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More and more renewable energy sources are integrated into power grids, leading to a
power electronic-based low-inertia power system. The grid-forming (GFM) inverter is an
effective method for improving the inertia of the system. However, with the increased GFM
inverters in the system, how the multiple control parameters affect the frequency response
is still not clear. In this study, first, the power-phase model of the power grid is established;
then, a small-signal distributed frequency model of the GFM inverter-based power system
is established associating with the power-phase model of the power grid and the power-
frequency model of the GFM inverter. Based on the proposed model, the influence of the
multiple parameters to the frequency response is analyzed. It is concluded that both the
inertia and damping coefficient affect the settling time, overshoot, and oscillation of the
frequency. Finally, the simulation results verify the proposed model and the conclusion.
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INTRODUCTION

Recently, more and more renewable energy sources (RESs) have been developed to alleviate the
increasingly tight power supply of fossil energy (Huang et al., 2011). These RESs adopt the
inverter as the interface connected to the power grid. The inverter grid-connected control can be
classified into two types: the grid-following (GFL) and grid-forming (GFM) controls. The GFL
inverter lacks the inertia and damping compared to the traditional synchronous generator (Liu
et al., 2016). Therefore, the increased penetration of RESs has greatly decreased the overall inertia
level of the power system, which raises great challenges to the stability of the system, especially for
the low-inertia system, such as the microgrid in the islanded mode (Alipoor et al., 2018). To
address this problem, the GFM control is considered to be a simple and effective approach for
improving the inertia of the system (Quan et al., 2020a) (Quan, 2021) (Wu et al., 2016). The well-
known virtual synchronous generator (VSG) control belongs to the GFM control methods (Wu
et al., 2016).

The GFM inverter usually adopts power synchronization control which includes the two
parameters of inertia and damping (Quan et al., 2020b). These two parameters play critical roles
in improving the performance andmaintaining the stability of the power system. Compared with the
synchronous generator, the virtual inertia and damping coefficient of the GFM inverter are realized
in the control software; hence, they are flexible and adjustable. The design of the inertia and damping
for a single GFM inverter has been studied well (Wu et al., 2016), (Quan et al., 2020b). However, how
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to optimally determine the virtual inertia and damping coefficient
for multiple GFMs in a GFM-based power system to get better
stability and dynamic performance is still a challenge.

To optimally design the multiple inertias and damping factors,
a suitable model should be established first. However, for such a
large nonlinear system, the small-signal model is suitable for the
optimal design of virtual inertia and damping coefficient. A grid-
forming inverter-based power system is comprehensively
modeled in (Pogaku et al., 2007), where the small-signal
stability issues are analyzed by plotting zero-pole locations.
Based on the grid-forming technology, many stability
performances in terms of regulating frequency and voltage can
be achieved, for example, asymptotical (Bidram et al., 2013) and
finite-time (Ge et al., 2021). However, these studies consider the
control design from the perspective of a power electronic-based
inverter and do not fully consider the interaction between grid-
forming inverters and power networks.

Based on the traditional small-signal modeling method, a
detailed system model including grid-following inverters and
grid-forming inverters is built with the node admittance
matrix, and a H2 norm-based control algorithm is proposed to
optimize the virtual inertia in order to improve the stability of the
low-inertia power system (Poolla et al., 2019). However, the nodal
admittance matrix cannot describe how the load power
fluctuation affects the system frequency in an explicit way.
Hence, it is not conducive to the parameter optimization.
Differently, a model with multiple GFMs was established by
using direct current power flow in Ademola-Idowu and
Zhang, 2018, and the optimized design of the virtual inertia
and damping coefficient was also described as a H2 norm
minimization problem. A more detailed demonstration was
proposed in Mešanović et al., 2016 for the system model using
DC power flow, based on which a comparison among the H∞, H2,
and pole optimizations for damping active power oscillations was
presented. Nevertheless, the DC power flow algorithm is not
applicable for a low-voltage microgrid or low-inertia system
where most DGs are connected (Frack et al., 2015) (Kundur,
1994).

