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With the rapid development of new energy technologies and aiming at the proposal of the
“DOUBLE CARBON” goal, the proportion of wind energy and other new sustainable
energy power solutions in the power industry continues to increase and occupy a more
critical position. However, the instability of wind power output brings serious challenges to
safe and stable power grid operations. Therefore, accurate ultra-short-term wind power
prediction is of great significance in stabilizing power system operations. This paper
presents an ACNN-BiGRU wind power ultra-short-term prediction model based on the
Attention mechanism, the fusion of convolutional neural network (CNN), and bidirectional
gated recurrent unit (BiGRU). The model takes a single wind turbine as the prediction unit
and uses the real-timemeteorological data in the wind farm, the historical power data of the
wind turbine, and the real-time operation data for parallel training. Then, it extracts the key
features of the input data through CNN and uses the BiGRU network to conduct
bidirectional modeling learning on the dynamic changes of the features proposed by
CNN. In addition, the Attentionmechanism is introduced to give different weights to BiGRU
implicit states through mapping, weighting, and learning parameter matrix to complete the
ultra-short-term wind power prediction. Finally, the actual observation data of a wind farm
in Northwest China is used to verify the feasibility and effectiveness of the proposed model.
The model provides new ideas and methods for ultra-short-term high-precision prediction
for wind power.

Keywords: wind power prediction, ultra-short-term prediction, hybrid model, the attention mechanism,
convolutional neural network, bidirectional gated recurrent unit

1 INTRODUCTION

With the proposal of “Carbon peaking” and “Carbon neutrality” dual carbon goals and the rapid
development of wind power technology (Zou et al., 2021), the proportion of wind energy in the
power supply in all countries in the world continues to increase and occupies a more and more
important position. However, wind power has the characteristics of fluctuation, randomness, and
intermittence (Fu et al., 2021), and large-scale wind power grid connection has brought some
challenges to the safe and stable power system operation (Chen et al., 2021). In order to solve these
problems, it is necessary to collect numerical weather prediction (NWP), real-time weather station
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data, real-time output power data, inverter unit status, and other
data (Sun et al., 2021), establish relevant prediction models and
complete the short-term power or ultra-short-term power
prediction of wind power plants, so as to ensure the safe and
stable operation of power system and realize efficient power
generation through power dispatching. Wind power prediction
is mainly divided into four categories according to the prediction
time scale: ultra-short-term, short-term, medium-term, and long-
term (Zheng et al., 2018). According to the prediction function
specification of the State Grid, the ultra-short-term wind power
shall be able to predict the wind power output power in the next
0–4 h, and the time resolution shall not be less than 15 min (Liu
et al., 2015; Abdollah et al., 2016; Dou, 2018). Compared with
other prediction categories, ultra-short-term prediction is greatly
affected by uncertain factors in a short time, the given prediction
time is relatively short, and the required accuracy is high. It is
necessary to predict high-precision wind power value in a very
short time, which brings significant challenges to hardware and
software. The ultra-short-term prediction of wind power with
high accuracy can effectively avoid the impact of short-term
fluctuation of wind power on the power supply stability of the
power system. The power system dispatching department can
timely adjust the dispatching plan, reduce the power grid’s
rotating reserve capacity, improve the power system’s
absorption capacity to wind power, and realize the safe grid
connection of wind power.

At present, wind power prediction methods are mainly
divided into physical methods, statistical methods, and
learning methods (Wang et al., 2021). The physical method is
to find the corresponding internal function relationship through
various physical quantities and historical data to determine the
predicted value of wind power at a particular time in the future
(Zhao et al., 2017). However, due to the transition from physical
state to numerical state and the fact that the prediction model
parameters are not directly related to the previous data, there will
be relatively high errors in the ultra-short-term prediction based
on physical methods. The statistical method is to make statistics
on a large number of wind power’s historical data and weather
monitoring data collected by the wind farm, and obtain the
corresponding relationship between the above data and the
predicted value of wind power through common statistical
methods, so as to calculate the predicted value of wind power
at a particular time in the future (Natapol and Thananchai, 2019;
Yirtici et al., 2019). However, historical data often dramatically
affects this kind of wind power prediction. Once the historical
data is insufficient or the data is mixed with inaccurate data, the
prediction results will not be accurate enough.

