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This article proposes a Gaussian bare-bones Levy-flight firefly algorithm (GBLFA) and its
modified version named MGBLFA for optimizing the various kinds of the different optimal
power flow (OPF) problems in the presence of conventional thermal power generators and
intermittent renewable energy resources such as solar photovoltaic (PV) and wind power
(WE). Several objective functions, including fuel costs, emission, power loss, and voltage
deviation, are considered in the OPF problem subject to economic, technical, and safety
constraints. Also, the uncertainties of solar irradiance and wind speed are modeled using
Weibull, lognormal probability distribution functions, and their influences are considered in
the OPF problem. Proper cost functions associated with the power generation of PV and
WE units are modeled. A comprehensive analysis of ten cases with various objectives on
the IEEE 30-bus test system demonstrates the potential effects of renewable energies on
the optimal scheduling of thermal power plants in a cost-emission-effective manner.
Numerical results show the superiority of the proposed method over other state-of-the-art
algorithms in finding optimal solutions for the OPF problems.

Keywords: OPF problem, Gaussian bare-bones levy-flight firefly algorithm (GBLFA), modifiedGBLFA, wind and solar
energy systems, nonsmooth cost functions

1 INTRODUCTION

Since its start approximately half a century ago, optimal power flow (OPF) has remained a popular
topic among power system researchers. The primary goal of OPF is to reduce generating costs by
adjusting control variables such as produced actual power and network generator bus voltages to
their optimal values. System limitations in generator capabilities, power flow equations, line thermal
limit, and bus voltage limits must be met while optimizing generation costs. The ideal operational
status of the system is represented by the programmed power of the generator, the complicated
power flow in the lines, and the bus voltage vector established throughout the optimization
procedure. The typical OPF problem involves thermal power producers using fossil fuels to
produce electricity (Niknam et al., 2013). With the growing use of solar and wind-based
distributed generations in the electricity grids, a study of OPF is required to account for the
uncertainties associated with these renewable energy sources.

Researchers from all around the world have researched OPF using simply thermal power
generators. A recent study used the moth swarm algorithm (MSA) (Mohamed et al., 2017) to
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demonstrate the algorithm’s efficiency in terms of rapid running
time and rapid convergence for various OPF objectives for several
bus systems. Lévy mutation-enhanced teaching–learning-based
optimization (TLBO) (LTLBO) (Ghasemi et al., 2015a), grey wolf
optimizer (GWO) (El-Fergany and Hasanien, 2015), a unique
method to multi-objective OPF using a new hybrid optimizer that
considers generator limitations and multi-fuel type (Narimani
et al., 2013), and a revised bacteria foraging (Panda et al., 2017). In
(Bouchekara et al., 2016), an improved colliding bodies
optimization (ICBO) method is presented. Increasing the
number of colliding bodies raises the algorithm’s findings,
which is a benefit for addressing the OPF problem. Using the
backtracking search algorithm (BSA) technique, authors (Chaib
et al., 2016) have calculated OPF with more complicated
objectives of multi-fuel choices and incorporated the valve-
point effect. A typical approach for optimizing group searches
has been enhanced using adaptive group search optimization
(AGSO) (Daryan et al., 2016). In (Khorsandi et al., 2013; Rezaei
Adaryani and Karami, 2013; Ayan et al., 2015; He et al., 2015), the
various kinds of artificial bee colony (ABC) algorithm such as
basic ABC, improved ABC (IABC), a chaotic ABC (CABC), and a
modified ABC (MABC) for solving OPF problems have been
implemented and compared. Also, to deal with the OPF
problems, an enhanced multi-objective Quasi-reflected Jellyfish
search algorithm (MOQRJFS) (Shaheen et al., 2021), MOELA
(multiobjective electromagnetism-like algorithm) (Jeddi,
Einaddin and Kazemzadeh, 2016), an improved adaptive
differential evolution (DE) (Li et al., 2020), a new version of
salp swarm algorithm (SSA) (Kamel, Ebeed and Jurado, 2021), a
multi-regional OPF considering load and generation variability
using marine predators algorithm (MPA) (Swief et al., 2021),
BAT search algorithm (Venkateswara Rao and Nagesh Kumar,
2015), a multi-objective evolutionary algorithm with constraint
handling technique based on non-dominated sorting (Li et al.,
2022), an enhanced MSA (EMSA) based on quasi-opposition-
based learning (Bentouati et al., 2021), delicate flower pollination
algorithm (DFPA) (Dhivya et al., 2021), levy spiral flight
equilibrium optimizer (LSFEO) for OPF incorporating center
node unified power flow controller (CUPFC) (Mostafa et al.,
2021), teaching-learning-studying-based optimizer (TLSBO)
(Akbari, 2022), boundary assigned animal migration
optimization (BA-AMO) (Dash et al., 2022), an adaptive
Quasi-oppositional differential migrated biogeography-based
optimization (AQODMBBO) (Pravina et al., 2021), a new
variable neighborhood descent (VND) method to solve OPF
for large-scale networks (Home-Ortiz et al., 2021), a sine-
cosine mutation operator and a modified Jaya (SCM-MJ)
(Gupta et al., 2021), tunicate swarm algorithm (TSA) (El-
Sehiemy, 2022), chaos embedded particle swarm optimization
(CEPSO) (Daghan, Gencoglu and Özdemır, 2021), sparrow
search algorithm (SSA) (Jebaraj and Sakthivel, 2022), chaotic
Bonobo optimizer (CBO) to the OPF problem with stochastic
renewable energy sources (RESs) (Hassan et al., 2022), and SSO
(social spider optimization) (Nguyen, 2019) have been developed.
Differential search algorithm (DSA) (Abaci and Yamacli, 2016)
and a novel parallel genetic algorithm (PGA), i.e., EPGA
(Mahdad et al., 2010), are a newly developed technique that

applies the most advanced evolutionary algorithm (EA) to a few
established OPF goals for thermal-integrated power systems.

While the above research works solely handle standard
generator models, a system including generators that rely on
both wind and thermal power has lately been investigated in a few
works of literature in the search for the lowest generating cost.
The literature (Zhou et al., 2011) has presented a dynamic
economic dispatch (DED) model in the presence of large-scale
wind generation while considering risk reserve restrictions. The
authors (Mishra et al., 2011) have used the DFIG wind turbine
model to solve the same problem. Amodified hybrid, PSOGSA, of
PSO and gravitational search algorithm (GSA) with chaotic maps
methodology considering the uncertainties of solar radiation and
wind speed using a stochastic model has been introduced (Biswas
et al., 2017), a sine-cosine algorithm for OPF-based hydro-
thermal wind scheduling in hybrid power systems have been
presented in (Dasgupta et al., 2020). Multi-objective dynamic
OPF (MODOPF) of wind integrated power systems with demand
response has been investigated (Ma et al., 2019). Pumped hydro
storage has been discussed in (Kusakana, 2016) as a possible
alternative to battery storing for a comparable freestanding
hybrid system composed of solar photovoltaic panels, wind
turbines, and a diesel generator.

Several papers have explored how wind and solar photovoltaic
(PV) energy resources can be integrated into the grid. Reference
(Tazvinga et al., 2015) has covered the optimal planning for an
isolated hybrid power system comprising a PV system, a diesel
generator, and battery storage. Symbiotic organisms search (SOS)
and moth swarm algorithm (MSA) have been used to solve the
alternating current OPF (ACOPF) issue for thermal, wind, solar,
and tidal energy systems (Duman et al., 2019; Elattar, 2019;
Duman et al., 2021). In (Shi et al., 2011) the, authors have
presented a methodology for estimating the cost of wind-based
generation power. The issue of generator scheduling for
economic load dispatch is particularly prevalent in systems
with wind-based and thermal-based generation units. OPF in
wind-thermal power systems has been solved using genetic TLBO
(G-TLBO) (Güçyetmez and Çam, 2016). Reference (Dubey et al.,
2015) has included the generator’s emission and valve-point
loading impact in the DED optimization problem. A
simulation tool for wind generation in OPF dispatching has
been developed (Jabr and Pal, 2008). In (Roy and Jadhav,
2015), the Gbest-directed ABC(GABC) has been used to
improve the optimal solutions to the OPF problems compared
to other literature.

To investigate the effects of reactive power generations on the
optimum results of OPF problems, a model incorporating static
synchronous compensator (STATCOM) has been introduced in
(Panda and Tripathy, 2015), and the OPF problem has been
solved utilizing ant colony optimization (ACO). In (Panda and
Tripathy, 2014), a modified bacterium foraging algorithm
(MBFA) has been suggested, and a doubly fed induction
generator (DFIG) model has been integrated into the OPF
framework to describe the capacity of reactive power production.