Therefore, this study proposes a state space small-signal
model for the multi-GFM system. Based on the proposed
model, the relationship between the load fluctuation and

frequency change is explicitly expressed, which is
beneficial to the numerical optimization of the parameters
of virtual inertia and damping coefficient. Moreover, the
dynamic characteristic of the frequency is also
demonstrated by the proposed state space model. Finally,
the influence of the parameters on the dynamic response is
analyzed and verified.

MODELING FOR THE
GRID-FORMING-BASED SYSTEM

System Description
As shown in Figure 1, in an inverter-based power system, the
GFM inverter is necessary to form the AC voltage. Under these
conditions, the swing-equation-based power control or power
synchronization control will be applied to realize the frequency
synchronization and power sharing. Consequently, the control
parameters of the power control, for example, the damping factor
and virtual inertia, will remarkably affect the system frequency
dynamics. Moreover, due to the difference of these power control
parameters, the frequency of the system will demonstrate the
features of distribution. Hence, it is meaningful to establish a
dynamic model to describe the frequency dynamics of the system.

As shown in Figure 2, the system nodes are divided into two
types. One is the node that is connected with GFM inverters, and
it is called the GFM-node. The voltage and frequency of the GFM-

FIGURE 1 | Diagram of the GFM inverter-based power system.

FIGURE 2 | Diagram of the inverter-based power system.
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node are determined by the GFM inverter. The last nodes are
classified into one type that injects active and reactive power into
the node. In this study, these nodes are treated as the
disturbance nodes.

Modeling of the Grid-Forming Inverter
The GFM active power control part simulates the inertia, droop
characteristics, and damping action of the synchronous machine.
It is assumed that the GFM active power control equation similar
to the second-order rotor motion equation of the synchronous
machine can be expressed as Eq. 1

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dΔθgi
dt

� Δωgi

Mi
dΔωi

dt
� Pset,i − Pgi

ωn
−Dp,iΔωgi

ωgi � Δωgi + ωn

(1)

where Δθgi denotes the phase variation of GFM node i at the
current operation point, Mi is the virtual inertia of the i-th GFM
inverter, Dp,i is the damping coefficient, Pset,i is the set value of
active power, Pgi is the output active power,ωn is the rated angular
frequency, and ωgi is the angular frequency of the i-th GFM
inverter. Considering all the GFM nodes, Eq. 1 can be written in
matrix formation:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dΔθg
dt

� Δωg

dΔωg

dt
� M−1

ωn
(Pset − Pg) −M−1DpΔωg

(2)

Modeling of the Power Grid
To establish the model of the GFM inverter-based system, how
the phase angles of the GFM inverters and the injected power of
disturbance nodes affect the power of the GFM inverter through
the impedance network needs to be clarified. To this end, the
Jacobian matrix is adopted:

[ ΔP
ΔQ] � [H N

J L
][ Δθ

ΔV/V
] (3)

where matrices H, N, J, and L are derived from the fundamental
power flow equations. In the high-voltage power system, it has N
= 0 and J = 0, which means that the voltage is related with the
reactive power, while the frequency is dependent on the active
power. Hence, the influence of the reactive power can be ignored
when analyzing the frequency dynamics. Then, Eq. 3 is
simplified as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ΔP1

ΔP2

..

.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
H11 H12 /
H21 H22 /

..

. ..
.

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Δθ1
Δθ2
..
.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

where ΔPi and Δθi denote the power and phase variation of node i
at the current operation point, respectively. The elements of the
matrix are linearized from the fundamental power equation:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Hij � zPi

zδj
� UiUj(Gij sin δij − Bij cos δij) , i ≠ j

Hii � zPi

zδi
� −Ui ∑j�n

j�1,j ≠ i

Uj(Gij sin δij − Bij cos δij) , i � j

(5)
Distinguishing the GFM nodes and disturbance nodes, Eq. 4

can be rearranged as

[ΔPg

ΔPd
] � [Hgg Hgd

Hdg Hdd
][ΔθgΔθd ] (6)

Integrated Model
The phase angle vector of the GFM nodes Δθg is the state
variable of the system, while Δθd is the dependent variable. The
power of the disturbance node will be the disturbance that
occurs with the phase angle and frequency variations. To extract
the disturbance from Eq. 6, Kron reduction is applied to Eq. 6,
obtaining

FIGURE 3 | Diagram of in the 9-buses system.