The core of the learning method is to build a reliable nonlinear
mapping relationship between the input value and output value
through a deep learning algorithm, which has a robust nonlinear
mapping ability (Li et al., 2020). Moreover, the learning method
has a good self-correction ability so that the incorrect data found
in the historical data can not cause interference to the model.
Therefore, wind power prediction research based on the learning
method has become the mainstream and focus of research in
recent years (He et al., 2019). For example, Liu et al. (2018) built a
wind power prediction framework through a convolution neural

network. Li et al. (2018) established a wind speed prediction
model using long short-term memory (LSTM) network as the
main predictor. In reference (Niu et al., 2020), a new wind power
prediction model is established by using a gated recurrent unit
(GRU) network. Liang et al. (2021) proposed CNN-LSTM
combined wind power prediction model in combination with
CNN and LSTM. Fan et al. (2021) introduce wind speed data at
different heights and combine CNN and a two-way gating unit to
predict wind speed. However, it is difficult for a single model or
simple model combination to adapt to various complex
situations. Selecting and combining the advantages of each
model and organically integrating multiple models according
to the actual operation of the wind farm can effectively
improve the prediction accuracy and speed.

Therefore, this paper proposes an ACNN-BiGRU wind power
ultra-short-term prediction model based on the Attention
mechanism and the fusion of convolutional neural network
and bidirectional gated recurrent unit. The model uses CNN
to compress the hidden state in the BiGRU model, extract the
temporal and spatial correlation between wind power data,
shorten the calculation time, and solve gradient disappearance
and explosion problems. The BiGRU network is used to model
and learn the dynamic changes of the features proposed by CNN.
The Attention mechanism is introduced to give different weights
to the implied states of BiGRU through the mapping weighting
and learning parameter matrix so as to reduce the loss of
historical information and strengthen the influence of
important information, and then complete ultra-short-term
power prediction. In this paper, the model uses the real-time
meteorological data, historical power data, and real-time wind
turbine operation data of all wind turbines in the wind farm for
parallel training, model parameters are optimized, and the
predicted power of a single wind turbine is accumulated,
which can effectively predict the total power of the wind farm
accurately. Finally, the actual observation data of a wind farm in
Northwest China are used for experimental verification and
compared with various prediction methods for prediction
accuracy and speed. The results show that this method can
effectively improve prediction accuracy and training speed and
has the value of popularization and application.

2 RELATED WORKS

2.1 Research on Wind Power Prediction
In the research on wind power prediction, Li et al. (2020)
proposed the physical modeling method of wind power
prediction based on pre-calculation. Ye and Zhao. (2014) used
the combined prediction method of wind power combined with
statistical and physical models to predict wind power, which
verified that the combined model effectively improved the
accuracy and made up for the shortcomings of the single
model. However, the physical model needs to consider too
many uncertain factors, resulting in large errors and
considerable computational resources. Compared with the
physical model, the statistical method has a single category of
demand data, which depends on the correlation between the

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 9208352

Meng et al. Ultra-Short-Term Prediction of Wind Power

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


historical data of wind power output and the historical data of
meteorological indicators. Hodge et al. (2011) used the
autoregressive integral moving average (ARIMA) model to
predict the future wind power output with historical data. Shi.
(2020) considered the limited processing capacity of the least
squares support vector machine (LSSVM) model for unsteady
components of wind power generation and re-proposed the wind
power prediction method based on the combined model of
LSSVM and ARIMA, which further improved the accuracy of
wind power prediction. Although the demand data category of
the statistical model is single, it can not better adapt to the
mutation information and needs to collect a large amount of
historical data, which has certain limitations.

