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Community-based peer-to-peer (P2P) energy trading is applied to manage local market
transactions to maximize the social welfare of the community. However, the increasing
number of distributed energy resources in distribution systems affects the performance of
community-operators in P2P energy trading. Hence, this study develops a community-
based P2P energy trading mechanism to ensure fair profit allocation and reduce
computation cost, even with numerous participants. To achieve this, the P2P
participants were aggregated into smaller groups using the K-means clustering
method, allowing the community manager to perform market transactions in a
hierarchical manner. In the hierarchical P2P market, social welfare maximization is
performed in the higher layer and profit distribution in the lower layer. Furthermore, the
Z-bus network cost allocation method was applied to determine the network usage cost
and was thus considered as a parameter to ensure fair profit allocation based on the
Shapley value. The proposed method was simulated in South Korean P2P energy trading
at various market scales. The results showed an improvement in the proposed method
compared with conventional single-layer community-based P2P energy trading.
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1 INTRODUCTION

The modern trend of power systems has shifted from centralized to decentralized operation. Some
private companies are allowed to provide market services to accommodate customers who want to
sell or buy electricity directly to each other, known as peer-to-peer (P2P) energy trading. Over time,
the P2P energy trading method has been developed to suit the needs of customers who prefer trading
without full involvement. Hence, community-based P2P energy trading with a community manager
is employed, which allows the advanced involvement of prosumers and consumers. In this method,
the community manager determines the combination of sellers and buyers by optimizing the social
welfare of the local community. Furthermore, because the method is independent of centralized
market operation, the market regulation of community-based P2P energy trading can be adjusted
based on the conditions of the local market.

In this regard, community-based P2P energy trading should be a reliable method for anticipating
the surge in the growth of distributed energy resource (DER) installations in the local grid. Currently,
the growth of commercial photovoltaics (PV) and residential PV is predicted to increase up to 9 GW
under normal conditions and 21 GW under accelerated conditions in the next 3 years worldwide
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(International Energy Agency, 2020). However, with the
increasingly crowded system, it is challenging for community
managers to maintain reliable market operations, including social
welfare optimization and profit attribution, which is performed
simultaneously in a single layer (Heo et al., 2021). This is
because, along with a larger system, the computation cost
performed in a single layer is high and requires extensive
computation time. The solution to this issue to segregate larger
systems into smaller subsystems using a clusteringmethod. K-means
clustering provides optimal clustering with a relatively simple
implementation and thus can be scaled up to large datasets
(Kanungo et al., 2002). In this case, community-based P2P
energy trading is performed in a bi-layer manner, where the
community manager determines the matching capacity based on
aggregated prosumers and consumers in the higher layer, and thus
the profit will be distributed to members of each cluster in lower
layer. In addition, in the bi-layer community-based P2P energy
trading, all types of customers can participate in the market despite
of their different profiles through discriminative pricing in higher
layer and uniform pricing in lower layer.

A drawback of a segregated market is the emergence of a
uniform trading profile among the members of each
group. Uniform trading profiles, especially in terms of price,
complicate the diversification process to provide optimal profit
distribution. In addition, even within similar price ranges, an
imbalance will occur in market, shifting larger market power
towards larger customers, which are capable of supplying or
buying more capacities. Azim et al. (2020) elaborates the impact
of P2P energy trading on power losses, which could diversify the
allocation of members on each group. In this paper, the
determination of members on each cluster considers the
network usage cost, which initially is translated from loss
allocation. Z-bus network cost allocation (NCA) is a
mathematically proven method that is more preferable than
the existing NUC allocation method because of its capability
to determine the contributions of each peer in network usage by
considering network constraints (Conejo et al., 2007).
Determining the contribution of each peer through the
network usage cost by using Z-bus NCA method gives
additional consideration to profit distribution and provides an
appropriate network usage compensation allocation method.

However, the drawback of the Z-Bus NCA method is that it
requires a power-flow solution, thus making the calculation
model nonlinear and complex. Therefore, it is not possible to
involve the NUC calculation in social welfare optimization for
determining the matched capacity between participants. Hence,
to simplify the calculation, the NUC from the Z-bus NCAmethod
is formulated as a weighting factor. To incorporate P2P energy
trading, the weighting factor determination requires proper
representation of rational economic behavior, which in this
case game theory concept is considered. The cooperative game
theory and non-cooperative game theory approaches being
implemented in P2P energy trading have been studied in
(Acuña et al., 2018; Li et al., 2022). Nevertheless, the aims of
community-based P2P is to emphasize the coalition formation
among participants as grand as possible. Hence, this study
considers cooperative game theory rather than non-

cooperative approach. In addition, among cooperative game
theory methods, Shapley Value (SV) is considered as the most
stable marginal contributions of agents in terms of forming grand
coalition (Sweta et al., 2022). By using SV as the foundation of
determining weighting factor, the possibility of unfair treatment
between participants will be reduced. Since SV has a
computational issue when calculating a large number of
participants, thus SV computation will be modified in this study.