The primary impediment to grid integration of wind and solar
photovoltaic energy is their intermittent nature. Typically, wind
farms and solar photovoltaic (PV) farms are funded by individual

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 9219362

Alghamdi Optimal Power Flow Using GBLFA

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


operators. The independent system operator (ISO) enters an
arrangement with these private operators to purchase
scheduled power. However, because the output of these
renewable sources is unpredictable, power productivity might
occasionally exceed the scheduled power, resulting in an
underestimate of the existing quantity. ISO is responsible for
the penalty cost associated with unused excess electricity. On the
other hand, underestimation occurs when generated power is
below scheduled power (Biswas et al., 2017). To balance power
demand, ISO must maintain a spinning reserve that increases the
system’s running costs.

To address the uncertainties of renewable generations, the
Weibull probability density function (PDF) models the wind
distribution in this work, whereas the lognormal probability
density function models solar irradiation. The IEEE-30 bus
system (Biswas et al., 2017) has been updated to support wind
turbines and solar photovoltaic (PV) systems with reactive power
capability. Beyond the producing cost of thermal power units, the
objective function presented in this study includes the reserve,
direct, and penalty costs of renewable energy sources. The total
generation costs are considered the fitness function, and the effect
of varying the penalty and reserve costs on optimum scheduling is
examined. In terms of emissions, thermal generators powered by
fossil fuels produce hazardous gases into the environment,
whereas renewable sources do not. Carbon taxes (Yao et al.,
2012) are levied in certain nations in proportion to greenhouse
gas emissions. In studied cases, the amount of carbon tax is linked
to the goal function to examine the influence on generator
scheduling.

To solve such a complicated and nonconvex optimization
problem, in this work, a Gaussian bare-bones Lévy-flight firefly
algorithm (GBLFA) and its modified version, i.e., MGBLFA are
introduced. Yang developed the firefly algorithm (FA) to expedite
exploration and exploitation, motivated by the flashing patterns
and behaviors of fireflies (Yang, 2010a). Many works have
employed this algorithm in optimization problems. Reference
(Jain and Katarya, 2019) has employed the FA to ascertain the
opinion leader in online social networks. In (Sánchez et al., 2017),
FA has been used in modular granular neural networks to provide
parameter estimation for expert systems utilizing ear and face
recognition (Yang et al., 2012), an FA technique for addressing
the economic dispatch problem in the context of real power
system management has been suggested, in (Wang, 2012), the FA
to unmanned combat air vehicle path planning has been applied,
in (Langari et al., 2020), fuzzy clustering in conjunction with FA
to secure the anonymized database and reduce information loss
has been used, and in (Kavousi-Fard et al., 2014), the FA to
determine the optimal value for accurate short load forecasting in
support vector regression has been employed. However, an
efficient version of FA has not been introduced for optimizing
the various kinds of OPF problems in the previous works. In
addition, other reviewed optimization algorithms still need some
improvements in terms of robustness, avoiding local optimal
solutions and finding better solutions, and improving
convergence characteristics. Hence, this paper tries to fulfill
such gaps and improves the quality of optimal solutions by

improving the performance of FA via strategically utilizing
Lévy-flight, bare-bone, and Gaussian sampling.

This paper is structured as follows. Section 2 introduces the
OPF problem formulation. The basic firefly algorithm (FA), the
levy-flight FA (LFA), and our GBLFA and its modified version
(MGBLFA) are all detailed in Section 3. Then, in Section 4,
simulation results on ten OPF problems are presented. Finally,
some concluding remarks are given in Section 5.

2 PROBLEM FORMULATION

The OPF problem is a nonconvex and non-linear optimization
problem in which specific objectives of power systems are
minimized/maximized subject to numerous inequality and
equality constraints. In a general form, an OPF problem can
be briefly expressed as follows (Ghasemi et al., 2015b; Mohamed
et al., 2017):

Minimize : J(x, u)
s.t.
g(x, u) � 0
h(x, u) ≤ 0

(1)

Where J(x, u) indicates the desired objective function(s) to be
maximized/minimized, which may include economic,
environmental, and technical goals, equality and inequality
constraints are defined by g(x, u) and h(x, u), respectively. x
indicates the power system-dependent variables, and u defines the
control/independent variables.

xT � [PG1, VL1, ..., VLNPQ, QG1, ..., QGNG, Sl1, ..., SlNTL] (2)
uT � [PG2, ..., PGNG, VG1, ..., VGNG, QC1, ..., QCNC, T1, ..., TNT] (3)
In this paper, the system-dependent variables include PG1, VL,

QG, and Sl, which indicate the real power generation at the
substation (slack) bus, load buses’ voltage magnitude, and
reactive output power generated from generators, and lines’
apparent power flow. The total number of load buses,
generator buses, and transmission lines are respectively
indicated by NPQ, NG, and NTL. The independent control
variables include PG, VG, QC, and T, which indicate the
generators’ active power, the voltage magnitude at generator
buses, the transformer’s tap position, and the reactive power
generated from the shunt VAR compensators. The total number
of tap positions and compensator units are defined by NT and
NC, respectively.

2.1 Constraints
Both inequality and equality constraints should be addressed in
the OPF problem. The limitations on the power balance are
regarded as a restriction on equality. The operational limitations
of the power systems are regarded as limiting inequalities.

2.1.1 Equality Constraints
The active and reactive power balance equalities at each load bus
are given in Eq. 4, Eq. 5 respectively.
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PGi − PDi � Vi ∑NB

j�1
Vj[Gij cos (θi − θj) + Bij sin (θi − θj)] (4)

QGi − QDi � Vi ∑NB

j�1
Vj[Gij sin(θi − θj) − Bij cos(θi − θj)] (5)

The active and reactive power demands at each load node
are indicated by PD and QD, respectively. The conductance
and susceptance of the branch between the adjacent load buses
i and j are defined by Bij and Gij, respectively. Also, the total
number of load nodes is indicated by NB. These equality
constraints should be satisfied during the process of load flow
which ensures that the solution found is optimal.

2.1.2 Inequality Constraints
The OPF inequality constraints indicate the operational limits of
the power system, including limits on the generation buses,
transformer tap operation limit, shunt VAR capacity limit, and
security limits.

2.1.2.1 Generation Limits
in the steady-state operation mode, the active and reactive output
power generation of generators, as well as the voltage magnitude
at generator bus i (i � 1, . . . , NG), should be limited between
their lower and upper bounds as follows:

Pmin
Gi ≤PGi ≤Pmax

Gi (6)
Qmin

Gi ≤QGi ≤Qmax
Gi (7)

Vmin
Gi ≤VGi ≤Vmax

Gi (8)
where for ith generator, Pmin

Gi and Pmax
Gi indicate the maximum and

minimum limits of the active power output, respectively. Qmin
Gi

and Qmax
Gi specify the lower and upper bounds of the reactive

power output, respectively. Vmin
Gi and Vmax

Gi indicate the allowable
voltage limitations.

2.1.2.2 Transformer Restrictions
Transformer receptacle adjustments should be limited by their
higher and lower limits as follows:

Tmin
i ≤Ti ≤Tmax

i ; ∀i � 1, . . . , NT (9)
In Eq. 9, the Tmin

i and Tmax
i are the lower and upper bounds of

the tap position at the ith transformer.

2.1.2.3 Shunt VAR Trim Constraints
The VAR bypass margins are restricted by their limitations as
follows:

Qmin
Ci ≤QCi ≤Qmax

Ci ; ∀i � 1, . . . , NC (10)
where Qmax

Ci and Qmin
Ci indicate the allowable VAR injection for

compensating unit i.

2.1.2.4 Security Limitations
The restrictions of charging buses should be controlled in
the following terms: voltage levels and transmission line
loading:

Vmin
Li ≤VLi ≤Vmax

Li (11)
Sli ≤ Smax

li (12)
In Eq. 12, Sli and Smax

li indicate the seeming force and its upper
boundary by the ith transmission line.