In recent years, with the rapid development of Artificial
Intelligence technology, more and more scholars have applied
it to the field of wind power prediction and put forward a variety
of wind power prediction models. Such as Wang et al. (2018)
proposed a short-term wind power prediction method based on a
deep belief network, with numerical meteorological data as input.
Lin and Liu. (2020) took the data in supervisory control and data
acquisition (SCADA) database with a sampling rate of 1-s as the
input and constructed a five-layer feedforward neural network
(FNN) to realize wind power prediction. In addition, due to the
excellent feature extraction ability of deep convolution neural
network and its successful application in the field of image
classification, it has been applied in the field of wind power
prediction. Hong and Rioflorido. (2019) established a combined
prediction model using CNN and radial basis function neural
network with double Gaussian function as the activation function
to predict the short-term wind power. Wang et al. (2017)
proposed a wind power prediction method based on wavelet
transform (WT) and CNN. The wavelet transformwas adopted to
decompose the original wind power data into different
frequencies, and then the CNN model was used to predict
each frequency.

In the deep learning methods, a recurrent neural network
(RNN) is suitable for dealing with the time series problems, but it
has a long-term dependency problem. With the development of
RNN, its variants, such as LSTM and GRU, appear to overcome
the problem and further improve the accuracy of time series
prediction. Therefore, Yin et al. (2019) proposed a dual-mode
decomposition method composed of empirical mode
decomposition (EMD) and variable mode decomposition
(VMD) to decompose the original wind force and wind speed
time series. Then, the cascade model combining CNN and LSTM
is used to extract the meteorological and temporal features of the
decomposed subsequence. Compared with LSTM, GRU is more
simplified and efficient, and its superiority has been verified. Liu
et al. (2019) proposed a multi-step wind speed prediction model
combining CNN-GRU and support vector regression (SVR) and
decomposed the data by singular spectrum analysis (SSA). Liu C.
et al. (2021) proposed a regional wind power prediction method
based on adaptive zoning and long-term and short-term
matching. This method adds the predicted power of each sub-
region to evaluate the power of the whole region in each period.

The above literature research results show that deep learning
has good application value in the field of wind power prediction.

Nevertheless, it is mainly applied to the short-term prediction of
wind power, and some application results have been achieved. For
the ultra-short-term prediction of wind power, if the short-term
prediction method is directly applied to the ultra-short-term
prediction, the prediction effect is often unsatisfactory (Peng
et al., 2016; Wang et al., 2021).

2.2 Research on Ultra-Short-Term
Prediction of Wind Power
More and more scholars have widely studied wind power ultra-
short-term prediction research, but there are still some
deficiencies to be further improved in this field. For example,
Zhu et al. (2017) select input variables by the Pearson correlation
coefficient method and propose an ultra-short-term wind power
prediction method based on the LSTM network to reduce the
complexity of the prediction model. However, its research only
depends on historic data and does not fully consider the factors
affecting the ultra-short-term power value of wind farms, so the
prediction accuracy still needs to be improved. In order to
improve the prediction accuracy of ultra-short-term wind
power, Zhang Q. et al. (2021) proposed a multi-variable long
short-term memory (MLSTM) network algorithm based on deep
learning by comprehensively using wind power history data and
wind speed history data for wind power prediction. However, its
research relies on historical wind power and wind speed data. The
prediction effect is often poor for wind farms lacking historical
data or poor data quality. On this basis, Wang et al. (2019) used
the good timing memory characteristics of the LSTM network,
combined wavelet decomposition technology with the LSTM
depth network, and proposed an ultra-short-term probability
prediction model of wind power based on small wavelength long
short-term memory network. The combination of wavelet
decomposition and the deep learning method does improve
the prediction accuracy to a certain extent. Nevertheless, using
a single model to predict the decomposed waveform lacks certain
generalization ability, and it is not easy to achieve the same effect
for wind farm power prediction in different geographical
locations.