This paper aims to fulfill the above research gaps, thereby
contributes the following to the P2P energy systems research.

1) This study proposes the development of community-based
P2P energy trading using the Z-bus NCA method. The
proposed method aims to improve community-based P2P
in terms of accommodating more market participants by
reducing computational burden through bi-layer manner.

2) This study incorporates network condition into the trading
process through implementation of weighting factor in the
objective function. The weighting factor is calculated as SV,
which is determined as NUC calculated from Z-bus NCA
method.

3) To accelerate the computational process, this study modifies
the SV calculation by decomposing market participants into
smaller groups. This modification refers to the axioms of the
SV, so that contribution of each peer towards the whole
system can be calculated even if it is done in a local group.

4) Compared to the conventional single-layer community-based
P2P energy trading, the proposed bi-layer method shows
some improvements: reduce computation time of the
market clearing, distribute profit more fairly, and increase
profit among peers.

The remainder of the paper is organized as follows. Section 2
and Section 3 elaborate on the operator-oriented model as a
representation of community-based P2P and the proposed
market mechanism modification, respectively. Subsequently,
several test cases in Section 4 are used to validate the
proposed modification of the market mechanism and to verify
the improvement compared with the current operator-oriented
model. The conclusion and scope of future research are presented
in Section 5.

2 COMMUNITY-BASED PEER-TO-PEER
ENERGY MODEL

In community-based P2P energy models, the local market
operator manages the electricity trading of agents. The local
market operator acts as an aggregator that communicates with
each peer or entity involved in P2P energy trading. This model
determines the energy import/export of peers or the operating
state of the devices among peers based on the information
gathered from their peers. The advantages of community-
based P2P energy trading are that the social welfare of the
optimal system model can be obtained by a single authority
and the aggregator can manage energy generation and demand
patterns, resulting in less uncertainty.
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Heo et al. (2021) proposed an operator-oriented P2P model,
where participants perform transactions and share profits with
each other through a platform that is managed by an operator. An
operator-oriented P2P model was constructed based on the
concept of a community-based P2P energy trading
mechanism. In this model, it is assumed that participants do
not have a forecasting system to make decisions on their own.
Therefore, on behalf of the participants, the operator provided a
forecasting service to estimate the loading and generation profiles
of each participant. Briefly, the operator-oriented P2P model is
constructed using two main procedures: trading price
determination and the matching process (Nojavan and Zare,
2020).

The trading price is determined by the marginal buying and
selling prices of consumers and prosumers, respectively. The
marginal buying price indicates the maximum threshold that
determines whether the consumer will participate in P2P
energy trading. A progressive electricity tariff is adopted to
calculate the marginal buying price, which can be modified
based on the trading profile of the previous month.
Furthermore, the marginal selling price represents the
minimum threshold at which prosumers sell their energy
through P2P energy trading. The marginal selling price is
determined from the net-metering scheme and progressive
electricity tariff for commercial and residential PV owners,
respectively.

The matching process constructs all the possible coalitions
between potential consumers and prosumers. All possible
coalitions are obtained through an optimization algorithm,
which is constructed by the single-layer objective function and
inequality constraints. The objective function of the original
operator-oriented P2P model is calculated as follows:

Max
⎧⎨⎩∑J

j�1
∑K
k�1

[(xj,k × λP2Pj,k ) − (xj,k × NUCj,k)]⎫⎬⎭ (1)

xj,k and λP2Pj,k denote the matched trading capacity and the unit
price of transactions between seller j and buyer k, respectively.
The mechanism of the original operator-oriented P2P model that
represents the operation of community-based P2P is illustrated in
Figure 1.

3 PROPOSED COMMUNITY-BASED
OPERATOR-ORIENTED PEER-TO-PEER
ENERGY MODEL DEVELOPMENT
Optimizing social welfare for the entire system is a challenge for
the community-based P2P energy model. In this case, the local
market operator determines the marginal market price of each
market participant based on transaction capacity and expected
network utility cost. The Z-bus network cost allocation method
distributes the network usage cost to participants based on
compensation, which is equivalent to the network utility cost.
Furthermore, to maintain proper profit attribution, cooperative
game theory was applied to community-based P2P using the SV.