2.2 Constraints Handling
The inequity limitations of the dependent variables are
considered in the extended objective function to maintain the
control variables within their permissible limits. These force the
optimization algorithm to find feasible solutions by satisfying the
inequality constraints. The penalty function is defined according
to a quadratic term as follows (Ghasemi et al., 2015a; Mohamed
et al., 2017):

Penalty � λP(PG1 − Plim
G1 )2 + λQ ∑NG

i�1
(QGi − Qlim

Gi )2

+ λV ∑NPQ

i�1
(VLi − Vlim

Li )2 + λS ∑NTL

i�1
(Sli − Slimli )2 (13)

J � ∑NG

i�1
Fi(PGi) + Penalty (14)

Where λP, λQ, λV, and λS are the penalty factors associated with
the constraints’ violation in Eq. 6, Eq. 7, Eq. 11, and Eq. 13,
respectively. Assuming z as a variable, zlim is used to indicate each
constraint violation as follows:

zlim �
⎧⎪⎨⎪⎩

z; zmin ≤ z≤ zmax

zmin; z≤ zmin

zmax; z≥ zmax
(15)

According to (Eq. 13) and (Eq. 15), no ppenalty is considered
if a constraint satisfied. Suppose the value of the variable exceeds
the upper/lower limit. In that case, the square of this violation is
considered in the penalty function.

2.3 OPF Considering Stochastic Wind and
Solar Power
In general, one or more objective functions are used to represent
the OPF problem for a power network system that incorporates
renewable energy sources. Renewable energy networks are linked
to an IEEE 30-bus network system (Biswas et al., 2017) in several
geographical situations in this article. Wind and solar energy are
important contributors to OPF issues (Zargar et al., 2020; Farsani
and Zare, 2021). To incorporate alternative fuels into the OPF
issue, the power profiles of renewable energy sources are
employed as a negative load (Saeidi et al., 2019). Wind and
photovoltaic power generators are employed beforehand to
provide loads, followed by thermal generators to meet
remaining loads and network losses (Biswas et al., 2017).

2.3.1 Wind Power Modeling
A potential wind energy profile had been anticipated to create an
effective optimization model for addressing OPF issues. The
predictors in this article are generated using a Weibull
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probability distribution function. Prior to establishing the
optimal solution technique, the wind energy estimating work
can be completed autonomously. Generally, wind energy
generation models are constructed using wind speed data
(Panda and Tripathy, 2014; Panda and Tripathy, 2015; Roy
and Jadhav, 2015). The wind speed is reported and
probabilistically simulated in this section using the Weibull
probability distribution function. The wind speed, fv(v), is
denoted by the symbol (Biswas et al., 2017):

f](]) � k

c
(]
c
)k−1

× e
−(]

c)k

(16)

where the wind speed f](]) is described by the Weibull function
based on the dimensionless shape factor (K) of the Weibull
distribution and scale factor (c). As seen in Eq. 17, the mean
of the Weibull distribution Mwbl is highly reliant on the gamma
function Γ(x), as defined in Eq. 18 (Biswas et al., 2017).

Mwbl � c p Γ(1 + K−1) (17)
Γ(x) � ∫∞

0
e−ttx−1dt (18)

Wind turbines can generally convert the wind’s kinetic energy
to electrical energy. Eq. 19 presents the real output power of a
wind turbine, Pw(v), as a function of wind speed (Biswas et al.,
2017).

Pw(]) �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0; ]≤ ]in or ]> ]out

Pwr( ] − ]in
]r − ]in

); ]in < ]≤ ]r
Pwr; ]r < ]≤ ]out

(19)

Where Pwr is the wind turbine’s rated power, vin denotes the wind
turbine’s cut-in wind speed, vout denotes the wind turbine’s cut-
out wind speed, and vr denotes the wind turbine’s rated wind
speed. As mentioned, the optimization technique in this work
incorporates a random process using Weibull probability
distribution simulation. This simulation gives the wind energy
generation uncertainty. Moreover, the impact of wind turbine
positioning and variations in wind speed profile on the optimum
power flow formulation has not been studied previously. To
estimate the cost of wind generation units in this article and
to reduce the total cost of power generation, the expense of wind
power generation units must be identified. The total cost of a
wind power unit is represented based on wind speed and power
output for considering wind uncertainties in the optimization
problem. The direct, reserve, and penalty costs are computed in
(USD/h) using Eq. 20, Eq. 21, Eq. 22. The overall cost of wind
energy generation is (USD/h), CT

W is defined by Eq. 23 (Panda
and Tripathy, 2014; Panda and Tripathy, 2015; Roy and Jadhav,
2015; Biswas et al., 2017). It consists of three major components:
the direct cost of the wind turbine, the reserve or overestimation
cost, and the penalty cost.

Cw,j � gjPws,j (20)

CRw,j � KRw,j(Pws,j − Pwav,j)
� KRw,j ∫Pws,j

0
(Pws,j − Pw,j)fw(Pw,j)dpw,j (21)

CPw,j � KPw,j(Pwav,j − Pws,j)
� KPw,j ∫Pwr,j

Pws,j

(Pw,j − Pws,j)fw(Pw,j)dpw,j (22)

CT
W � ∑NW

j�1
[Cw,j + CRw,j + CPw,j] (23)

Supply companies for wind energy frequently provide
anticipated power generation profiles. The network operator
uses wind energy predictions to develop an operation plan for
all producing units required to meet demand. If the real wind
energy output is lower than expected, the extra cost is added to
compensate. If actual wind energy output exceeds expectations, a
penalty is applied (underestimation). As a result, an accurate
calculation of the wind power profile is important. The actual
material, reserve cost, and penalty cost are computed in USD/h,
described in Section 4.

2.3.2 Solar Power Modeling
Sun energy is stochastic and volatile due to meteorological
factors, including clouds and solar irradiation. As a result, the
power output of solar systems is determined by the variable of
Sun irradiance (G). The Sun irradiation (G) is given and
probabilistically represented in this section using the
lognormal probability distribution function, in which the
probability function, denoted by fG(G), is expressed as follows
(Biswas et al., 2017):

fG(G) � k

Gσ
���
2π

√ × e
−((lnx−μ)

2σ2
)
for G> 0 (24)

The Solar System’s objective is to convert solar energy to
electrical energy. Eq. 25 defines the output power of the Solar
System, Ps(G), as a function based on the solar irradiance
calculation in (24) (Reddy et al., 2014a).

Ps(G) �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Psr
G2

GstdRc
; 0<G<Rc

Psr
G

Gstdc

;G≥Rc

(25)

Like wind power units, total solar energy generating costs are
estimated in three terms: direct solar generation costs, reserve or
excess estimates and penalty costs to reduce the effect of
insecurity on estimating costs in solar energy profiles. In Eq.
26, Eq. 27, Eq. 28, in each case, the straight, reserve and penalty
costs in USD/h are computed (Biswas et al., 2017). The equation
describes the overall costs of solar production in (USD/h)
CTS (29).

Cs,k � hkPss,k (26)
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CRs,k � KRs,k(Pss,k − Psav,k)
� KRs,kfs(Psav,k <Pss,k)[Pss,k − E(Psav,k <Pss,k)] (27)

CPs,k � KPs,k(Psav,k − Pss,k)
� KRs,kfs(Pss,k <Psav,k)[Pss,k − E(Pss,k <Psav,k)] (28)

CT
S � ∑NS

k�1
[Cs,k + CRs,k + CPs,k] (29)

3 PROPOSED OPTIMIZATION ALGORITHM

3.1 FA
FA is a metaheuristic algorithm that employs three main rules to
construct the optimization algorithm based on the flashing
behavior of fireflies and the biological communication
phenomenon as follows (Yang, 2010b).

3.1.1 Rule 1
All fireflies come in unisex, which means that any firefly will be
drawn to another irrespective of gender.

3.1.2 Rule 2
The attraction is related to the fireflies’ brightness, meaning that
two flashing fireflies will gravitate towards the brightest. If no
firefly is as bright as a specific fly, it will move randomly.

3.1.3 Rule 3
The brilliance of a firefly is impacted or decided by the objective
function’s landscape. The brightness might easily be
proportionate to the objective function value in a maximizing
issue. Other types of brightness can be specified similarly to how
the fitness function is established in genetic algorithms or the
bacterial foraging algorithm (BFA) is developed (Yang, 2010a).

In FA, it is assumed that every firefly’s attraction directly
depends on its brightness which depends on the fitness function.
Firefly will be pulled toward a lighter firefly. Moreover, the
brightness decreases as a function of the Cartesian distance (r)
as a function of the reverse square law, as follows:

I ≺
1
r2

(30)

Additionally, the light intensity I through a givenmaterial with
a constant light absorption coefficient γ changes with the distance
r from the source light as follows:

I � I0e
−γr (31)

I0 is the source of light intensity.
Since the attraction of a firefly is related to the luminous

intensity observed by nearby fireflies, the attractiveness β of firefly
can be expressed as follows:

β � β0e
−γr2 (32)

Here, parameter β0 is the attractiveness at r = 0 and generally is
set equal to 1.