In addition, Zhong et al. (2021) used numerical weather
forecast data and wind power history data as the input
characteristics of extreme learning machine (ELM) and LSTM
network, respectively, and generated prediction data and
proposed an ultra-short-term wind power combination
prediction method based on historical similarity weighting.
This method uses NWP data to solve the problem of over-
dependence on historical data, but the prediction speed and
feature screening and extraction need to be improved. Xue
et al. (2019) propose an ultra-short-term wind power
prediction model combining CNN and GRU. Compared with
the LSTMmodel, this model is superior to the latter in prediction
speed. This study only uses NWP data and does not consider the
role of historical and real-time data, so the prediction accuracy is
expected to improve. Yang et al. (2021) propose an ultra-short-
term wind power prediction based on multi-location NWP and
GRU. This research not only takes NWP data and historical
power data as the characteristics affecting the predicted power but
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also screens the relevant characteristics to reduce the redundancy
of input information. However, the prediction results rely too
much on NWP meteorological data, which has the problems of
specific errors, a large prediction range, and a long prediction
time interval that directly affect the final power prediction
accuracy.

Through the study of relevant literature, it is found that, at
present, most of the ultra-short-term prediction studies of wind
power use NWP data and historical power data, in which the
prediction range of NWP can only be accurate to local regions or
locations. For ultra-short-term power prediction, the prediction
interval is too long. The prediction often takes one or more
electric fields as the prediction unit. Thus, the prediction accuracy
is poor for the electric fields with long operation times and
frequent maintenance of some wind turbines. In addition,
each wind turbine has a separate anemometer, wind vane, and
thermometer, which can measure the meteorological data of a
single wind turbine in real-time. After the comparative study, it is
found that compared with NWP data, the real-time
meteorological data is closer to the real meteorological data of
a single wind turbine in the next ultra-short time. Moreover, the
blade rotation of the wind turbine has inertia and has a certain
delay in response to the change in wind speed. The power value of
the wind turbine in the next ultra-short-time is also greatly
affected by the current wind turbine speed.

Therefore, this paper uses the real-time meteorological data,
historical power data, and real-time wind turbine operation
data of each wind turbine in the wind farm as the input data,
carries out parallel training for each wind turbine, optimizes
the model parameters, and finally accumulates the predicted
power of each single wind turbine. Through the accurate
prediction of the power value of a single fan, the model can
significantly improve the prediction accuracy of the whole
wind farm. Moreover, some wind turbines in the wind farm
often cannot work due to maintenance for practical
applications. The overall prediction accuracy of the
prediction model will not be affected, so it has a strong
generalization ability.

3 ULTRA SHORT TERM PREDICTION
MODEL OF WIND POWER

3.1 Convolutional Neural Network
A convolutional neural network (CNN) is a feedforward neural
network with convolution calculation and depth structure (Wang,
2020). Its internal neural network layer is mainly composed of the
convolution layer, pool layer, and full connection layer. Due to the
unique convolution structure of the network, it has been widely and
deeply applied in the field of image analysis and processing in recent
years. In addition, it can also be used for feature extraction of the
Spatio-temporal correlation feature matrix set so that it can
compress the input data to the greatest extent without losing the
original data features, reduce the input of redundant information
and obtain the corresponding key Spatio-temporal correlation
features. Its principle is to obtain effective information by using
the convolution layer and pooling layer, automatically extracting

feature vectors in data, effectively reducing the complexity of feature
extraction and data reconstruction and improving the quality of data
features (Zhao et al., 2019; Yildiz et al., 2021).

The data input in this paper is time-series data. In the process
of data feature extraction, firstly, a one-dimensional sequence is
input to the input layer. After the input data is acted by the first
convolution layer and pooling layer, the data features of the input
data are extracted. Then the extracted data features are then input
to the second convolution layer and pooling layer for processing
to obtain the final data features. Compared with the original input
data, the feature map has a certain reduction in the vector
dimension and carries more apparent characteristics of wind
power data. Therefore, it can be better used by the subsequent
bidirectional gated recurrent unit (BiGRU) network. In this
study, rectified linear unit (ReLU) function is selected as the
activation function of the convolution layer. As an unsaturated
nonlinear function, ReLU can accelerate the training process’s
convergence speed and significantly improve CNN’s
performance. The definition of ReLU is shown in Eq. 1.
Where x is the input variable, if the input x is less than 0,
make the output equal to 0. If the input x is greater than 0, make
the output equal to the input.