TABLE 1 | | Parameters of the system and the inverters.

Base values

fbase � 50Hz ωbase � 2πfbase Ubase � 345kV Sbase � 100MVA

Power network parameters (per-unit values)

Lines R X B

Line 14 0 0.0576 0
Line 45 0.017 0.092 0.158
Line 56 0.039 0.17 0.358
Line 36 0 0.0586 0
Line 67 0.0119 0.1008 0.209
Line 78 0.0085 0.072 0.149
Line 82 0 0.0625 0
Line 89 0.032 0.161 0.306
Line 94 0.01 0.085 0.176
Loads S5 � 0.9 + j0.3,S7 � 1 + j0.35,S9 � 1.25 + j0.5

Parameters of GFM inverters (per-unit values)
M and D of GFM1: 8,200
M and D of GFM2: 16,300
M and D of GFM3: 24,400
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ΔPg � (Hgg −HgdH
−1
dd

Hdg)Δθg +HgdH
−1
dd

ΔPd (7)

Then, combining Eqs. 2 and 7, it has

d

dt
[ Δθg
Δωg

] � [ − (ωnM)−1(Hgg −HgdH
−1
ddHdg) I

−M−1Dp
]

× [ Δθg
Δωg

] + [ 0
−(ωnM)−1HgdH

−1
dd
]ΔPd

+ [ 0
−(ωnM)−1 ]Pset (8)

which is the space state model of the system. The state variables
Δθg and Δωg represent the dynamics of the phase angle and

frequency of the GFM nodes. Therefore, we can conveniently
evaluate the dynamic response of the frequency for every GFM
node during the dynamic process. Thereby, we can optimally
design the control parameters of the GFM power controller.

POLE ANALYSIS

In this section, the proposed model is applied to a 9-buses system
as shown in Figure 3. Three GFM inverters are connected at bus
1, bus 2, and bus 3. Three loads are connected at bus 5, bus 7, and
bus 9. The parameters are listed in Table 1.

Using the concrete parameters of the 9-buses system shown in
Figure 3, the model of Eq. 8 can be obtained. Then, based on the

FIGURE 4 | Root locus of the system when the parameters vary.
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FIGURE 5 | Frequency response of the electrical simulation and the proposed small-signal model.

FIGURE 6 | Frequency response when the inertia changes.
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model, the root locus when the inertias vary is investigated. The
inertia and damping parameters for the three GFM inverters are
denoted as M = (M1, M2, M3) and Dp = (Dp,1, Dp,2, Dp,3) for
GFM1, GFM2, and GFM3. Figure 4A–C shows the pole variation
when the inertia parameter of the three GFM inverters changes.

Generally, the poles of the system rule the dynamic response of
the frequency. Each pair of the conjugate poles has the parameters
of damping factor and damping oscillation frequency (the real
part of the pole). The high damping factor can reduce the
oscillation and overshoot during the dynamic response. The

FIGURE 7 | Frequency response when the damping changes.

FIGURE 8 | Frequency response with different load variations.
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large damping oscillation frequency reduces the settling time,
which means that it increases the response speed. As can be seen
in Figure 4A–C, with the inertia increasing, all of the poles move
toward the imaginary axis, which means that the response will
become slow. It is reasonable since the inertia is increased.
Moreover, the damping factor is reduced due to the increased
inertia. This will enhance the overshoot and oscillation.

Figure 4D–F shows how the damping factor affects the poles.
Generally, the damping factors reflect the droop coefficient;
hence, they are usually designed by the frequency support
capacity. However, from Figure 4D–F, it is shown that the
damping factors also influence the dynamic response. With
the damping factor decreasing (frequency supporting capacity
decreasing), the poles move toward the imaginary axis, which
means that the response will become slow; meanwhile, the
damping becomes worse. It will cause severe overshoot and
oscillation on frequency dynamics.