For a given set of feasible solutions (fireflies), the light
intensities are calculated, and every firefly will move towards
the firefly with a lighter intensity. The best solution, i.e., the
brightest firefly, will randomly move around its neighborhood to
perform a local search. For the two fireflies i and j, where the light
intensity j is higher than that of i, the location update of firefly i
can be obtained as follows:

xi � xi + βij(xj − xi) + αε (33)
Where α and ε are randomization parameters and random
vectors from a uniform distribution between 0 and 1, note
that the last term in Eq. 33 is used for the brightest firefly and
others, it can be omitted.

3.2 LFA
The randomization characteristic of conventional FA has been
improved by (Yang, 2010b) by utilizing Lévy flights in the last
term of Eq. 33 as follows:

xi � xi + βij(xj − xi) + αsign[rand − 1/2] ⊕ Lévy (34)
where the entry multiplication is defined by ⊕, and
sign[rand − 1/2] is utilized to provide random direction. The
random step size is defined here using the Lévy distribution
function with infinite variance and means as follows:

Levy ~ u � t−λ, (1< λ≤ 3), (35)
In this paper, β0, γ, and λ are set equal to 1, 1, and 1.5,

respectively. Also, α is selected randomly between 0 and 1. The
pseudo-code of the LFA is summarized in Algorithm 1.

Algorithm 1. LFA (Yang, 2010a)

3.3 Bare-Bones PSO (BBPSO)
PSO is a swarm intelligence-based method inspired by bird
flocking and fish schooling behavior (Kennedy and
Eberhart, 1995) that begins during exploration and
continues until exploitation. This can be advantageous
while searching for a variety of evolutionary optimization
techniques. This study proposes a novel and strong LFA
algorithm based on this concept, i.e., GBLFA. In the
proposed algorithm, the Gaussian mutation approach of
LFA is specified as follows:
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Each particle is drawn to this method by its personal best
position (Pbest), and the global best position (Gbest) discovered
thus far. According to several theoretical
studies (Vandenbergh and Engelbrecht, 2006), the
individual particles gather around the weighted average of
Pbest and Gbest:

lim
G→+∞

xi,G � c1Gbest + c2Pbest

c1 + c2
(36)

Here, c1 and c2 are two learning factors in the PSO
algorithm.

A bare-bones PSO (BBPSO)method based on the convergence
characteristic of PSO has been developed (Kennedy, 2003). The
velocity term is eliminated in this revised version of the PSO
algorithm, and the location is adjusted as follows:

xi,j,G+1 �
⎧⎪⎪⎨⎪⎪⎩

N(Gbest + Pbesti,j,G

2
,
∣∣∣∣∣Gbest − Pbesti,j,G

∣∣∣∣∣); if randj(0, 1)> 0.5

Pbesti,j,G ; otherwise

(37)

In which randj(0, 1) is a haphazard amount between 0 and 1
for the jth dimension, and N represents a Gaussian distribution
with mean (Gbest + Pbesti,j,G)/2 and standard deviation | Gbest −
Pbesti,j,G |. There is a 50% probability that the alternate method will
focus on the prior best locations.

3.4 Bare-Bones DE (BBDE)
In (Omran et al., 2009), a novel and efficient version of DE using
improved BBPSO and DE algorithms has been developed. In this
algorithm, a new position is updated as follows:

Xi,j,G � {(r1,j.Pbesti,j,G + (1 − r1,j).Gbestj) + r2,j.(Xi1 ,j,G

−Xi2 ,j,G); if randj(0, 1)>CR
Pbesti3 ,G

; otherwise. (38)
where CR ∈ (0, 1) is the crossover factor. i1, i2, and i3 are three
indices chosen from the set {1, 2, . . ., Np} with i1≠i2 ≠ i. r2,j and r2,j
are random numbers between 0 and 1 for the jth dimension.

3.5 Gaussian Bare-Bones LFA (GBLFA)
Gaussian sampling, as demonstrated by the exploration behaviors
of BBPSO and BBDE, is a fine-tuning technique.

xi � N(xj + xi

2
,
∣∣∣∣∣∣xj − xi

∣∣∣∣∣∣) + αsign[rand − 1/2] ⊕ Lévy (39)

N represents a Gaussian distribution with mean (xj + xi)/2
and standard deviation |xj − xi|.

3.6 Modified Gaussian Bare-Bones LFA
(MGBLFA)
Gaussian sampling may result in a slow convergence speed for
the GBLFA algorithm. The hybrid version of GBLFA and DE/
current-to-best/1 is discussed in this article. In (Das and
Suganthan, 2010) are utilized to balance global searching
and convergence speed. Thus, in this updated method, the
search phase is adjusted as follows:

xi �
⎧⎪⎪⎨⎪⎪⎩

N(xj + xi

2
,
∣∣∣∣xj − xi

∣∣∣∣) + αsign[rand − 1
2
] ⊕ Levy; if rand1(0, 1)≥ rand2(0, 1)

xi + rand(0, 1)p(xbest − xi) + rand(0, 1) p (xj − xi); otherwise.
(40)

Additionally, a hybrid variant of this search phrase is utilized
in conjunction with the strong DE/current-to-best/1 to improve
the strength of both local seeking and the search phase. This
minor adjustment, which included a diverse population,
significantly improved the optimal solutions of MGBLFA.

This modified version of GBLFA is called MGBLFA in this
article. TheMGBLFA pseudo-code is summarized in Algorithm 2
as follows:

Algorithm 2. MGBLFA Algorithm

4 SIMULATION RESULTS

The OPF problems are solved using the suggested MGBLFA
method with the GBLFA, LFA, BBPSO (Kennedy and Eberhart,
1995), and BBDE (Omran et al., 2009) algorithms. This article
examined ten distinct case studies utilizing the 30-bus power test
method. The programming was built in MATLAB and
MATPOWER (Zimmerman et al., 2011) for this project and
executed utilizing parallel processing on a 2.20 GHz i7 personal
computer with 8.00 GB of RAM. The simulation runs were
conducted with Npop = 60 and a maximum of 600 iterations
for the MGBLFA, GBLFA, LFA, BBPSO, and BBDE algorithms.
For each scenario, each algorithm was performed 30 times.

Ten cases of OPF problems with a single or many objectives
are investigated in this section which is summarized as follows:

Case 1: Minimizing the fuel cost.

Case 2: Minimizing quadratic fuel cost functions in a piecewise
fashion.

Case 3: Minimizing the emission.

Case 4: Keeping the real power loss to a minimum.

Case 5: Considering the valve point impact while minimizing fuel
costs (VPE).
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Case 6: Keeping fuel costs and actual power loss to a minimum.

Case 7: Keeping fuel costs and voltage deviations to a minimum.

Case 8: Keeping fuel costs, pollutants, voltage variation, and
losses to a minimum.

Case 9: Cost reduction using stochastic wind and solar energy.

Case 10: Cost reduction of generating by integrating stochastic
wind and solar energy in conjunction with a carbon tax.

4.1 Conventional OPF Problems
In this subsection, the proposed optimization algorithm is utilized
to solve the OPF problems without considering the renewable
energy resources, i.e., Cases 1 to 8. The results are compared with
those of other state-of-the-art algorithms. IEEE 30-bus test
system is considered, and its single-line schematic is shown in
Figure 1. This system is comprised of 30 buses, 41 lines, six
generators on buses 1, 2, 5, 8, 11, and 13, four on-load tap
changing transformers on lines 6–9, 6–10, 4–12, and 28–27, and
nine capacitive sources on buses 10, 12, 15, 17, 20, 21, 23, 24 and

29. The bus and transmission line statistics and the minimum and
maximum reactive power generation limitations are derived from
(Reddy et al., 2014b). Penalty factors in (15) are selected as λP =
5,000,000, λS = 1,000,000 and λV = λQ = 5,000,000.

Table 1 summarizes optimal solutions obtained by MGBLFA
for all possible configurations of the 30-bus power system for 8
cases. The optimal values of decision variables indicate that all the
limitations of the problem are satisfied, and the algorithm
works well.