g(x) � { x, x ≥ 0
0, x < 0 } (1)

3.2 Bidirectional Gated Recurrent Unit
A Gated recurrent unit (GRU) neural network is a kind of
recurrent neural network (RNN) and one of many variants of
long short-termmemory (LSTM) (Chung et al., 2014). LSTM can
capture long-term dependence and is suitable for analyzing time
series data, but the complex internal structure leads to a long
training time. GRU optimizes and improves LSTM to reduce
training parameters and ensure prediction accuracy. Compared
with the structure of LSTM, GRU combines the forgetting gate
and the input gate into an update gate, which has fewer structural
parameters and a faster convergence speed than the three gates of
LSTM. Therefore, GRU has only two gate structures: the update
gate and the reset gate. The update gate is responsible for certain
memory and selective forgetting of the data at the previous
moment, while the reset gate processes the current
information and transmits it to the neural network unit. The
GRU based element calculates ht by Eqs 2–5. Where σ is the
sigmoid activation function, which is used as a gating signal and
can control the value within [0, 1]. The closer the gating signal is
to 1, the more data is remembered; otherwise, the more data is
forgotten.Wr,Wz andW are trainable parameter matrices. Reset
the gating to obtain the reset data rt · ht−1, then splice the value
with xt, through a tanh activation function, the output value is
controlled at [−1, 1] to obtain the hidden state ~ht. Update the
gating performs forgetting and selective memory operations
simultaneously, among which (1 − zt) · ht−1 selectively forgets
the state of the previous node and zt · ~ht selectively remembers
the hidden state.

zt � σ(Wz · [ht−1 , xt]) (2)
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rt � σ(Wr · [ht−1 , xt]) (3)
~ht � tanh(Wr · [rtpht−1 , xt]) (4)
ht � (1 − zt)pht−1 + ztp~ht (5)

Due to the reduction of some matrix operations, the training
time of GRU is significantly reduced because it maintains the
basic structure of LSTM. GRU can still overcome the
disappearance of a gradient in traditional RNN training and
maintain good training performance and has reasonable
practicability for ultra-short-term wind power prediction with
timing characteristics. It should be noted that the recurrent
bidirectional network as a whole has always been better than
the recurrent feedforward network in the sequence annotation
task. GRU unit can only obtain the historical time information
but can not obtain the information characteristics of future time.
The bidirectional gating recurrent unit is composed of forward
GRU and reverse GRU. Finally, the network’s output is obtained
by the superposition of forward output and reverse output (Lin,
2019; Yang et al., 2021). Therefore, this paper adopts BiGRU to
learn the timing relationship between the previous time, the next
time, and the current state. The unit based on BiGRU calculates ht
through Eqs 6–8. Where ht

→
is the output of forward GRU and ht

←

is the output of reverse GRU. Finally, ht
→

and ht
←

are combined to
obtain the output ht of BiGRU layer at time t.

ht
→ � GRU

����→ (xt , ht−1��→) (6)

ht

← � GRU
← (xt , ht−1

← ) (7)

ht � [ ht
→

, ht
← ] (8)

3.3 Attention Mechanism
The attention mechanism is a resource allocationmechanism that
simulates the human brain’s attention. It assigns different weights
to the input features so that the essential features will not
disappear with the increase of step size and then highlight the
role of important information so that the model is easier to deal
with the dependence on long-time series. Its core goal is to
enhance the key information and weaken the role of
redundant information on the current target task (Feng et al.,
2020; Meng et al., 2021). The Attention mechanism pays enough
Attention to the distribution of key information through
probability distribution and realizes the dynamic distribution
of weight coefficients for different inputs, thus improving the
prediction accuracy of the model.

