to measure the risk spillover
effect of energy market uncertainty on the China carbon market,
which yielded significant risk spillover effects. However, this is
contrary to earlier research findings (Reboredo, 2014). In studies
of electricity markets, there is a strong information spillover
relationship between European carbon prices and electricity
markets (Ji et al., 2019). Yang (2022) and Zhu et al. (2020)
examined the relationship between the EU-ETS and the electricity
market. The results of the idiosyncratic spillover indicate that
carbon is a net recipient of systemic risk, and the level of this risk
spillover has different architectures in frequencies. It is clear that
changes in energy market prices have an impact on carbon
emissions and influence the development of carbon markets.

1The data was reported by the National Bureau of Statistics of the People’s Republic
of China (2020).
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Carbon emissions are essential in the production process of
high-carbon companies. There are few studies related to high-
carbon products and carbon markets in the existing literature.
Most scholars have selected steel, iron ore, and aluminum as the
subjects of research on the relationship with carbon spillovers
(Ma and Wang, 2021; Jiang and Chen, 2022). Jiang and Chen
(2022) include steel and aluminum in the materials market, and
the results after COVID-19 indicate an increase in spillovers in
the materials market. The carbon market in China is still evolving
and remains sensitive to other markets. Using a combination of
the DY spillover index and Copula framework Ma and Wang
(2021), found that iron ore has the highest degree of spillover in
the system, and carbon emission prices have a relatively low
degree of spillover. The stock market is often applied as a
barometer of macroeconomic and financial markets. Most
previous studies have measured the relationship between
stocks in specific sectors and the carbon market (Yuan and
Yang, 2020; Dai et al., 2022; Tiwari et al., 2022). It has some
limitations that do not provide a complete interpretation of the
stock market as a whole.

The studies mentioned above mainly respond to the correlation
between energy and high carbon products due to the production of
carbon emissions, ignoring the fact that the carbon emissions trading
market can be used as a channel for the investment market. In
addition, the European carbon tradingmarket is better developed, and
previous studies have mainly explored this market for the analysis of
the relationship with other markets. Since there are still some gaps in
China’s carbon trading market, we choose the earliest ETS market in
Shenzhen as the main object of this paper and analyze the spillover
relationship with the energy market, high carbon products market,
precious metals market and financial market. Precious metals (gold
and silver) and high-carbon products (copper) are considered, as
preciousmetals are of great significance to investors, while copper as a
high-carbon product is often overlooked.

Although much of the literature has been tested to prove that
there is indeed some spillover relationship between carbon and one
of the markets mentioned above, a systematic examination is still
lacking. Regarding the methodological models, most scholars
generally adopt a construct based on Diebold and Yilmaz’s
(2012) spillover index to explore the spillover relationship (Ji
et al., 2018; Wang and Guo, 2018). Another part of scholars use
models such as GARCH, Copula and causality to consider inter-
market dependence (Zhang and Sun, 2016; Yuan and Yang, 2020).
Nevertheless, these methods are not quantified and the case of
multiple groups of markets is difficult to deal with. Therefore, this
paper extends the market price information/risk spillover (DY
index) framework to consider the degree of system integration
and the direction and magnitude of information/risk transmission
within the system, which is more convincing than the traditional
tests. Especially, the methodology combines the maximum
overlapping wavelet decomposition (Percival and Walden, 2000),
quantile spillover (Ando et al., 2022) integrated to measure the
variation of intra-system spillover for investors with different
trading frequencies and when extreme events occur. The
inclusion of the quantile element overcomes the drawback that
the average estimate is too homogeneous to provide a complete
assessment of the tail process. Overall, in this paper, we decided to

use a wavelet decomposition and quantile architecture connectivity
approach to measure the selected indicator system's spillover.

3 METHODOLOGY

3.1 The Wavelet Decomposition Framework
Manymethods of signal time and frequency processing are available
at this stage. For instance, EMD, Fourier transform and BK index
decomposition have been widely used in processing financial time
series data (Zhu et al., 2020; Luo et al., 2021; Liu et al., 2022). In
particular, wavelet transform has a wide range of applications as
time-frequency analysis in various research fields, and it is suitable
for decomposing some non-stationary time series signals. Compared
to the Fourier transform, the wavelet transform has a good
interpretation advantage for time and frequency.