3.1 Z-Bus Network Cost Allocation
The Z-Bus NCA method allocates NUC to network-linked
resources by considering the impedance matrix through line
parameters and currents flowing through the line together
(Delberis et al., 2009). This particular method has several
characteristics, such as 1) no prior proportion to split
transmission costs between generators and loads, 2) provides
an appropriate mathematical behavior, 3) the NUC results have a

FIGURE 1 | Operator-oriented P2P market mechanism.
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proximity effect with respect to line parameters, and 4) allows
calculation in the counter-flow direction. The first characteristic,
no prior proportion of split transmission costs between
generators and loads, allocates contributions simultaneously
between prosumers and consumers. Hence, the proportion of
all prosumers to all consumers will not be equally distributed.

In addition, the second characteristic of Z-Bus NCAmethod is
providing appropriate mathematical behavior. The Z-Bus NCA
method was developed by deriving physical parameters to obtain
network usage due to power flow through a line as a function of
the generator or function of load equivalent to current sources
(Conejo et al., 2001). Therefore, the NUC results will be
calculated in a separate manner, thus preventing cross-
subsidies between prosumers and consumers. Furthermore,
this method provides the proximity effect reflected in the
NUC results with respect to the line parameters. For example,
a particular generation or load can be imposed with a significantly
different NUC. Finally, the Z-Bus NCA method allows
counterflow direction under the condition of non-symmetrical
electrical distance assumption, which causes different
proportions between currents with the same and opposite
directions. The NUC calculation using the Z-bus NCA method
was formulated as follows:

First, the admittance matrix is calculated to determine the
current flow in each line, l (Il). The Ijk is formulated as follows:

Il � (Vj − Vk)yj→k + Vjy
sh
j → k (2)

where Vj and Vk are the voltages at sending bus j and receiving
bus k, respectively, and yj→k and ysh

j → k are the admittance and
shunt admittance matrices between the sending bus j and
receiving bus k, respectively. Second, the physical network
parameter is calculated to estimate the electrical distance of
line l connecting buses j and k (alj,k). The physical network
parameter is formulated as follows:

aljk � (zjl − zkl)yj→k + zjly
sh
j → k (3)

where zjl and zkl are the impedances of line lwith respect to buses
j and k, respectively. After all parameters are calculated, the NUC
between prosumer j and consumer k (NUCj,k) is determined as
follows:

Pl
j,k �

∣∣∣∣∣R {Vka
lp
j,kI

p
l }∣∣∣∣∣ (4)

Ul
j �

∣∣∣∣∣Pl
j,k

∣∣∣∣∣ + ∣∣∣∣∣Pl
k,j

∣∣∣∣∣
2

(5)
NUCj,k � ∑L

l�1Cl · Ul
j (6)

3.2 Shapley Value
In cooperative game theory, the SV concept is introduced to
determine the fair attribution of either gain or cost to all possible
coalitions (Veeramsetty, 2021). The fair attribution of SV is
defined as the average of all marginal contributions of each
actor in the game. SV represents the average marginal
contribution by calculating the marginal contribution of an
agent based on all the possible joining orders. A possible

joining order is defined as a permutation of the total number
of agents in a coalition. SV is calculated using the following
equation (Maleki et al., 2020).

cj(v) � 1
n!

∑
π∈Π(N)

[v(Pπ
j ∪ {j}) − v(Pπ

j )]
� ∑

C⊆N{j}
|C|!(n − |C| − 1)!

n!
(v(C ∪ {j})) − v(C)) (7)

where C is the coalition and Pπ
j is the set of agents that precede j

in the permutation π. (C, v) is the value v of an agent in the
coalition C. More specifically, Shapley argues that a coalition of n
agents can form in n! various ways by considering all possible
joining orders and that in each order, as an agent steps in the
coalition, it makes a marginal contribution to the agents who
joined before it. The marginal contribution of agent j to coalition
C is v(C ∪ {j}) − v(C).

It is widely known that cooperative game theory using SV
results in intensive computation, especially for a large coalition.
Therefore, to ease the computational process, SV has several
propositions (Azuatalam et al., 2019):

•Additivitymeans that, for any two additive games, a solution can
be given to all players. That is, an additive solution that assigns
payoffs to the players in the combined game is equal to the sum
of players’ payoffs in the combined game, that is, the sumof their
payoffs in the two separate games.Mathematically, the additivity
proposition can be rewritten as

Cj(v1 + v2) � Cj(v1) + Cj(v2) (8)
• Symmetrical shows that equal payments are made to

symmetric players, where exchanging any player between
coalitions will not change the corresponding worth of
coalition. This axiom can be rewritten as follows:

∀i, j ∈ N∀C ⊆ N{j, k} v(C ∪ {j}) � v(C ∪ {k})5xj � xk (9)
• Efficiency means that the sum of attributions must be equal
to the total gain of grand coalition N. Formally, this
proposition is presented as follows:

∑
j∈N

cj(v) � cN(v) (10)

• Dummy shows that any player who has no contribution to
any coalition has a zero payoff (x).

v(C ∪ {j}) � v(C) � 05xi � 0 (11)
SV is the only pay-off attribution mechanism that

simultaneously exhibits these four characteristics (Algaba et al.,
2019). In terms of fair profit attribution, community-based P2P
energy trading should be operated by satisfying these four
proportions. The aims of community-based P2P energy
trading are to optimize benefits for all stakeholders and
encourage more local electricity customers to participate.
Hence, the SV can be an appropriate payoff distribution
scheme to be applied to community-based P2P energy trading.
In this study, the SV will be calculated in smaller aggregated peers
by considering peers’ contributions with respect to the global
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objective function, which will be explained in the following
section. Regarding this, the peers will be gathered into groups
by using a clustering method.

3.3 Clustering
Clustering is the process of dividing entire datasets into smaller
groups, which are known as clusters, based on certain
characteristics of the data points. Clustering is applied in
community-based P2P energy trading to reduce the computing
load by aggregating customers with similar features. Because the
market is designed to accommodate as many market participants
as possible, K-means clustering is applied to aggregate customers
with similarities in features. The K-means clustering method is a
clustering analysis with an iterative algorithm (Li and Wu, 2012).

K-means clustering groups similar data points and determines
the basic patterns of the clusters by considering a fixed number of
clusters, which is determined a priori. Assume that there is a setX
with distance d between every x ∈ X and output set
C � {c1, c2, . . . , ck}, where k is the total number of clusters.
Then, the members of cluster C are defined as the data points
that have the closest distance to the centroid. Mathematically, the
objective function of the k-means clustering is calculated as
follows:

minimize ∑
x∈X

d(fc, x)2 (12)

d(fc(x), x) � �����������fc − x
����√

(13)
where fc is the centroid of cluster c, and by this ‖fc − x‖
represents d as the Euclidean distance that measures the
similarity between x and fc.

The principle of K-means clustering computation is Lloyd’s
algorithm, also known as the Voronoi iteration or relaxation (Xu
et al., 2020). In the initial step of processing the learning data, the
K-means algorithm in data clustering begins with the first group
of randomly selected centroids. Thus, the first group of randomly
selected centroids is assumed as the beginning point of every
cluster. Then, the algorithm performs repetitive computations to
satisfy the objective function by optimizing the positions of the
centroids, and thus stops when there is no change in the centroid
value (Fränti and Sieranoja, 2019). In this study, the K-means
clustering considers the trading profile of P2P energy trading
participants to determine the groups of peers, which will be
explained in detail in the following section.

3.4 Proposed Development of
Community-Based Peer-to-Peer Energy
Trading
This section presents the measures of the developed community-
based P2P energy trading. To operate in the local energy market,
the expected buying and selling prices of consumers and
prosumers are determined, respectively. The buying and
selling prices of customers are derived from the purchase
electricity tariff, and thus, shows the features of the datasets.
To enhance the capability of community-based P2P energy

trading to accommodate large markets with many participants,
the market operator aggregates customers with similar trading
prices.

Trading prices consist of selling and buying prices. The selling
price represents the marginal price, which equals the
compensation for losing the opportunity cost to self-consume
generation capacity. In general, there are four types of sellers:
residential, commercial, industrial, and standalone. The selling
marginal price for each seller type is as follows:

3.4.1 Residential Prosumer
The trading price for a residential prosumer is represented by a
progressive pricing mechanism or block rate pricing method.
Thus, the trading price can be rewritten as follows:

λSTGj � (∫Lj

Lj−Tj

λ(L)dL)/Tj (14)

3.4.2 Commercial Prosumer
For commercial prosumers, the trading price is determined by
referring to time-of-use (TOU) pricing for commercial
customers. The trading price for commercial prosumer is
expressed as follows:

λSTGj � λTOU,com (15)

3.4.3 Industrial Prosumer
Similarly, the selling marginal price for industrial prosumer is
equal to the TOU price for the industrial customers. The trading
price can be rewritten as follows:

λSTGj � λTOU,ind (16)

3.4.4 Stand-Alone Distributed Energy Resource
It is assumed that the stand-alone DER is part of the decentralized
electricity market, which is operated by an independent system
operator. Hence, the selling marginal price of the stand-alone
DER can be represented as equal to the system marginal price
(SMP). The trading price of the standalone DER is calculated as
follows:

λSTGj � λSMP (17)
Furthermore, for economic reasons, electricity customers

should participate in P2P energy trading to gain by transacting
in lower electricity tariffs. In this case, the buying price of each
consumer is defined as the marginal price if the customers buy
electricity from the utility company. Consumers are considered to
include residential, commercial, and industrial consumers. The
marginal price of each buyer type is identified as follows:

3.4.5 Residential consumer
Similar to the residential prosumer, the buying marginal price of
the residential consumer is determined using the block rate
pricing method. Hence, we formulate the trading price as follows:
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λBFGk � (∫Lk

Lk−Tk

λ(L)dL)/Tk (18)

3.4.6 Commercial consumer
The marginal buying price of commercial consumers is
represented equally by the electricity tariff if a commercial
consumer buys electricity from the grid. Thus, the trading
prices of commercial consumers can be rewritten as follows:

λBFGk � λTOU,com (19)

3.4.7 Industrial consumer
Industrial consumers are charged TOU prices if they buy
electricity from the grid. In this case, the marginal buying
price for determining the trading price is formulated as follows:

λBFGk � λTOU,ind (20)
As can be seen in trading price determination, a few

participants may have similar trading prices due to their types.
However, in actual conditions, an agent may have different
contributions to obtaining a grand coalition because of the
network usage cost. In this case, SV is calculated to represent
the marginal contribution of each market participant with respect
to NUC. On the other hand, because the Z-bus NCA method
requires a power flow solution, which is acknowledged as a
nonlinear calculation, it will be insufficient to include NUC
directly in the market clearing process. Therefore, NUC is
represented as a weighting factor, which is determined by
referring to the SV formula.

Furthermore, to address the challenge of the intensive
calculation of SV, this work compromises with the axioms
of SV, which are explained in Section 3.2. In the proposed
method, there are several steps to calculate SV: creating sub-
coalitions, forming predetermined possible sub-coalitions, and
calculating the SV of the grand coalition. Sub-coalitions are
small groups containing few prosumers and consumers that
are treated separately. By disintegrating the grand coalition
into smaller groups, the effort required to calculate the
marginal contribution of all possible coalitions would also
be reduced. This action is supported by the fact that SV has a
proportion of additivity. To form sub-coalitions, all possible
sub-coalitions are initially determined based on 2̂n binary
possible combinations. To maintain convenience in the SV
calculation, the members of each sub-coalition will be limited.
After all members of all sub-coalitions have their SV
determined, the weighting factor of a grand coalition is
calculated using the following formula:

cpro(v) � cpro1 (v) + cpro2 (v) + . . . + cproJ (v)
J

(21)

ccon(v) � ccon1 (v) + ccon2 (v) + . . . + cconK (v)
K

(22)

ωpro � ⎡⎢⎢⎢⎢⎢⎣cpro1 (v)
cpro(v),

cpro2 (v)
cpro(v), . . . ,

cproI (v)
cpro(v)

⎤⎥⎥⎥⎥⎥⎦ (23)

ωcon � ⎡⎢⎢⎢⎢⎢⎣ccon1 (v)
ccon(v),

ccon2 (v)
ccon(v), . . . ,

cconJ (v)
ccon(v)

⎤⎥⎥⎥⎥⎥⎦ (24)

[ω] � [ωpro]p[ωcon]T (25)
where ωpro and ωcon are the sets of weighting factors based on
the marginal contributions of the prosumers and consumers,
respectively, and ω is for combined weighting factor between
the prosumers and consumers. Algorithm 1 shows the pseudo-
code for determining the weighting factor using SV values.

Algorithm 1. SV calculation

Furthermore, the same method was applied to improve the
computation process to perform the market-clearing process
by aggregating prosumers and consumers. In this case, smaller
groups were determined through a clustering process. The
K-means clustering method selects the members of each group
of prosumers or consumers based on the trading price. By
combining participants with similar trading profiles, the
market-clearing process is streamlined, such that the
trading price is uniform and trading capacity is defined as
the total trading capacity of all members of the cluster.

Thus, the objective function of the market-clearing process
is to maximize the profit of all clusters. In addition, to ensure
that the optimal coalitions are fairly determined, a weighted
factor is involved in the objective function. The utilization of
weighting factor emphasizes the contribution of each cluster
with respect to the network constraints and social welfare
maximization. In addition, the well-determined weighting
factor may help the optimization process of a large-scale
system. Therefore, the objective function is calculated as
follows:

Max
⎧⎨⎩ ∑CJ

cj�1
∑CK
ck�1

(xcj,ck × λP2Pcj,ck × (1 − ωcj,ck)) − (xcj,ck × NUCfixed)⎫⎬⎭ (26)

s.t. ∑CK
ck�1

xcj,ck ≤ ∑Pgen,j∈cj

∑CJ
cj�1

xcj,ck ≤ ∑Pload,k∈ck (27)

where Pgen,j∈cj and Pload,k∈ck are the generation capacity and
demand capacity of prosumers j and consumers k that are part
of clusters cj and ck, respectively. The trading price for P2P is
determined based on the unit selling price of the cluster of
prosumers (λgen,cjλgen) and unit buying price of the cluster of
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consumers (λload,ck). Initially, the required input data are
determined, such as the generation capacity, demand
capacity, bid price from consumers, and offer price from
prosumers, which are later aggregated to form clusters’
trading profiles. After gathering all input data, the trading
price matrix is determined based on the bid and offer prices
clusters of consumers and prosumers, respectively. The
objective function is constructed as the maximization of
total social welfare of the system with respect to the
clusters’ trading profiles. In addition, the objective function
is optimized by using Karush-Kuhn-Tucker condition to solve
the inequality constraints. By performing the objective
function in the form of clusters of participants, the
computation process will be less complicated compared to
the optimization of social welfare maximization with respect to
each participant. This method would also be able to give
proper representation of trading behavior of its members,
since each cluster is constructed by similar participants,
which are determined by using k-Means clustering method
beforehand.

Moreover, after obtaining the matching capacity between
clusters of prosumers and consumers, the market-clearing
process is completed after profit is distributed. The profit of

each cluster is distributed with respect to the contribution of
each member. The SV is applied to ensure a fair profit
distribution, because the trading price of each member is
relatively the same. Hence, the profit distributed to
members of each cluster is calculated as the proportion of
their net energy generation or energy consumption with
respect to the total profit of the cluster. The mechanism of
the proposed community-based P2P energy-trading system is
presented in Figure 2.

4 CASE STUDY: COMMUNITY-BASED
PEER-TO-PEER ENERGY TRADING

This study aims to improve the performance of the market
mechanism based on the concept of community-based P2P
energy trading to accommodate the growing number of
participants. Hence, this section presents comparisons between the
existing community-based P2P energy trading through operator-
oriented model approach and the proposed approach. To verify the
results, three network configurations with varied sizes and numbers
of participants were used. All numerical experiments were performed
on an Intel i7-10700 CPU with 16 cores and 16 GB of memory.

FIGURE 2 | Flowchart of modified operator-oriented P2P model.
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Three types of consumers: industrial, commercial, and
residential, four types of prosumers: industrial, commercial,
residential, and stand-alone PV were implemented for each
network configuration. Every participant had different features,
such as location, generation and/or consumption capacity, and
trading price. Regarding location, prosumers and consumers
were located randomly in every network configuration, which
will be explained in the following subsections. For the
consumption capacity, Figure 3A shows the normalized load
patterns during the day. In addition, the South Korean trading
case was chosen for an actual case simulation. The actual time-
varying PV generation data for 22 May 2020, were obtained from
PVWatts (National Renewable Energy Laboratory, 2021). The
normalized generation profile is shown in Figure 3B.

Furthermore, operator-oriented P2P energy tradingwas simulated
based on the South Korean case. Thus, residential consumers’ bid
price was calculated using block rate pricing; and commercial and
industrial consumers used the TOU price for their electricity tariffs
obtained from the Korea Electric Power Corporation, as shown in
Table 1 (Korea Electricity Company, 2022).

In addition, the other type of customer, such stand-alone PV,
is compensated by SMP dynamic price when they supply
electricity to the grid, which was obtained from Korea Power
Exchange and is presented in Figure 3C (KPX, 2018). To
determine the total network usage cost, the network cost was
determined as volumetric cost, 3.13 KRW/kWh (KEPCO, 2019).

Furthermore, to demonstrate the comparative analysis of the
original and proposed methods, three test problems were applied.
The first case uses an IEEE distribution network with 18 buses for
community-based P2P energy trading (Grady et al., 1992). The
second simulates community-based P2P energy trading with a

larger market by using the IEEE 69 buses distribution network, as
in (Das, 2008). The third proposes the development of
community-based P2P energy trading in a distribution system
with 141 buses with the network configuration (Khodr et al.,
2008). All simulations were performed with an equal number of
prosumers and consumers.

4.1 Case 1: 18 Bus
The IEEE 18 bus was chosen to evaluate the performance of
both the original and proposed community-based P2P energy
trading approaches in a relatively smaller system. As shown in
Figure 4, there are eight prosumers in total, and for simplicity,
the load location is not presented. With fewer participants, the
operator can easily converge into the optimal trading results
using both mechanisms. A comparison of the original and

FIGURE 3 | (A) Load profiles of P2P participants in a day; (B) Generation profile of various prosumer categories in a day; (C) SMP pattern in a day.