BiGRU can solve the problem of long-term memory to a
certain extent, but when learning too long sequence data, there
will be problems such as low efficiency, long time, loss of local
feature information, etc. In order to make up for the defects of
BiGRU learning process, this paper introduces the Attention
mechanism acting on the time dimension of the input
sequence. Firstly, we can selectively focus on the information
at different positions in the sequence data to reduce the length of
the input data. Secondly, the Attention mechanism can assign
weights to the features that affect the prediction results, help the

model learn the potential features more effectively, improve the
detection accuracy and robustness of the model, and make it
easier to obtain the long-distance interdependent features in the
wind power time series data.

3.4 CNN-BiGRU Prediction Model Based on
Attention Mechanism
This article proposes a CNN-BiGRU wind power ultra short-
term prediction model based on the Attention mechanism to
take a single wind turbine as the prediction unit. The model
structure and workflow are shown in Figure 1. It is mainly
divided into the input layer, CNN layer, CNN-BiGRU layer,
Attention layer, and output layer. Historical power data, real-
time meteorological data, and wind turbine operation data are
used as inputs to extract features through the CNN layer. The
BiGRU and Attention layers learn the proposed features’
internal variation law of power to realize the prediction
function. Finally, the prediction results are obtained
through the output layer.

Each layer in the model is described as follows:

1) Input layer. The historical power data, real-time
meteorological data, and operation data of a single wind
turbine in the wind farm are taken as the input of the
prediction model and expressed by X � [x1/xt/xn]T.
The wind turbine data with length n is input into the
prediction model after preprocessing and then enters the
CNN layer for processing.

2) CNN layer. Spatio-temporal feature extraction is carried out
on the input wind turbine data, which is composed of two
convolution layers, two pool layers, and full connection layers.
Where Y and E represent two one-dimensional convolution
layers, and Max represents the maximum pooling layer.
According to the input wind turbine data characteristics,
the convolution layer one and convolution layer two are
designed as one-dimensional convolution, and the ReLU
activation function is selected for activation. In order to
retain more data fluctuation characteristics, the pooling
method of the pooling layer is selected as maximum
pooling. The data processed by the convolution and
pooling layers are mapped to the hidden layer feature
space, the full connection layer structure is built and
transformed into one-dimensional structure output, and
the corresponding feature vector is extracted and input to
the BiGRU layer.

3) BiGRU layer. The feature vector extracted from the CNN layer
is bi-directional learned. Build a single-layer and two-way
GRU structure, fully learn the proposed features, capture the
change law of its internal information features, and input
them to the Attention mechanism layer.

4) Attention layer. The corresponding weight is dynamically
assigned to the output vector after learning and processing
at the BiGRU network layer. According to the weight
distribution principle, the corresponding probabilities of
different eigenvectors are calculated, and the better weight
parameter matrix is continuously updated and iterated.
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5) Output layer. The input of the output layer is the output of the
Attention mechanism layer, and the final predicted value of
wind power is output through the full connection layer.

In the training process of the prediction model, this paper uses
the Adam algorithm as the optimization algorithm of the model
gradient to continuously optimize the model parameters. Adam is
a first-order optimization algorithm that can replace the
traditional stochastic gradient descent (SGD) process. The
algorithm can continuously iteratively update the parameters
of the neural network based on the training data to optimize
the output value of the loss function, has high computational
efficiency and low memory occupancy, and the diagonal scaling
of the algorithm gradient is invariant (Ling et al., 2013; Kingma
and Ba, 2014). The model’s loss function uses the mean square
error function, and its calculation formula is shown in Eq. 9,
where n is the number of samples trained by a single wind turbine;
yi is the actual power value; yi is the output power value of the
model.

Loss � 1
n
∑n

i�1(yi − yi)2

(9)

4 EXPERIMENTAL COMPARISON AND
ANALYSIS
4.1 Data Description and Data
Preprocessing
This paper takes 100 wind farms with a rated power of 200 MW
in Northwest China as the research object. In the experiments, a
single wind turbine is taken as a prediction unit, the historical
power data, real-time operation data, and real-time
meteorological data of each wind turbine are taken as the
research data, and the sampling interval is 5 min. A total of
10, 538, 900 wind turbine data from 1 June 2019, to 30 May 2020,
were used as a dataset, in which the training set and test set
accounted for the first 70 and 20% of the dataset, respectively, and
the last 10% of the dataset was used as a validation set to evaluate
the generalization ability of the model.