3.1.1 Continuous Wavelet Transform
The continuous wavelet transform for measuring a given signal
f(K) can be expressed in the following form:

CWT(a, b) � ∫+∞

−∞
f(K)φa,b(t)dt (1)

Where CWT(a, b) is the wavelet coefficient of signal f(K); a is
scale parameter, b is translation parameter; φa,b(t) is the
subwavelet obtained by translating and telescoping the mother
wavelet φ(t).

3.1.2 Discrete Wavelet Transform
The discrete wavelet transform differs from the continuous
wavelet transform described above in that there are special
requirements for the setting of the a and b parameters. Both a
and b need to be a multiple of an integer, typically requires a � 2j;
b � ka � k2j; j � 1, · · ·J. Where j represents the level (number of
layers) of the discrete decomposition, k is constant term.

Next, different filters divide the wavelet function into a mother
wavelet and a father wavelet function. The mother wavelet is defined
for data at low scale and high frequency and the father wavelet
presents data at high scale and low frequency. The following equation
can represent the output after two frequency filters:

The smoothing coefficients of the father wavelet—Approximation
coefficients (CA) are representative of the high scale and low
frequency:

CA: AJ � ∑∞
n�0

f(n)ψJ,k(n) � ∑∞
n�0

f(n)ψJ,k(n)

� ∑∞
n�0

f(n) 1��
2J

√ ψ(n − k2J

2J
) (2)

The detail coefficients of the mother wavelet—Detail
coefficients (CD) present data of low scale and high frequency:

CD: Dj � ∑∞
n�0

f(n)φj,k(n) � ∑∞
n�0

f(n)φj,k(n)

� ∑∞
n�0

f(n) 1��
2j

√ φ(n − k2j

2j
) (3)
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However, DWT requires that the sample size be an integer
power of 2, which is difficult to satisfy in practice. This study
introduces the maximum overlap discrete wavelet transform
(MODWT) to overcome this drawback. The highly redundant
transformation of the coefficients is expressed as:

CA: AJ � ∑∞
n�0

f(n)ψJ,k(n) � ∑∞
n�0

f(n)ψJ,k(n) � ∑∞
n�0

f(n)ψJ,k(t)/2
J
2

(4)
CD: Dj � ∑∞

n�0
f(n)φj,k(n) � ∑∞

n�0
f(n)φj,k(n) � ∑∞

n�0
f(n)φj,k(t)/2

j
2

(5)
Here, J = 4 is set according to the sample size. The wavelet

decomposition is performed using a Daubechies minimum
asymmetric wavelet filter of length 10, i.e., LA (10).

3.1.3 Time-Varying Vector Autoregression
To explore the mechanism of information/risk transmission in
time-varying situations, this paper constructs a TVP-VAR
model based on the maximum discrete wavelet transform
according to Antonakakis et al. (2020). The main advantage
of the TVP-VAR method is that there is no need to pick a
specific window size when building the connectivity model in
the next step, which avoids some errors caused by subjective
window selection. The following equation describes the TVP-
VAR model:

Ut � λtUt−1 + ςtςt ~ N(0, Lt) (6)
vec(λt) � vec(λt−1) + ξtξt ~ N(0, St) (7)

Ut � Atζ t−1 + ζ t (8)
Where Ut , Ut−1 and error terms ςt , ξt are the vectors of N × 1
dimensions; λt and Lt are the matrix of N×N; vec(λt) represents
the vectorized form of λt with dimension N2 × 1. Eq. 8 presents
the VMA form of the TVP-VAR, which is the basic step in the
construction of the connectivity index.

3.2 The Quantile Framework
According to the theory of linear quantile regression first
proposed by Koenker and Bassett (1978), in linear conditions,
given the dependent variables xt, the quantile τ of yt is:

Qτ(yt

∣∣∣∣xt) � xtβ(τ) τ ∈ (0, 1) (9)
Qτ is represented in different quantile functions; the quantile τ
between 0 and 1; xt is the vector that explains the variable; β(τ) is
called the quantile regression coefficient. So, this paper defines the
estimators of different quantile coefficient β̂(τ) by the following
minimization problem:

min
β(τ)

∑
β(τ)

T
t�1yt >xtβτ(τ)

∣∣∣∣yt − xtβ(τ)
∣∣∣∣ +∑

βτ

T
t�1yt <xtβτ(1 − (τ)∣∣∣∣yt

− xtβ(τ)
∣∣∣∣ (10)

The quantile structure is next constructed into the VARmodel
as follows:

yt � λ(τ) +∑p
i�1
Bi(τ)yt−i + et(τ), τ ∈ (0, 1) (11)