TABLE 1 | Electricity tariff Structure.

Block rate pricing Times-of-use tariff

Category Demand charge Energy charge Category Industrial Commercial

1–200 kWh 730 KRW 73.3 KRW/kWh Off-peak 56.6 KRW/kWh 57.7 KRW/kWh
201–400 kWh 1,260 KRW 142.3 KRW/kWh Mid-peak 109.5 KRW/kWh 108.9 KRW/kWh
401 kWh ~ 6,060 KRW 210.6 KRW/kWh On-peak 191.6 KRW/kWh 131.4 KRW/kWh

FIGURE 4 | Configuration of 18-bus distribution system with prosumer.
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proposed methods in terms of the allocated trading capacity is
shown in Figure 5. According to the graph, the proposed
method allocates a higher matched capacity in total than the
original method. In this case, more customers could
participate in P2P energy trading using the proposed
mechanism.

Additionally, the proposed method allocates higher profits
to customers as shown in Table 2. With the higher profit

offered by the proposed method, there is a higher chance of
customers participating in community-based P2P energy
trading. However, it is also important to evaluate fairness
in terms of profit allocation between prosumers and
consumers. Regarding this, the correlation coefficient
evaluates the profit distribution with respect to two
variables: profit of prosumers and profit of consumers.
Figure 6 shows the correlation matrix of profit incurred by
consumers and prosumers for both the original and proposed
methods.

The original method has a correlation coefficient of allocated
profits between prosumers and consumers, with a value of 0.03
(Figure 6A). According to the figure, the original method results
low positive correlation and illustrate the relationship of profit
allocated between prosumers and consumers with positive linear
line. It means that profit of prosumers moves lower with respect
to the profit of consumers, which moves relatively higher. This
illustrated relationship represents the fair profit distribution
between prosumers and consumers.

Compared to the original method, the proposed method
yielded a higher correlation with a value of −0.13 (Figure 6B).
This value means that the relationship between profit allocated
towards prosumers and consumers can be represented as a
negative linear line, which is steeper line compared to the
original method result. The higher correlation coefficient value
means the proposed method allocates more profit towards
consumers, which indicates less fair towards prosumers.
Furthermore, the proposed bi-layer method shows faster

FIGURE 5 | Matched capacity results comparison from Case 1.

TABLE 2 | Comparison of results of original and proposed methods: Case 1.

Hour Original method Proposed method

Total matched (kW) Total
benefit (thousand Won)

Total matched (kW) Total
benefit (thousand Won)

1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 0 0 0 0
6 0 0 0 0
7 13.7146 1,869.735 14.00 790.2
8 41.035 1,886.205 42.00 2,375
9 69.8152 1,497.366 72.00 6,588.596
10 117.237 2,514.366 118.00 11,017.02
11 167.1348 3,583.826 602.00 94,850.03
12 217.2046 4,653.596 780.00 112,605
13 260.412 5,573.078 916.00 147,482.8
14 276.2954 6,593.284 992.00 133,555.8
15 278.8838 5,980.976 1,000.00 132,786.6
16 242.7126 7,579.281 872.00 122,386.6
17 185.2666 3,972.939 666.00 101,388
18 113.2458 2,445.543 406.00 104,257.8
19 43.1324 941.9675 156.00 85,496.83
20 3.3518 2,310.937 12.00 66,357.84
21 0 0 0 0
22 0 0 0 0
23 0 0 0 0
24 0 0 0 0
Total 2029.44 51,403.09 6,648 1,121,938.168
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computational process with total computation time requires
0.93 and 11.91 s, while the original single-layer method
requires 3.89 and 44.32 s for 1 hour and a day transaction
simulation, respectively.

4.2 Case 2: 69 Bus
In this case study, a larger system was used to compare the
performances of the original and proposed methods. Figure 7
shows the distributions of various types of prosumers in the
69 buses. In the larger system, the proposed method found
converged optimal trading results much faster than the
original method. In addition, the proposed method determined
a higher capacity between participants than the original method,
as shown in Figure 8.

In correlation with the matching capacity results, the profit
allocated using the proposed method was higher. A comparison of
the original and proposed methods in terms of profit allocation is
presented in Table 3.

The proposed method allocated higher profits than the
original method because of the different behaviors in
allocating NUC to the participants. As shown in Figure 9A,
the original method uses the Z-bus NUC method after the
matching algorithm process and allocate more NUC. This is
because the matched prosumer and consumer may be allocated
to a distant location because the NUC allocation was not
considered directly during the optimization process.