In this experiment, the prediction model is trained and
established based on the real-time speed, pitch angle, wind

speed, wind direction, ambient temperature, and the historical
power data of the wind turbine. The speed and pitch angle of the
wind turbine can reflect the real-time operation state of the wind
turbine, and the wind speed is a direct variable in wind energy
production, but it is affected by the wind direction and ambient
temperature. In addition, the historical power information of the
wind turbine can effectively reflect its change trend. The original
data range of characteristic variables related to wind power is
shown in Table 1.

In the actual operation of the wind farm, due to the
uncertainty of measurement equipment and data transmission
equipment, there are noise signals and many abnormal values in
the original data of almost every wind farm. Therefore, this paper
preprocesses the original data of the wind farm:

1) Replace the power data greater than the rated installed
capacity with the installed capacity value.

2) Replace the power data less than zero with zero value.
3) The data with continuous missing less than or equal to three

sampling points shall be supplemented with adjacent
power data.

4) If the data of more than three sampling points is missing
continuously, the continuous method shall be used to
supplement.

5) Using the method of sampling interval transformation, the
unified time interval is set to 15 min.

Wind turbines #20, #50, and #80 were selected for analysis
according to different geographical locations and altitudes in the
wind farm. Their location distribution is shown in Figure 2, and
the fluctuation information of the first 1,000 sampling points is
shown in Figure 3.

FIGURE 1 | CNN-BiGRU model structure based on Attention mechanism.

TABLE 1 | Original characteristic variable range of wind power.

Number Characteristic Variable Range

1 Wind speed (m/s) 0.00~49.70
2 Rotate speed (r/min) 0.00~16.00
3 Wind direction (°) −250.70~502.74
4 Temp air (°C) −21.88~36.80
5 Pitch angle (°) −79.57~116.44
6 Wind power (KW) −56.20~2,115.60
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Because the dimensions of different features are different, in
order to fully consider the correlation degree between each feature
and power, it is necessary to normalize the data used to the
maximum and minimum and normalize the data to the interval
[0, 1]. That is Eq. 10.Wherexc is the input data of the standardized
model, xs is the original input data; xmax and xmin are the
maximum and minimum values of the original data, respectively.

xc � xs − xmin

xmax − xmin
(10)

4.2 Prediction Accuracy Evaluation Criteria
In this study, the root mean square error (RMSE), mean absolute
error (MAE), and mean absolute percentage error (MAPE) are

used as the error evaluation indexes of wind power prediction.
The expression is shown in Eqs 11–13. Where n is the total
number of prediction results; yi and yi are the actual power value
and predicted power value of the i sampling point, respectively.
MAPE can measure the quality of the model prediction results.
RMSE and MAE can evaluate the prediction accuracy and are
sensitive to the maximum or minimum error in the results. In
wind power prediction, the smaller the value of MAE and RMSE,
the more accurate the power prediction result, and the smaller the
MAPE, the better the prediction effect of the model (Liu X. et al.,
2021; Zhang J. et al., 2021).

RMSE �















1
n
∑n

i�1(yi − yi)2
√

(11)

FIGURE 2 | Location distribution of wind turbines #20, #50, and #80.

FIGURE 3 | Partial sampling data display of wind turbines #20, #50, and #80.
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MAE � 1
n
∑n

i�1

∣∣∣∣∣∣yi − yi
∣∣∣∣∣∣ (12)

MAPE � 1
n
∑n

i�1

∣∣∣∣∣∣yi − yi

∣∣∣∣∣∣
yi

× 100% (13)

4.3 Wind Power Prediction Framework
The structure of the power generation of the wind farm predicted
in this paper is shown in Figure 4, which includes an active data
collection module, data processing module, model prediction
module, and prediction output module. The specific steps of
its model are as follows:

Step 1. Source data module. The main function of the source data
collection module is to complete the collection and integration of
wind farm data, including wind turbine speed, pitch angle, wind
speed, wind direction, and ambient temperature data.