λ(τ) represents the intercept term in the quantile τ; et(τ)
represents the N-dimensional residual vector at the quantile τ;
Bi(τ) shows the coefficient matrix at different quantiles. To
estimate the values of two variables λ̂(τ) and B̂i(τ), this paper
assumes that the residuals satisfy the population quantile
restrictions, Qτ(et(τ)|Ft−1) � 0; Ft−1 represents the
information set at time t − 1. The population τth conditional
quantile of y is:

Qτ(yτ |Ft−1) � λ(τ) +∑p
i�1
Bi(τ)yt−i (12)

First, we estimate a quantile vector autoregression (MA),
which can be depicted as follows:

yτ � μ(τ) +∑∞
s�0
As(τ)et−s(τ), t � 1, · · ·, T

with,
μ(τ) � (In − B1(τ) − · · · − Bp(τ))−1λ(τ), As(τ) (13)

�
⎧⎪⎨⎪⎩

0, s< 0
In, s � 0
B1(τ)As−1(τ) + · · · + Bp(τ)As−p(τ), s> 0

Where yt is given by the sum of the residuals et(τ); In and As(τ)
are N × N coefficients vectors.

3.3 The DY Spillover Framework
Then, for building the generalized error variance decomposition
framework based on the two regression conditions described in
the previous section. For the forecast range H, the generalized
forecast error variance decomposition (GFEVD) of variables
caused by shocks of different variables:

θgij(H) � σ−1
jj∑H−1

h�0 (ei′As∑ej)2
∑H−1

h�0 (ei′As∑ej) (14)

The θgij(H) is the contribution of the jth variable to the
variance of forecast error of the variable ith at horizon H; ∑is
the variance matrix of the vector of errors, The diagonal
components of the matrix are represented by σjj, and ei is a
vector with a value of 1 for the ith element and 0 otherwise.

Since the above framework does not query the
orthogonalization of shocks, the sum of elements of each
row of the matrix is not equal to 1: ∑N

j�1θ
g
ij(H) ≠ 1.

Therefore, this paper needs to normalize the matrix with
elements:

θij
~g

(H) � θgij(H)
∑N

j�1θ
g
ij(H) (15)

Finally, this paper constructs connectedness measures based
on the spillover index framework of Diebold and Yilmaz (2012),
which is formulated by using generalized forecast error variance
decomposition. The total spillover index, net spillover index, and
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net pairwise spillover index are expressed in the following
formulations:

TCI(H) � ∑N
i�1∑N

j�1,i ≠ j θ
~g

ij(H)
∑N

i�1∑N
j�1 θ

~g

ij(H)
× 100 (16)

CI·←i(H) � ∑N
j�1,j ≠ i θ

~g

ji(H)
∑N

j�1 θ
~g

ij(H)
× 100 (17)

CIi←·(H) � ∑N
j�1,j ≠ i θ

~g

ij(H)
∑N

j�1 θ
~g

ij(H)
× 100 (18)

NCI(H) � CI·←i(H) − CIi←·(H) (19)
NPCI(H) � θ

~g

ji(H) − θ
~g

ij(H) (20)
In particular, to reflect the dynamics of the time-varying

spillover on the quantile-connected framework, this paper uses
the rolling window estimation, which is based on lag with SIC = 1
and forecast error variance decomposition of 10 steps in advance.

4 DATA DESCRIPTION

Considering the liquidity of the transaction and the range of
carbon allowance prices recorded, the empirical analysis selects
Shenzhen carbon trading market's daily closing price data as the
carbon price benchmark. Shenzhen carbon trading market is the
earliest and relatively well-developed carbon trading pilot in
China (Cong and Lo, 2017). The other data is in four major
categories: energy prices, product prices, precious metal prices
and financial markets. Energy prices have always been closely
linked to carbon markets. In addition to traditional fossil energy
(oil and power coal), the Electric Power index is also included.
Copper and iron ore are collected as product prices, and their
production process is accompanied by significant carbon
consumption and emissions. In the precious metals market,
gold and silver are often important tools for investors to
hedge their bets. Finally, the CSI 300 index is used as to
represent the financial market. The sample period is from 18
October 2013, to 19 August 2021. The sources are listed in
Table 1 and the data are from Wind. Meanwhile, since the
data are all from China, the influence of currency exchange
rate on the time series modeling of closing price is negligible.