4.1.1 Results of Case 1
The most often employed objective function in OPF studies is the
overall producing fuel cost of the entire system, in which each
unit has a quadratic function of its own cost structure. Therefore,
the objective function indicating the whole cost of fuel production
is (Ghasemi et al., 2015b; Mohamed et al., 2017):

obj1 � ∑NG

i�1
Fi(PGi) � ∑NG

i�1
(αi + biPGi + ciP

2
Gi) (41)

Where αi, bi and ci represent the cost coefficients of the ith
generator, and NG is the number of total generators. The cost

FIGURE 1 | Single line diagram of IEEE 30-bus test system.
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TABLE 1 | Optimal control variables of the proposed MGBLFA for determining the lowest cost (best solution) for various test scenarios.

Control
Variables
Settings

Limits Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

max min

PG1 (MW) 250 50 177.1937 139.9995 64.0451 51.4906 198.8229 102.6678 176.2064 122.1097
PG2 (MW) 80 20 48.6612 54.9994 67.5785 80.0000 44.8973 55.4761 48.8103 52.4747
PG5 (MW) 50 15 21.3848 24.0757 50.0000 50.0000 18.3862 38.1089 21.6381 31.5054
PG8 (MW) 35 10 21.2488 34.9807 35.0000 35.0000 10.0005 35.0000 22.3274 35.0000
PG11 (MW) 30 10 11.9348 18.7366 30.0000 30.0000 10.0001 30.0000 12.2652 26.8051
PG13 (MW) 40 12 12.0000 17.3470 40.0000 40.0000 12.0007 26.6780 12.0000 21.0866
VG1 (p.u.) 1.1 0.95 1.0848 1.0745 1.0628 1.0618 1.0805 1.0696 1.0415 1.0730
VG2 (p.u.) 1.1 0.95 1.0612 1.0569 1.0562 1.0571 1.0571 1.0574 1.0224 1.0573
VG5 (p.u.) 1.1 0.95 1.0345 1.0302 1.0376 1.0382 1.0285 1.0355 1.0146 1.0325
VG8 (p.u.) 1.1 0.95 1.0384 1.0391 1.0441 1.0446 1.0361 1.0437 1.0057 1.0409
VG11 (p.u.) 1.1 0.95 1.0971 1.0865 1.0793 1.0828 1.0995 1.0838 1.0725 1.0342
VG13 (p.u.) 1.1 0.95 1.0459 1.0672 1.0534 1.0577 1.0659 1.0582 0.9878 1.0224
T6–9 (p.u.) 1.1 0.9 1.0395 1.0333 1.0568 1.0441 1.0440 1.0733 1.0990 1.0928
T6–10 (p.u.) 1.1 0.9 0.9553 0.9294 0.9343 0.9447 0.9697 0.9106 0.9000 0.9600
T4-12 (p.u.) 1.1 0.9 0.9728 1.0061 0.9966 0.9972 1.0038 0.9912 0.9393 1.0337
T28–27 (p.u.) 1.1 0.9 0.9735 0.9694 0.9769 0.9761 0.9743 0.9749 0.9711 1.0045
QC10 (MVAR) 5.0 0.0 4.1923 0.5512 4.8897 4.3248 4.9838 4.3072 5.0000 4.9809
QC12 (MVAR) 5.0 0.0 3.7073 0.6013 4.9723 1.3891 2.6161 0.0092 0.1566 1.7261
QC15 (MVAR) 5.0 0.0 4.4312 4.9073 4.1425 5.0000 4.9986 4.4318 5.0000 3.9681
QC17 (MVAR) 5.0 0.0 4.9999 4.1478 4.9557 4.8700 4.9884 4.9999 0 4.9996
QC20 (MVAR) 5.0 0.0 4.2308 4.0155 4.9493 4.4714 4.1278 4.2749 5.0000 5.0000
QC21 (MVAR) 5.0 0.0 4.9996 5.0000 4.9942 4.9891 4.9877 5.0000 5.0000 5.0000
QC23 (MVAR) 5.0 0.0 3.2827 3.6215 3.3131 2.9837 3.2608 3.2670 5.0000 4.1892
QC24 (MVAR) 5.0 0.0 4.9999 5.0000 5.0000 4.9823 4.9838 5.0000 5.0000 4.9990
QC29 (MVAR) 5.0 0.0 2.6429 2.5358 2.6059 2.4271 2.3553 2.4300 2.6429 2.5943
Cost ($/h) - - 800.4802 646.4941 944.3707 967.6399 832.1713 858.9747 803.7356 830.4163
Emission (t/h) - - 0.3664 0.2835 0.20482 0.2073 0.4381 0.2290 0.3634 0.2528
Loss (MW) - - 9.0233 6.7389 3.2236 3.0906 10.7077 4.5308 9.8474 5.5815
V.D. (p.u.) - - 0.9154 0.9298 0.8981 0.9095 0.8697 0.9300 0.0945 0.2972

TABLE 2 | Comparison of optimal results by algorithms for Case 1.

Algorithm Emission (t/h) Fuel Cost ($/h) V.D. (p.u.) Power Losses (MW)

MGBLFA 0.3664 800.4802 0.9154 9.0233
GBLFA 0.3667 800.8726 0.8924 9.2500
LFA 0.3671 801.5239 0.9102 9.3089
BBPSO 0.3714 802.1761 0.9035 9.4920
BBDE 0.3662 801.8857 0.9048 9.1247
Jaya Warid et al. (2016) - 800.4794 0.1273 9.06481
MSA Mohamed et al. (2017) 0.36645 800.5099 0.90357 9.0345
MPSO-SFLA Narimani et al. (2013) - 801.75 - 9.54
ABC Rezaei Adaryani and Karami, (2013) 0.365141 800.660 0.9209 9.0328
MHBMO Niknam et al. (2011a) - 801.985 - 9.49
PSOGSA Radosavljević et al. (2015) - 800.49859 0.12674 9.0339
ARCBBO Ramesh Kumar and Premalatha, (2015) 0.3663 800.5159 0.8867 9.0255
TS Abido, (2002) - 802.29 - -
GWO El-Fergany and Hasanien, (2015) - 801.41 - 9.30
SKH Duman et al. (2019) 0.3662 800.5141 - 9.0282
SFLA-SA Niknam et al. (2011b) - 801.79 - -
MFO Mohamed et al. (2017) 0.36849 800.6863 0.75768 9.1492
DE Sayah and Zehar, (2008) - 802.39 - 9.466
MGBICA Ghasemi et al. (2015a) 0.3296 801.1409 - -
IEP Ongsakul and Tantimaporn, (2006) - 802.46 - -
EP Sood, (2007) - 803.57 - -
FPA Mohamed et al. (2017) 0.35959 802.7983 0.36788 9.5406
MICA-TLA Ghasemi et al. (2014b) - 801.0488 - 9.1895
AGSO Daryani et al. (2016) 0.3703 801.75 - -
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coefficients’ values are given in (Mohamed et al., 2017). The
minimal fuel cost ($/h), the emission rate (tons/h), the power loss
(MW), and the V.D. (p.u.) for the BBDE, BBPSO, LFA, GBLFA,
and MGBLFA algorithms are presented in Table 2, and these
values are compared to those reported in the current literature. In
this example, MGBLFA outperforms the BBDE, BBPSO, LFA,
and GBLFA techniques, but BBPSO’s optimum fuel cost value is
significantly higher than the other algorithms. As seen in
Figure 2, the MGBLFA exhibits smoother curves and a faster
convergence rate than other competitive algorithms.

4.1.2 Results of Case 2
Thermal power plants may run on natural gas and oil in certain
situations. Thus, the fuel cost function is segmented into
piecewise quadratic cost functions depending on the quantity
and consumed fuels. Thus, the cost of creating fuel when many
fuels are represented by a specific goal for a single generator may
be given by (42) (Ghasemi et al., 2015a).

F′(PGi) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

αi1 + bi1PGi + ci1P
2
Gi;P

min
Gi ≤PGi ≤PGi1

αi2 + bi2PGi + ci2P
2
Gi;PGi1 ≤PGi ≤PGi2

/
αik + bikPGi + cikP

2
Gi;PGik−1 ≤PGi ≤Pmax

Gi

(42)

Where k is the fuel option, in this case, the total fuel cost function
can be calculated as follows:

obj2 � ∑2
k�1

F′
i(PGi) +∑NG

i�3
Fi(PGi) (43)

The data for units that operate on several fuel types was
derived from (Mohamed et al., 2017). The optimal solution
achieved with MGBLFA is listed in Table 1. In addition,
Table 3 shows how this outcome relates to the findings of
other algorithms and how it compares to other techniques
published in the literature. This table indicates that MGBLFA
surpasses all optimization techniques tried to solve OPF in this
situation. Figure 3 depicts the development of the goal function
for Case 2 across iterations using algorithms.