SIMULATION RESULTS

Model Verification
To verify the correctness of the proposed model, the electrical
simulation in Simulink is conducted as a comparison. The
adopted parameters are M = (8, 16, 24) and Dp = (200, 300,
400). The disturbance appeared on node 7 with 0.01 p.u. active
power increase. As shown in Figure 5, the frequency responses of
the electrical simulation and the proposed small-signal model
demonstrate that the dynamic feature of the frequency can be
perfectly described by the proposed small-signal model. However,
there is a small steady-state error which appears on the proposed
small-signal model. This is introduced by the linearization of the
Jacobian matrix. Nevertheless, the steady-state value can be
obtained by the direct static-state droop computation. Hence,
the dynamic feature described by the proposed model can still be
adopted optimally to design the control parameters of the GFM
inverters.

Performance Verification
Furthermore, to evaluate the effect of the control parameters to
the frequency performance, the simulation with different
parameters is performed. Figure 6 shows the different
frequency dynamic responses with the inertia variations, and
the pole figures are also displayed for a reference. In Figure 6,
the first column shows that the inertia of GFM1 changes from 8
to 40, while the other parameters stay invariable. The second
column shows that the inertia of GFM2 changes from 16 to 80,
and the third column shows the inertia of GFM3 changes from
24 to 120. From the results in Figure 6, first, it is concluded that
the inertia only affects its own rate of change of frequency
(RoCoF) but has no effect on the RoCoF of the other node;
increasing the inertia of GFM1 only reduces the RoCoF of
GFM1 but without the influence of RoCoFs of GFM2 and
GFM3. Second, increasing the inertia will move the poles
right, which increases the settling time; all the settling times
of the frequencies for the three inverters become larger. Third,
increasing the inertia also decreases the damping of the system;

hence, the oscillation and overshoot of the frequencies of the
three inverters are deteriorated.

Figure 7 shows the distributed frequency response of different
GFM inverters when the damping coefficients change. The first
column shows that the damping coefficient of GFM1 changes
from 200 to 50, while the other parameters stay invariable. The
second column shows that the damping coefficient of GFM2
changes from 300 to 75, and the third column shows that the
damping coefficient of GFM3 changes from 400 to 100.
Observing the frequency waveforms in Figure 7, first, we can
conclude that the damping coefficient still acts as the droop
coefficient that denotes the frequency supporting capacity.
Hence, reducing the damping coefficients will reduce the
frequency steady-state value. Second, the reduced damping
coefficient moves the pole toward the imaginary axis; hence,
the settling time becomes larger with the reduced damping
coefficient. Third, decreasing the damping coefficient decreases
the damping of the system; hence, the oscillation and overshoot of
the frequencies of the three inverters are deteriorated. Last, the
damping coefficient has no effect on the RoCoFs of the frequency.

Moreover, to comprehensively evaluate the effectiveness of the
proposed model, the load power disturbance is imposed on
different nodes. Figure 8 shows the frequency response when
the load steps 0.01 p.u. active power. The parameters of the
inverters are set asM = (8 16 24) and D = (200 300 400). As shown
in Figure 8, the frequency of GFM2 and GFM3 performs a good
dynamic response, while the frequency of GFM1 shows a large
overshoot. This because that the inertia of GFM1 is set too small,
which occurs as a poor damping factor of the
corresponding poles.

CONCLUSION

In this study, a state space small signal model is established for the
multiple GFM low-inertia system. The system is modeled in an
input–output state space model where the load power is the
disturbance input and the frequency of every node is the output.
The proposedmodel can perfectly describe the dynamic feature of
the frequency. From the proposed model, it is concluded that
increasing the inertia and reducing the damping coefficient will
increase the settling times of the frequencies, deteriorate the
oscillation, and overshoot of the frequencies. Moreover,
increasing the inertia will decrease the RoCoF of its own node
frequency, while the damping coefficient has no effect on the
RoCoFs of the frequency.

Furthermore, the proposed model is based on the small-signal
stability theory; therefore, it is limited to analyze the large-signal
stability. In the future work, we will focus on the suitable model
for a large-signal stability analysis.
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