The descriptive statistics and the unconditional correlation
matrix of returns for the whole period are provided in Table 2. As
the main decarbonization instrument currently in China, the
carbon market has negative average returns and the largest
variance, suggesting that the China carbon market may not be
a good financial instrument for investors. Significant negative
returns and relatively large variance are also found in oil and iron
ore. As important strategic resources, they are subject to
high volatility mainly due to uncertainties such as geopolitical
factors. Almost all other markets have positive returns, and the
volatility is not particularly pronounced. In particular, the
minimum variance gold price still maintains a stable trend,

which also verifies the safe-haven value of gold from another
perspective. In terms of the distribution characteristics of
the series, all markets except carbon, gold and copper show
a negative bias. Both left-skewed and right-skewed results
are found. Without exception, all samples are above the
benchmark criterion of 3 and there is a significant excess
kurtosis. To further demonstrate the statistical properties of
the series, another more advanced test is performed in
this paper. Without any disappointment, the JB statistic
rejects the original hypothesis of a normal distribution.
Therefore, it seems reasonable to use the quantile framework
model structure below to measure the results of this non-normal
distribution. Finally, their production process the ERS unit root
test results show that all returns remain stationary at the 1%
significance level.

In the results of the unconditional correlation matrix, all
returns exhibit different levels of correlation. Among them,
gold and silver, both precious metal commodities, present the
strongest positive correlation in the system with over 80%. The
unexpected result occurs between gold and the CSI 300 index,
which possess only a 0.7% correlation degree.

5 EMPIRICAL RESULTS

As mentioned in the introduction, this part takes carbon prices as
the main object of analysis, firstly exploring the time-varying
spillover effect of the system. The spillover for different
frequencies based on the results of wavelet decomposition is
analyzed in Section 5.2. Furthermore, in Section 5.3, this paper
investigates what happens to the system under the influence of
bull and bear markets in extreme cases.

5.1 Time-Varying Analysis of Spillover
To study the volatility transmission of the system, this section first
analyzes the time-varying characteristics of the system volatility
using absolute returns based on the TVP-DY spillover index
method proposed by Antonakakis et al. (2020). Here, this paper
estimates the dynamic total and net spillover indices (see Figures 1,
2). Figure 1 indicates the total dynamic spillover across the system.
Overall, the system has high volatility with the total spillover
indices ranging from 20% to 45%. Combining the occurrence of
the relevant events, it is significant to find that the volatility
connectivity changes abruptly in 2015 and 2019. These two
points in time correspond precisely to the stock market crash
and the COVID-19. The stock market crisis was triggered by the
market's large number of highly leveraged placements. After the
bubble occurred, it exacerbated the panic fall in the stock markets,
which transmitted this damaging information to other capital
markets, creating a situation where the risk of systemic volatility
was abnormally high. Interestingly, this paper finds a much higher
risk of volatility from health crises than the results due to stock
market crash. As the epidemic improves, the systems volatility
transmission risk decreases.

Figure 2 reviews the directional information to understand the
estimated net directional spillover. With the exception of energy
and commodities, almost all assets provide historical evidence of
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mixed patterns. During the incipient phase of the carbon market,
it became the largest transmitter. For the Shenzhen carbon
market—the first carbon trading pilot in China, although the
development system has been a leader in the country, the low
liquidity of carbon trading has resulted in “A bid but no volume
dilemma” and “large exposure to risk” (Fan et al., 2019; Li et al.,
2021a). It is the opposite of the European carbon trading market,
which was developed earlier and is relatively mature (Adekoya
et al., 2021). On the contrary, oil, power coal, iron ore, and copper
are net recipients of volatility spillovers. Analyzed from another
perspective, these commodities cannot be burned and processed
without carbon emissions, and the corresponding assets are
closely linked to carbon trading. Investors can focus on carbon
to form portfolio assets with oil, power coal, etc. to face bad
volatility spillovers from various uncertainties and geopolitical
factors (Chen et al., 2019). 2016–2020 belongs to the accelerated

TABLE 1 | Indicator selection and data sources.

Indicator Data Source

Carbon price Shenzhen http://k.tanjiaoyi.com/
Energy price Crude Oil Zhengzhou Commodity Exchange

Power Coal Zhengzhou Commodity Exchange
Electric Power index (L11655.CSI) Wind

Product price Iron Ore Dalian Commodity Exchange
Copper Shanghai Futures Exchange

Precious metal price Gold Shanghai Futures Exchange
Silver Shanghai Futures Exchange

Financial market CSI 300 index Wind

TABLE 2 | Summary statistics and unconditional correlations.