FIGURE 2 | Convergence characteristics of the algorithms for Case 1.

TABLE 3 | Comparison of optimal results by algorithms for Case 2.

Algorithm Emission (t/h) Fuel Cost ($/h) V.D. (p.u.) Power Losses (MW)

MGBLFA 0.2835 646.4941 0.9298 6.7389
GBLFA 0.2836 647.3203 0.8909 6.9057
LFA 0.2836 647.5814 0.9005 6.8947
BBPSO 0.2836 647.5203 0.8909 7.0057
BBDE 0.2835 647.4628 0.8852 6.9915
LTLBO Shayeghi and Ghasemi, (2014) 0.2835 647.4315 0.8896 6.9347
GABC Roy and Jadhav, (2015) - 647.03 0.8010 6.8160
MDE Sayah and Zehar, (2008) - 647.846 - 7.095
FPA Mohamed et al. (2017) 0.28083 651.3768 0.31259 7.2355
SSO Nguyen, (2019) - 663.3518 - -
IEP Ongsakul and Tantimaporn, (2006) - 649.312 - -
MFO Mohamed et al. (2017) 0.28336 649.2727 0.47024 7.2293
MPSO-SFLA Narimani et al. (2013) - 647.55 - -
MICA-TLA Ghasemi et al. (2014a) - 647.1002 - 6.8945
MSA Mohamed et al. (2017) 0.28352 646.8364 0.84479 7.4095

FIGURE 3 | Convergence characteristics of the algorithms for case 2.
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4.1.3 Results of Case 3
In this example, the aim is to decrease the emission of two
significant pollutants, namely NOX and SOX, which may be
expressed as follows (Mohamed et al., 2017):

obj3 � ∑NG

i�1
FEi(PGi) � ∑NG

i�1
(αi + βiPGi + γiP

2
Gi + ξ i(λiPGi)) (44)

Where FEi represents the emission of the ith generator. γi, βi, ξi
and λi are the emission coefficients of the ith generator, while γi
(ton/h MW2), βi (ton/h MW), and αi (ton/h) are related to SOX.
The ξi (ton/h), λi (1/MW) are related to NOX, respectively
(Ghasemi et al., 2014a).

The outcomes of the algorithms are summarized in Table 4.
The usefulness of algorithms is highly dependent on the nature of
the goal function. Figure 4 illustrates the evolution of the

TABLE 4 | Comparison of optimal results by algorithms for case 3.

Algorithm Emission (t/h) Fuel Cost ($/h) V.D. (p.u.) Power Losses (MW)

MGBLFA 0.20482 944.3707 0.8581 3.2236
GBLFA 0.20482 945.4526 0.8829 3.6272
LFA 0.20484 945.8365 0.7027 3.2318
BBPSO 0.20488 945.4891 0.7096 3.3935
BBDE 0.20484 944.4403 0.8859 3.2465
GBICA Ghasemi et al. (2015b) 0.2049 944.6516 - -
AGSO Daryani et al. (2016) 0.2059 953.629 - -
ARCBBO Ramesh Kumar and Premalatha, (2015) 0.20482 945.1597 0.8647 3.2624
FPA Mohamed et al. (2017) 0.20523 948.949 0.42761 4.492
MSFLA Pulluri et al. (2018) 0.2056 - - -
MFO Mohamed et al. (2017) 0.20489 945.4553 0.70968 3.4295
ABC Rezaei Adaryani and Karami, (2013) 0.204826 944.4391 0.8463 3.2470
MPSO-SFLA (Narimani et al., 2013) 0.2052 - - -
MSA Mohamed et al. (2017) 0.20482 944.5003 0.87393 3.2358
DSA Abaci and Yamacli, (2016) 0.2058255 944.4086 - 3.2437

FIGURE 4 | Convergence characteristics of the algorithms for Case 3.

TABLE 5 | Comparison of optimal results by algorithms for Case 4.

Algorithm Emission (t/h) Fuel Cost ($/h) V.D. (p.u.) Power Losses (MW)

MGBLFA 0.2073 967.6399 0.9095 3.0906
GBLFA 0.2074 967.6735 0.9116 3.1548
LFA 0.2076 968.1924 0.9099 3.2671
BBPSO 0.2075 967.6332 0.9215 3.1957
BBDE 0.2074 968.2007 0.9186 3.1895
ABC Rezaei Adaryani and Karami, (2013) 0.207268 967.6810 0.9008 3.1078
ARCBBO Ramesh Kumar and Premalatha, (2015) 0.2073 967.6605 0.8913 3.1009
GWO El-Fergany and Hasanien, (2015) - 968.38 - 3.41
FPA Mohamed et al. (2017) 0.20756 967.1138 0.3893 3.5661
EGA-DQLF Singh et al. (2016) - 967.86 0.12178 3.2008
ALC-PSO Biswas et al. (2018) - 967.7683 - 3.1700
MFO Mohamed et al. (2017) 0.20727 967.6785 0.91558 3.1111
EGA Reddy et al. (2014a) - 967.93 - 3.244
Jaya Warid et al. (2016) - 967.6827 0.1272 3.1035
EEA Reddy et al. (2014b) - 952.3785 - 3.2823
MSA Mohamed et al. (2017) 0.20727 967.6636 0.88868 3.1005
DSA Abaci and Yamacli, (2016) 0.20826 967.6493 - 3.0945
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emission cost across the iterations. The MSA (Mohamed et al.,
2017), the ARCBBO (Ramesh Kumar and Premalatha, 2015), the
GBLFA, and the MGBLFA arrived at the optimal final solution.

4.1.4 Results of Case 4
The purpose of this instance was to minimize the active power
loss on each transmission line by optimizing the following
objective function (Mohamed et al., 2017):

obj4 � PLoss � ∑
ij

gij(V2
i + V2

j − 2ViVj cos δij) (45)

Where PLoss is the total active power losses of the transmission
network. gij is the conductance of branch ij, δij phase difference of
voltages between bus i and bus j.

The suggested MGBLFA reduced the objective function and
produced outstanding findings compared to those previously
described in the works (see Table 5). Figure 5 illustrates the
power loss convergence characteristics in different algorithms.
Algorithms behave similarly to Case 1. One reason for this could
be that the optimization problem forms of both situations are similar.

4.1.5 Results of Case 5
The valve-point effect (VPE) must be included for a more
accurate and exact simulation of the fuel cost function. The
fuel-cost functions of generating units equipped with multi-
valve steam turbines display more variance. Opening the
valves in multi-valve steam turbines creates a ripple effect
(Sood, 2007. This impact is significant since a huge steam
plant’s real cost curve function is non-linear, not continuous
(Sood, 2007). As a result, the objective function expressing the
overall cost of producing gasoline while accounting
for the valve-point impact is as follows (Mohamed et al.,
2017):

obj � obj1 +∑NG

i�1

∣∣∣∣di sin[ei(Pmin
Gi − PGi)]∣∣∣∣ (46)

Where, di and ei are the coefficients that represent the valve-point
loading effect.

The ultimate results of MGBLFA are superior yet comparable to
those of other algorithms, as shown in Table 6. Furthermore,
Figure 6 illustrates the convergence characteristics of the utilized
algorithms for Case 5. The results indicate the better convergence
behavior of the proposed algorithm concerning other competitive
algorithms.

4.1.6 Results of Case 6
This case is designed to reduce both fuel costs and transmission
losses. Accordingly, the cost function can be depicted as follows:

obj6 � obj1 + λp p obj4 (47)
Where, the value of loss factor λp is chosen as 40, the same as in
(Biswas et al., 2018).

The ideal objective function values for this example are
presented in Table 7 demonstrating that the MGBLFA and a
DE integrated with the constraint handling technique SF

FIGURE 5 | Convergence characteristics of the algorithms for Case 4.

TABLE 6 | Comparison of optimal results by algorithms for Case 5.

Algorithm Emission (t/h) Fuel Cost ($/h) V.D. (p.u.) Power Losses (MW)

MGBLFA 0.4381 832.1713 0.8697 10.7077
GBLFA 0.4379 832.3921 0.8859 10.6895
LFA 0.4427 832.3806 0.8734 10.7268
BBPSO 0.4400 832.6437 0.8813 10.7091
BBDE 0.4341 832.2945 0.8846 10.7148
SP-DE Biswas et al. (2018) 0.43651 832.4813 0.75042 10.6762
PSO Bouchekara et al. (2016) - 832.6871 - -

FIGURE 6 | Convergence characteristics of the algorithms for Case 5.
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(superiority of feasible solutions) (SF-DE) (Biswas et al., 2018)
executed better than the other algorithms.