However, the proposed method allowed the NUC to be
allocated by the Z-bus NCA method at a relatively lower

FIGURE 6 | Correlation coefficient of the (A) original method and (B) proposed method in 18 buses scenario.

FIGURE 7 | Configuration of 69-bus distribution system with prosumer.
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price, thus increasing the profit. As shown in Figure 9B, even the
NUC results can effectively modulate the optimization result by
allocating a higher matched capacity to the lower NUC between
buses 46 and 67.

Furthermore, the proposed method maintained the fair profit
distribution among prosumers and consumers, that results the
correlation coefficient maintained at −0.16 (Figure 10B).
Meanwhile, the original method has a correlation coefficient

with the value of −0.23 when applied in 69-bus scenario
compared to the 18-bus distribution network. This higher
negative value shows the profit is highly distributed towards
consumers compared to the prosumers. In addition, the
proposed bi-layer method requires 11.94 and 82.93 s for a
single hour and a day transaction simulation, respectively.
Meanwhile, the original single-layer method requires
approximately no less than 50 min to simulate 69-bus scenario
for a single-hour simulation.

4.3 Case 3: 141 Buses
In the third case, community-based P2P energy trading was
applied to a distribution network with 141 buses. Figure 11
shows the locations of the various types of prosumers. Within a
large system, there are more market participants, and thus, higher
network usage costs. This case aims to demonstrate the ability of
the proposed method to determine the converged optimum
method. Using the same computer specifications, the original
method yielded no result owing to specification incompatibility.
However, using the proposed method, optimal results were
obtained, although the process was slower than the previous
two cases, which requires 28.10 s for an hour and 408.034 s for a
day trading simulation. The matching results of the proposed
method are shown in Figure 12A.

The proposed method maintained the fairness level, as
indicated by the correlation coefficient value. Figure 12B
shows that the correlation coefficient resulting from the
comparison between the profits of prosumers and consumers
was maintained at −0.16. In this case, the negative linear line is

FIGURE 8 |Matched capacity between original and proposedmethod in
69-bus network.

TABLE 3 | Comparison of results of original and proposed methods: Case 2.

Hour Original method Proposed method

Total matched (kW) Total
benefit (thousand Won)

Total matched (kW) Total
benefit (thousand Won)

1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 0 0 0 0
6 68.41 1,268.20 68.00 3,822.4
7 203.75 3,772.00 204.00 17,197.47
8 347.23 6,432.49 1,260 112,347.66
9 583.65 10,816.30 2,120 186,521.98
10 833.33 15,445.76 2,814 392,704.05
11 1,082.86 20,072.64 3,658 460,583.95
12 1,272.46 23,594.12 4294 529,282.09
13 1,376.27 25,513.15 4648 551,078.60
14 1,389.30 25,754.83 4690 566,902.02
15 1,206.01 22,337.21 4080 520,084.33
16 920.05 17,030.46 3,118 447,161.00
17 563.75 10,447.18 1904 421,652.77
18 214.42 3,969.78 726 322,928.19
19 15.90 294.55 57.99 236,606.14
20 68.41 1,268.20 68.00 3,822.4
21 0 0 0 0
22 0 0 0 0
23 0 0 0 0
24 0 0 0 0
Total 10,077.39 186,748,75 33,642 4,768,872
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FIGURE 9 | Matched capacity of NUC allocation using the (A) original method and (B) proposed method.

FIGURE 10 | Correlation coefficient of the (A) original method and (B) proposed method in 69 buses scenario.
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used to represent the relationship between profit of prosumers
and profit of consumers, which can be interpreted as relatively
higher profit distribution towards consumers. This condition
demonstrates that the proposed method has a stable profit
allocation, regardless of market size.

5 CONCLUSION

To compete with the massive integration of renewable sources
into distribution systems, community-based P2P energy
trading should find a way to accommodate more

FIGURE 11 | Configuration of 141-bus distribution system with prosumers.

FIGURE 12 | (A) Matched capacity results and (B) correlation coefficient of the proposed method for Case 3.
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participants by maintaining profitable transactions. Among
P2P models, operator-oriented P2P energy trading can
accommodate various types of participants by providing
multiple market-clearing prices for each transaction.
However, with the current market mechanism, there is a
risk of unbalanced competition owing to the growing
number of participants. To overcome this issue, in this
study, a modification of the market mechanism was
proposed by applying the Z-bus NCA method and SV to
ensure more balanced competition among peers, thus
providing more profitable transactions for a larger market.
Using three different scenarios, it was determined that the
proposed method had superior results than the original
method in terms of efficient computation process, total
matched capacity, total benefit of all participants, and
fairness level between different market sizes. Therefore, the
proposed method is suitable for the application of P2P energy
trading in a distribution system to increase the number of
participants.
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