Carbon Crude oil Coal Iron ore Gold Silver Copper Electric power CSI 300 index

Mean −0.093 −0.034 0.019 −0.015 0.021 0.008 0.015 0.027 0.041
Variance 1211.937 11.837 2.700 6.455 0.833 2.409 1.484 2.172 2.381
Skewness 0.280a −3.658a −1.389a −0.918a 0.300a −0.423a 1.401a −0.337a −0.808a

Kurtosis 19.276a 78.979a 14.494a 7.772a 7.496a 9.835a 26.280a 6.979a 5.740a

JB 26216.105a 443531.156a 15354.581a 4496.225a 3987.136a 6870.092a 49244.144a 3465.894a 2507.121a

ERS −14.966a −15.787a −12.777a −14.633a −18.127a −7.901a −19.064a −9.225a −6.439a

Unconditional correlations

Carbon Crude oil Coal Iron ore Gold Silver Copper Electric power CSI 300 index

Carbon 1.000 −0.034 −0.010 −0.056 0.011 0.013 −0.032 −0.021 −0.034
Crude oil 1.000 0.082 0.168 0.049 0.223 0.270 0.097 0.158
Coal 1.000 0.292 0.031 0.091 0.190 0.049 0.077
Iron ore 1.000 0.058 0.151 0.433 0.104 0.164
Gold 1.000 0.757 0.099 −0.037 0.007
Silver 1.000 0.306 0.077 0.156
Copper 1.000 0.142 0.233
Electric power 1.000 0.735
CSI 300 index 1.000

aNotes: denote significance level at 1%.
bdenote significance level at 5%.
cdenote significance level at 10%.

FIGURE 1 | Time-varying total spillover.
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development phase of the Shenzhen carbon market, in which
positive and negative alternating roles are found. Although there
are still many externalities disturbing still transmitting or
receiving risks during this period, the Chinese government is
also improving the top-level design to reasonably avoid risks.
With the improvement of the carbon market trading mechanism,
the spillover started to diminish in 2020, and the contribution to
systemic shocks tends to be close to 0. It may be due to the
reduction of carbon emissions by firms driven by the carbon
peaking and carbon neutrality targets, which reduces the carbon
price volatility (Zhou et al., 2022).

Among the othermarkets, the stockmarket crash has had themost
pronounced impact on financial markets. The high volatility spillover
of these two indices validates that the stockmarket is a barometer that
reacts to the macroeconomy, and that the stock market is constantly
transmitting and channeling signals/risks (Sadorsky, 1999). While
gold and silver continuously transmit shocks to the system in
2018–2020, no significant spillover effects arise at other times. Due
to their hedging role in uncertain events such as geopolitics, many
investors choose precious metals as an effective hedge in turbulent
times (Li et al., 2021b; Salisu et al., 2021; Wang and Lee, 2021).

5.2 Time-Frequency Analysis of Spillover
To get a comprehensive understanding of the linkages between
carbon and other markets, this section quantifies the volatility
spillover effects of different frequency cycles. Table 32 reflects the

time-frequency spillover effects at different frequencies of
absolute returns derived by wavelet frequency decomposition.
The trading frequencies are divided into four frequency bands:
2–4 days, 4–8 days, 8–16 days, and 16–32 days, which correspond
to short term trading, short-medium term trading, medium term
trading, and long term trading, respectively (Mensi et al., 2021a;
Miao et al., 2022). The construct of the total spillover changes
significantly as they correspond to 28.35, 29.71, 34.87, and
42.88%. Keynes (1936) argued that rational investors are
primarily concerned with short term price changes of assets
and tend to disregard the prediction of long-term price
changes. “Investor short-sightedness” leads to a tendency for
many investors to trade on suitable assets with high short term
liquidity in markets with asymmetric information (Adekoya et al.,
2021). A few cases are contrary to the results of the previous
analysis, for example, Shah and Dar (2021) reached the opposite
conclusion in exploring commodities and financial markets, they
pointed out that the overall premium index gradually decreases
with increasing holding time, although the individual investor’s
preference for risk plays a major part.

Further findings inTable 3 show that the oil (coal) market and the
iron ore (copper) market are net recipients of shocks in the system in
the short-medium term. It should be recalled that these markets also
exhibit similar results under the time-domain spillover results. On the
one hand, due to the various uncertainties in the market, health crises
and economic events occupy the main dimensions (Adekoya et al.,
2021; Jiang and Chen, 2022). Volatility in energy and commodities
markets increased and investor panic flooded the trading system. On
the other hand, commodities are highly sensitive to their demand and
supply factors, which exacerbates volatility risk. (Guo et al., 2020; Chen
and Yang, 2021).