4.1.7 Results of Case 7
In this situation, multi-objective optimization is used, with
the aim of minimizing the fuel cost while enhancing the
voltage profile, as specified in Eq. 48. The factor λv is set to
100, as in (Biswas et al., 2018). As seen in Table 8, the
voltage magnitude variations are significantly decreased,
although the overall fuel cost is raised when compared to
the prior example.

obj7 � obj1 + λv ∑NPQ

i�1
|Vi − 1.0| (48)

4.1.8 Results of Case 8
The purpose of this instance is tominimize four conflicting objectives
simultaneously: pollution, losses, fuel expense, and voltage variations.
Thus, the goal function is to simultaneously solve instances 3, 4, and
6, which may be expressed as follows:

obj8 � ∑NG

i�1
Fi(PGi) + λv ∑NPQ

i�1
|Vi − 1.0| + λpPLoss + λe∑NG

i�1
FEi(PGi)

(49)
The weight factors are selected as λv = 21, λp = 22 and λe =

19 to balance among the problem different objectives. The
evaluation of optimal results obtained by different algorithms
for this situation is shown in Table 9, demonstrating that the
MGBLFA algorithm is an appropriate and

TABLE 7 | Comparison of optimal results by algorithms for Case 6.

Algorithm Emission (t/h) Fuel Cost ($/h) V.D. (p.u.) Power Losses (MW)

MGBLFA 0.2290 858.9747 0.9300 4.5308
GBLFA 0.2290 859.0245 0.9293 4.5412
LFA 0.2289 860.2673 0.9314 4.5408
BBPSO 0.2289 860.3524 0.9289 4.5388
BBDE 0.2291 859.7975 0.9289 4.5459
SF-DE Biswas et al. (2018) 0.2289 859.1458 0.92731 4.5245
MSA Mohamed et al. (2017) 0.2289 859.1915 0.92852 4.5404

TABLE 8 | Comparison of optimal results by algorithms for Case 7.

Algorithm Emission (t/h) Fuel Cost ($/h) V.D. (p.u.) Power Losses (MW)

MGBLFA 0.3634 803.7356 0.0945 9.8474
GBLFA 0.3544 803.9247 0.1047 9.8231
LFA 0.3636 804.1651 0.1096 9.8917
BBPSO 0.3678 804.1029 0.1159 9.8625
BBDE 0.3680 803.8938 0.1201 9.8703
NKEA Ghasemi et al. (2014b) - 804.9612 0.099 -
BB-MOPSO Ghasemi et al. (2014a) - 804.9639 0.1021 -
MFO Mohamed et al. (2017) 0.36355 803.7911 0.10563 9.8685
MNSGA-II Ghasemi et al. (2014b) - 805.0076 0.0989 -
ECHT-DE (Biswas et al., 2018) 0.36384 803.7198 0.09454 9.8414
MOICA Ghasemi et al. (2014a) - 805.0345 0.1004 -
MOMICAGhasemi et al. (2014b) 0.3552 804.9611 0.0952 9.8212
MPSO Mohamed et al. (2017) 0.3636 803.9787 0.1202 9.9242

TABLE 9 | Comparison of optimal results by algorithms for Case 8.

Algorithm Emission (t/h) Fuel Cost ($/h) V.D. (p.u.) Power Losses (MW)

MGBLFA 0.2528 830.4163 0.2972 5.5815
GBLFA 0.2529 830.7635 0.3259 5.5979
LFA 0.2601 831.8311 0.3187 5.5834
BBPSO 0.2530 832.7090 0.3073 5.5819
BBDE 0.2530 831.9315 0.3169 5.6019
NKEA Ghasemi et al. (2014a) 0.2491 834.6433 0.4448 5.8935
MNSGA-II Ghasemi et al. (2014b) 0.2527 834.5616 0.4308 5.6606
MOICA Ghasemi et al. (2014a) 0.267 831.2251 0.4046 6.0223
BB-MOPSO Ghasemi et al. (2014b) 0.2479 833.0345 0.3945 5.6504
MFO Mohamed et al. (2017) 0.25231 830.9135 0.33164 5.5971
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dependable solution to the MOOPF problem in power
systems.

4.2 OPF for Renewable Power Integrated
Systems
4.2.1 Results of Case 9
In this case, the production schedule for all generators, including
thermal and renewable sources, is optimally defined using the
proposed algorithm to minimize overall generating costs, TC, as
defined in Eq. 50.

TC � obj1 + CT
W + CT

S (50)
As with Case 1, the cost coefficients are the same as in

Table 10. Table 11 summarizes the optimization of all
decision variables, reactive generator (Q) power, the overall
cost of generation and other relevant computed metrics. The
voltage Vi in the tables refers to ith bus voltage. Pws,1 means the
scheduling power of the wind generator WG1 and furthermore.
The minimal generation costs that can be reached by generation

schedules mentioned in the table are BBDE, BBPSO, LFA, GBLFA
and MGBLFA, correspondingly at $783,0573, 783,0301,
782,2258, 782,0752 and 781,3930 $/h. The suggested method
for MGBLFA can clearly discover the best answer for the same
circumstance as BBDE, BBPSO, LFA, and GBLFA.

4.2.2 Results of Case 10
In recent years, several governments have been placing
considerable pressure on the whole energy industry to lower
carbon emissions because of global warming (Biswas et al., 2017).
Carbon tax (Ctax) is levied on each unit of emission of greenhouse
gases to stimulate investment in greener types of power such as
wind and solar. The total generation cost as well as emission cost
(in $/h), TCE , can be defined as follows:

TCE � TC + Ctaxobj3 (51)
This study reduces the entire cost of generating, including

carbon tax on emissions from traditional thermal power plants.
The tax on carbon is supposed to be $20/ton (Reddy et al., 2014a).
Given that winds and solar energy are clean, carbon tax

TABLE 10 | PDF parameters of wind power and solar PV plants.

Wind Power Generating Plants Solar PV Plant

Windfarm No. of
turbines

Rated power,
Pwr (MW)

Weibull PDF
parameters

Weibull mean,
Mwbl

Rated power,
Psr (MW)

Lognormal PDF
parameters

Lognormal mean,
Mlgn

1 (bus 5) 25 75 c = 9 k = 2 v = 7.976 m/s 50 (bus 13) µ = 6 σ = 0.6 G = 483 W/m2
2 (bus 11) 20 60 c = 10 k = 2 v = 8.862 m/s

TABLE 11 | The variables optimal values obtained by algorithms for Case 9.

Control Variables
Settings

BBDE BBPSO LFA GBLFA MGBLFA

PG1 (MW) 134.90791 134.90791 134.90791 134.90791 134.90791
PG2 (MW) 29.0558 29.2313 28.4998 27.6037 27.1613
Pws1 (MW) 44.0436 44.1472 43.7391 43.2413 42.9926
PG3 (MW) 10 10 10 10 10
Pws2 (MW) 37.1775 37.2554 36.92 36.513 36.318
Pss (MW) 33.984 33.727 35.1043 36.9184 37.8169
VG1 (p.u.) 1.0718 1.073 1.0723 1.0721 1.0713
VG2 (p.u.) 1.0568 0.9501 1.0573 1.0571 1.0563
VG5 (p.u.) 1.0349 1.1 1.0353 1.035 1.0342
VG8 (p.u.) 1.1 1.1 1.0398 1.0397 1.0732
VG11 (p.u.) 1.1 1.1 1.0989 1.0982 1.0988
VG13 (p.u.) 1.0488 1.0584 1.0546 1.0552 1.0498
QG1 (MVAR) −2.31706 3.79364 −1.9069 −1.96262 −2.45459
QG2 (MVAR) 11.8225 −20 13.2576 13.2027 11.6445
Qws1 (MVAR) 22.4179 35 23.1819 23.2065 22.4366
QG3(MVAR) 40 40 35.0943 34.9949 40
Qws2 (MVAR) 30 30 30 30 30
Qss (MVAR) 15.0803 18.5608 17.3605 17.5776 15.4443
Fuelvlvcost ($/h) 442.4200 443.0066 440.5678 437.6002 436.1437
Wind gen cost ($/h) 248.0630 248.6921 246.1212 243.0139 241.4984
Solar gen cost ($/h) 92.5743 91.3314 95.5368 101.4610 103.7509
Total Cost ($/h) 783.0573 783.0301′ 782.2258 782.0752 781.3930
Emission (t/h) 1.76195 1.76191 1.76208 1.76230 1.76242
Power losses (MW) 5.7688 5.8687 5.7711 5.7843 5.7968
V.D. (p.u.) 0.45403 0.48380 0.46324 0.46428 0.45565
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components will encourage the expansion of these sources.
Table 10 shows the optimum generating schedule, reactive
power generator, total costs of production (including carbon
tax) and other computed factors. In the case of the carbon tax

in Case 10, it is noted that the penetration of solar as well as wind
energy is more than in Case 9, and no emission penalty is charged
by any algorithm. The degree to which renewable sources are
optimized relies on the amounts of emissions and the rate of a

TABLE 12 | The variables optimal values obtained by algorithms for Case 10.