FIGURE 2 | Time-varying net directional spillover.

2TCI, Total spillover index; TO/FROM: Directional spillover index; NET, Net
directional spillover index. The diagonal values represent the contribution of own
shocks and the non-diagonal lines are the contribution of shocks to others.
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The shift of volatility spillover effects in the system is presented
in the 8–16 days frequency. In short, the carbon emissions, gold
and electricity index markets begin to experience negative net
volatility spillovers. From the combination of the different
frequency results, a similar effect may exist for the Shenzhen ETS
carbonmarket and the electric power index. Yang (2021) argued that
clean electricity plays an important role in decarbonization. It is
mainly because the renewable energy transition of power companies
cannot be achieved overnight, and the strong demand for carbon
credits drives up the price of carbon. At the same time, power
companies pass on the rising cost of purchasing carbon allowances
to consumers, driving up the price of electricity.

Especially, copper has been the focus of attention for heavy
metal manufacturing commodities. Throughout the copper
smelting system, each process requires electricity or fuel
consumption. In addition, energy sources such as coke
powder, heavy oil, natural gas, methane and liquid
ammonia are consumed as raw materials in the anode
furnace refining process, so each production stage has a
certain amount of carbon emissions. As it happens, a
remarkable result is observed for copper. Regardless of the
frequency and duration of the transactions, the spillover trends
in the copper and carbon markets are reversed. In the future,
some considerations could be given to carbon-copper contract

TABLE 3 | Frequency spillover results based on the wavelet decomposition. Frequency 2: The spillover for 4–8 days. Frequency 3: The spillover for 8–16 days.

Frequency 1: The spillover for 2–4 days

Carbon Crude oil Coal Iron ore Gold Silver Copper Electric power CSI 300 index FROM

Carbon 87.01 2.95 1.42 1.30 2.31 0.90 1.14 1.36 1.62 12.99

Crude oil 6.39 75.61 3.03 2.11 3.10 3.40 2.03 2.27 2.06 24.39

Coal 6.32 1.15 78.47 5.21 1.15 2.01 2.27 1.63 1.79 21.53

Iron ore 5.37 1.83 4.38 75.77 1.36 2.36 6.33 1.39 1.20 24.23

Gold 2.03 2.65 0.86 2.08 60.92 26.56 1.73 1.38 1.79 39.08

Silver 2.07 3.14 1.31 1.84 24.47 60.18 3.61 1.15 2.25 39.82

Copper 1.65 1.47 2.32 4.36 2.76 5.27 74.65 2.98 4.54 25.35

Electric power 2.46 1.96 0.87 0.98 1.76 1.54 1.63 67.43 21.37 32.57

CSI 300 index 2.32 1.22 0.76 1.04 1.45 2.06 3.17 23.23 64.76 35.24

TO 28.60 16.36 14.94 18.91 38.35 44.10 21.90 35.39 36.63 255.19

NET 15.61 −8.03 −6.59 −5.32 −0.73 4.28 −3.45 2.82 1.39 TCI = 28.35%

Frequency 2: The spillover for 4–8 days

Carbon Crude oil Coal Iron ore Gold Silver Copper Electric power CSI 300 index FROM

Carbon 80.39 3.72 2.66 2.58 1.83 2.43 1.24 3.18 1.96 19.61

Crude oil 5.57 74.15 2.74 1.87 3.43 4.02 3.06 2.64 2.51 25.85

Coal 3.74 3.13 80.94 3.76 1.3 1.43 1.77 2.05 1.87 19.06

Iron ore 3.72 3.47 2.8 74.9 1.99 2.42 6.77 1.8 2.15 25.1

Gold 1.54 2.48 0.94 1.6 61.64 25.83 1.67 2.64 1.65 38.36

Silver 1.88 2.98 0.61 1.66 24.68 59.29 3.75 3.05 2.1 40.71

Copper 2.78 4.17 1.7 6.43 2.02 4.64 72.74 2.42 3.1 27.26

Electric power 2.99 1.98 1.35 1.55 2.54 2.81 2.26 62.29 22.23 37.71

CSI 300 index 1.85 1.46 0.98 1.46 1.76 1.7 2.87 21.65 66.27 33.73

TO 24.08 23.41 13.8 20.91 39.55 45.28 23.38 39.42 37.57 267.39

NET 4.47 −2.44 −5.26 −4.2 1.18 4.56 −3.88 1.71 3.84 TCI = 29.71%

Frequency 3: The spillover for 8–16 days

Carbon Crude oil Coal Iron ore Gold Silver Copper Electric power CSI 300 index FROM

Carbon 70.87 2.28 5.46 5.09 3.22 4.24 2.14 4.44 2.24 29.13

Crude oil 2.59 66.45 2.14 5.86 2.19 3.89 5.87 4.39 6.62 33.55

Coal 3.84 3.20 74.84 5.86 1.92 2.70 3.76 2.13 1.75 25.16

Iron ore 5.00 3.00 4.54 68.02 1.92 3.55 8.22 3.40 2.35 31.98

Gold 2.50 3.95 2.38 2.95 62.01 15.86 4.70 2.81 2.85 37.99

Silver 1.63 4.93 3.16 3.39 13.68 59.46 4.83 4.55 4.38 40.54

Copper 2.30 6.23 2.49 6.68 3.88 4.58 66.01 4.78 3.05 33.99

Electric power 2.65 4.85 2.66 3.07 3.48 3.64 3.13 58.54 17.99 41.46

CSI 300 index 2.37 5.17 2.38 3.79 3.44 3.77 4.59 14.54 59.96 40.04

TO 22.88 33.61 25.21 36.69 33.72 42.23 37.24 41.04 41.23 313.85

NET −6.25 0.06 0.05 4.71 −4.27 1.69 3.25 −0.42 1.18 TCI = 34.87%

Frequency 4: The spillover for 16–32 days

Carbon Crude oil Coal Iron ore Gold Silver Copper Electric power CSI 300 index FROM

Carbon 64.61 4.23 5.24 3.55 5.80 4.28 5.13 2.36 4.81 35.39

Crude oil 3.59 61.29 3.48 5.05 3.58 6.27 4.71 3.99 8.04 38.71

Coal 4.58 4.71 59.29 4.32 3.97 8.10 7.05 3.54 4.43 40.71

Iron ore 4.29 4.70 4.89 60.07 3.37 5.72 8.66 3.34 4.96 39.93

Gold 3.54 5.83 5.07 5.39 48.26 12.57 7.74 4.11 7.48 51.74

Silver 3.61 5.04 6.97 3.62 18.40 45.63 8.20 3.16 5.37 54.37

Copper 3.04 2.71 5.70 5.70 5.73 7.53 59.29 3.73 6.58 40.71

Electric power 4.85 3.95 4.44 3.76 2.80 3.17 2.97 54.68 19.38 45.32

CSI 300 index 2.93 5.74 3.17 2.68 4.36 4.15 2.97 13.08 60.93 39.07

TO 30.43 36.89 38.96 34.06 48.01 51.79 47.45 37.32 61.04 385.95

NET −4.96 −1.82 −1.75 −5.87 −3.73 −2.58 6.74 −8.00 21.97 TCI = 42.88%
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pairs to balance the spillover effects of inter-system risk
fluctuations.

5.3 Extreme Quantile Analysis of Spillover
The occurrence of extreme events can affect the level of
information/risk contagion in the system (Bouri et al., 2021;
Saeed et al., 2021). In the sample period selected for this
paper, many extreme events also occurred, such as the stock
market crash in 2015 and COVID-19 in 2020. To study
information/risk spillovers under extreme events, this section
uses the quantile DY spillover index framework proposed by
Ando et al. (2022) to analyze the average spillover relationship of
the considered variables by estimating the spillover network
graph for the whole sample period. Unlike the median
connectivity approach, the tails can reveal more hidden
architectures (Naeem, Billah, et al., 2021). The 5th and 95th
quantiles are employed to capture the volatility spillover of the
whole system during the bull and bear phases, respectively.
Figure 3 provides a visual representation of the results
obtained, identifying assets as network transmitters or
receivers of spillover effects. The thickness of the arrows and
the shade of color indicate the size and intensity of the dynamic
average spillover between assets. The size and color of the nodes

report the magnitude and direction of the net spillover (red for
“+” and blue for “-”).