Control Variables
Settings

BBDE BBPSO LFA GBLFA MGBLFA

PG1 (MW) 124.09018 123.98541 123.84935 123.88385 123.83083
PG2 (MW) 34.6614 34.3508 33.9526 34.0551 33.8996
Pws1 (MW) 46.8472 46.6899 46.4878 46.5394 46.4607
PG3 (MW) 10 10 10 10 10
Pws2 (MW) 39.4266 39.2994 39.1259 39.1776 39.1039
Pss (MW) 33.6593 34.3578 35.262 35.0263 35.3824
VG1 (p.u.) 1.0705 1.0704 1.0709 1.0703 1.0709
VG2 (p.u.) 1.057 1.0569 1.0574 1.0568 1.0574
VG5 (p.u.) 1.036 1.0359 1.0363 1.0358 1.0363
VG8 (p.u.) 1.1 1.1 1.0404 1.0807 1.0404
VG11 (p.u.) 1.0985 1.0997 1.0999 1.0981 1.0982
VG13 (p.u.) 1.0496 1.0498 1.0552 1.05 1.0553
QG1 (MVAR) −2.94804 −2.97762 −2.59236 −3.00638 −2.59712
QG2 (MVAR) 11.0989 11.0573 12.4056 11.0179 12.4007
Qws1 (MVAR) 22.2334 22.2327 22.9495 22.2321 22.9501
QG3(MVAR) 40 40 35.374 40 35.3683
Qws2 (MVAR) 30 30 30 30 30
Qss (MVAR) 15.3164 15.3778 17.5209 15.4392 17.5347
Fuelvlvcost ($/h) 436.4143 435.0920 433.3959 433.8308 433.1694
Wind gen cost ($/h) 265.9140 264.8907 263.5435 263.9135 263.3677
Solar gen cost ($/h) 90.3813 93.4093 96.2069 94.9828 96.0983
Total Cost ($/h) 792.7096 793.3920 793.1464 792.7272 792.6354
Emission (t/h) 0.92066 0.91514 0.90804 0.90984 0.90708
Power losses (MW) 5.2847 5.2833 5.2777 5.2822 5.2775
V.D. (p.u.) 0.45862 0.45900 0.46787 0.45936 0.46794
Carbon tax ($/h) 18.4134 18.302 18.1608 18.1967 18.1416

TABLE 13 | Comparison of optimal results by the optimization algorithms for single-objective functions.

Cases Indexes BBDE BBPSO LFA GBLFA MGBLFA

Case 1 Best 801.8857 802.1761 801.5239 800.8726 800.4802
Mean 802.6732 802.8438 802.6075 801.4862 800.7319
Worst 804.4739 803.6557 804.9174 802.0963 801.1125
Std 3.0005 1.7120 2.8513 1.5426 0.3261

Case 2 Best 647.4628 647.5203 647.5814 647.3203 646.4941
Mean 648.1427 647.9836 648.6572 647.7451 646.8206
Worst 649.0599 648.3854 649.5383 648.6007 647.2809
Std 1.7458 0.9826 2.0927 1.3594 0.7124

Case 3 Best 0.20484 0.20488 0.20484 0.20482 0.20482
Mean 0.20493 0.20497 0.20498 0.20489 0.20484
Worst 0.20531 0.20510 0.20512 0.20496 0.20487
Std 0.0075 0.0029 0.0046 0.0035 0.00004

Case 4 Best 3.1895 3.1957 3.2671 3.1548 3.0906
Mean 3.7219 3.6340 3.9424 3.2309 3.1125
Worst 4.3597 4.1886 4.6195 3.3621 3.1570
Std 0.9246 0.9045 1.0452 0.0893 0.0087

Case 5 Best 832.2945 832.6437 832.3806 832.3921 832.1713
Mean 833.2505 832.9324 833.6729 832.6538 832.2385
Worst 834.1394 833.1185 834.4263 833.2007 832.4530
Std 1.6427 0.7934 2.1093 0.8528 0.0996

Case 9 Best 783.0573 783.0301 782.2258 782.0752 781.3930
Mean 783.7127 783.2368 783.1042 782.8329 781.5683
Worst 784.0108 783.9652 784.1795 783.8411 781.9617
Std 1.0074 0.7735 1.1958 1.0517 0.3908
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carbon price applied (Biswas et al., 2017). In OPF, the load-bus
voltage limit is especially essential, as load-bus operating voltages
are frequently close to their limits. The load bus tension should be
kept in our study between 0.95 and 1.05 p.u.

As shown in Table 12, a better carbon tax than the other four
adopted is the suggested MGBLFA approach, which is $18,1416/h.
Operating more than the suggested approach, BBDE, BBPSO, LFA,
and GBLFA have an overall cost target of $792,7096, 793,3920,
793,1464 and 792,7272/h. It is, therefore, possible to conclude that
the suggestedMGBLFA procedure is quite successful in reducing the
IEEE 30-bus system’s overall cost target.

4 DISCUSSIONS

Table 13 presents the end outcomes following 30 runs for each
method based upon the best, average, and worst output features and
the average simulation duration for every single goal optimizing
function. In particular, the suggested MGBLFA method is virtually
simultaneously more efficient and optimized than the original LFA
algorithm. The overall reliability of the proposal MGBLFA approach
can be detected clearly and accurately when comparing the four
established BBDE, BBPSO, LFA, andGBLFAmethods, as roughly all
the outputs of the proposedMGBLFA technique are higher than that
of those techniques. In addition, the voltage profile of the load buses
corresponding to the best solution obtained by the proposed
algorithm is shown in Figure 7. As can be seen, in all ten cases,
the voltage magnitudes remain between the upper and lower
bounds.

5 CONCLUSION

The aim of this work was to address the OPF of the systems
integrated with wind and solar energy resources to optimize

various objective functions such as fuel and operational costs,
emission, loss, and voltage deviation. An enhanced Levy-flight
firefly algorithm (LFA) method, namely the GBLFA algorithm,
and its modified version, i.e., MGBLFA were developed to solve
the OPF problem. Then, the performance of the proposed algorithm
was tested on the basic IEEE 30-bus tests system without renewable
energy integration, and the optimal results were compared with other
state-of-the-art algorithms. In this problem, control variables such as
transformer tap setting, generator outputs and reactive power
generators, or generator voltages, were optimally selected without
any violations in the constraints, which proved the accuracy and
validity of the proposed algorithm. Compared with all prior research,
the suggested GBLFA andMGBLFA algorithms were shown to have
effective and trustworthy outcomes for the various OPF problems in
IEEE 30-bus test system.

Moreover, wind and solar power generation units were
considered in the OPF problem. First, the uncertainties of
wind and solar radiations were modeled using Weibull and
lognormal PDFs, respectively. After that, the OPF cost
function was modified to incorporate the influences of
renewable generations. This cost function included the fuel
cost of thermal power plants, the cost of the carbon tax on
emissions from traditional thermal power plants, the direct costs
of the wind/solar, the reserve or overestimation costs, and the
penalty costs. The simulation results of the cases with wind and
solar power penetrations demonstrated the total cost-benefit of
these resources in the OPF problem. The level of renewable power
generation is influenced by some constraints such as voltage
limits and the value of carbon tax. An increase in carbon taxes will
increase the share of renewable power generation. Furthermore,
the superiority of the proposed algorithm was investigated and
verified in comparison to other algorithms in Cases 9 and 10 for
solving OPF problems with renewables. In future work, a
stochastic multiobjective model of the OPF problem in the
presence of renewable power generations will be developed.

FIGURE 7 | Voltage profile of the system for ten cases obtained by the proposed algorithm.
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