Combined with Supplementary Table SA1, this paper
finds significant differences in the structure of the systems
estimated based on the upper, middle, and lower quantiles.
There is a remarkable increase in the degree of dependence
compared to the median, with nearly 80% of the volatility
spillover results occurring in the tail estimates. Similar
findings exist for the international stock market,
cryptocurrency, and the Asia-Pacific currency market (Su,
2020; Bouri et al., 2020; Bouri et al., 2021). The different
architectures in the system are presented in Figure 3. Many
previous studies have demonstrated that the spillover effect of
such extreme events remains asymmetric. The impact of the
lower quantile is much larger than the upper quantile (Bouri
et al., 2021). For power coal, the degree of spillover from its
net reception in bear markets does not diminish, but rather
increases over normal periods, an aspect that investors should
be aware of. Evidence of shifting roles played by assets in bull
and bear markets is found in gold and silver, iron ore and
power indices. Despite having a small spillover level, the
power index is no longer receiving shocks on the market in
the tail risk. As the financialization of the Chinese electricity

FIGURE 3 | Pairwise directional spillover among different quantiles. (A) NPCI Based on 0.50 quantile. (B) NPCI Based on 0.05 quantile. (C) NPCI Based on 0.95
quantile.
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market is currently low, stock indices are still less useful in the
market than spot and futures, which enable better price
discovery (Gürbüz and Şahbaz, 2021). The establishment of
future electricity futures markets may better offset the shocks
with other markets. In addition, gold and silver are strongly
correlated during the upper quartile, and 9Mensi et al., 2021b)
demonstrate that silver-gold pairs' negative short-term
correlation exists during bull markets. However, the two
show a different picture due to the occurrence of extreme
events, in short, gold is gradually changing from a spill
recipient to an information/risk sender and the link
between the two is weakening.

In contrast to risk measures in other markets, carbon
markets require special attention to upside and downside
risk spillovers (Feng et al., 2012). During normal trading
periods, carbon is a net recipient of volatility spillovers
(−1.84%). Under extreme conditions, which increase the
spillover effects received by carbon, a large amount of
volatility spillover effects are bound to generate risk. Similar
findings to the previous frequency structure are revealed in the
copper analysis. The increased positive spillover effect of
copper continuously transmits information/risk to the
market. It further strengthens the results derived in the
previous section that carbon-preferring investors can still
pick up copper futures contracts for risk hedging in
response to extreme contingencies.

6 CONCLUSION AND POLICY
IMPLICATIONS

The carbon emission trading market is essential in
constructing ecological civilization in China. This study
takes the Shenzhen carbon trading market as the main
research object, focusing on the volatile connectivity of
carbon markets, energy, high-carbon products and financial
markets. Previous studies have mainly used mean-connected
models, which may lead to neglecting different trading
frequency constructs and inaccurate estimation of some
extreme events based on mean regression. Therefore, in this
paper, wavelet analysis and quantile-based spillover measures
are used to comprehensively consider spillover for different
transaction frequencies as well as for the upper, middle and
lower quantile connection networks. The main results are
summarized as follows: 1) Initially, carbon is the primary
market volatility risk/information transmitter. With the
continuous improvement of the carbon market system, the
spillover of the carbon market diminished. 2) The volatility
spillover increases gradually with the frequency period, and
the frequency period of the asset held is proportional to the
volatility risk. 3) Frequency spillover constructs show different
results. All markets are net recipients of shocks in terms of
long-term frequency, except for copper and the CSI 300 index
market. In particular, it should be noted that the carbon
market transforms into the most pronounced net receiver of
shocks effect. 4) The overall connectivity of the results in

different market states is heterogeneous, with the carbon
market increasing the receiving effect of shocks.

Investment and policy recommendations are given in the
following discussion. From investors' perspective, investors
need to recognize the strength of inter-systemic spillovers and
build new diversified portfolio solutions when forecasting
market risk in commodity asset portfolios. In short-term
trading, investors with net receiving positions in energy
markets and high-carbon product markets can consider
hedging with carbon markets to offset their risks. As
frequency cycles increase, investors who hold carbon assets
for the long term no longer have an advantage. Our results
suggest that copper can effectively hedge the risk in both
markets over the long term and under extreme conditions.
Investors need to be more aware of changes in the market
during periods of extreme events, where risk contagion is
exacerbated in the tail.

At the same time, the results of this paper lead to some
policy considerations. The government’s macro-regulation is
crucial to the development of the carbon market. From the
perspective of carbon market development, it should clarify
the systematic information transmission mechanism and
focus on the enterprises with high energy consumption.
Secondly, we should improve the risk prevention mechanism
related to the carbon market, prevent the risk of carbon price
plunge caused by the risk spillover effect and take appropriate
price stabilization mechanism to intervene in the carbon price.
Finally, promoting the development of a multi-level carbon
market system, including the carbon derivatives market, is
important to meet multiple entities' individualized investment
and financing needs. It can also effectively enhance market
liquidity and reduce transaction costs to promote the orderly
development of the carbon market.
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