Step 2. Data processing module. The data processing module
processes the data collected by the source data collection module.
First, replace the abnormal values and fill in the missing values in
the source data, then cut and split the data according to the fan
number, and finally normalize the data before model prediction
according to the fan.

Step 3. Model prediction module. The model prediction module
inputs the normalized data into each model according to the fan
for training and prediction and transmits the predicted value of
each model to the prediction output module for processing.

Step 4.Output prediction module. The prediction output module
performs inverse normalization on the predicted values of each
model and finally accumulates and sums the predicted power of
each wind turbine so as to obtain the ultra-short-term predicted
total power of the wind farm.

4.4 Model Training and Result Evaluation
Analysis
In this paper, the wind power prediction of the wind farm is
verified. The prediction effect is the best through many
experiments when the model input time series dimension is 8.
According to the demand of the actual application of the field, the
prediction period is set as 30 min. That is, for a specific time t, the
real wind power data of 15 ~ 120 min in front of each wind
turbine, the wind speed, wind direction, and temperature at time
t, as well as the speed and pitch angle of the wind turbine, are used
as the input data to predict the wind power after 30 min.

In addition, in terms of single wind turbine ultra-short-term
power prediction, the proposed model is also analyzed and
compared with the prediction results of the support vector
regression (SVR) model, the backpropagation (BP) neural
network model, and the GRU model. In the ultra-short-term
prediction of wind farm total power, the prediction accuracy of
the GRU model, BiGRU model, and BiGRU model based on the
Attention mechanism are analyzed, and the prediction accuracy
and speed of ACNN-LSTM model based on the Attention
mechanism are analyzed, and compared. The results show that
the proposed model has obvious advantages in prediction
performance and efficiency for single wind turbine ultra-short-
term power prediction and wind farm total power ultra-short-
term prediction and has popularization and application value.

In this experiment, we choose to build an ACNN-BiGRU
prediction model based on the Attention mechanism in the
Windows environment by using Python language and the
TensorFlow framework. A CNN network with two-layer
convolution and a two-layer maximum pooling layer is built
at the head of the prediction model. The two-layer convolution
layer has 6 and 16 convolution cores, respectively, with a step of
one to extract the features of the original data. The model
prediction part, including bidirectional GRU layer neurons, is
constructed. According to the test feedback of the network, the

FIGURE 4 | Wind ultra-short-term-power prediction framework.
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number of neurons in this layer is set to 20. After passing through
the Attention layer, the wind power values predicted by the t time
model are output through the fully connected network.

4.4.1 Ultra Short Term Power Prediction of SingleWind
Turbine
The power prediction model of each wind turbine in this paper is
the same as that of the CNN Attention model, and the number of
iterations of each wind turbine prediction model is 200. In order
to fully illustrate the generalization ability of the prediction model
in this paper, the prediction results of wind turbines #20, #50, and
#80 located in different geographical locations and altitudes in the
wind farm are evaluated and analyzed. It is compared with the
SVR, BP neural network, and GRUmodels. The prediction results
of each wind turbine are shown in Figure 5, and the prediction
error indexes of each model are shown in Figure 6. The following
conclusions can be drawn from Figures 5, 6:

1) Compared with the traditional machine learning SVR model,
traditional deep learning BP model, and single GRU model,
the prediction curve of the wind power prediction model
proposed in this paper can better fit the actual wind power
curve of each wind turbine and has the minimum RMSE and
MAE values. It shows that the model has a good prediction
effect for wind turbines in different geographical
environments.

2) In the error evaluation index of prediction results, it can be
seen that for the power prediction of different wind turbines,
the fluctuation range of RMSE, MAE, and MAPE values of
the model proposed in this study is the smallest compared
with other models, indicating that the model has a relatively
stable prediction effect on the prediction of different wind

turbines in the wind farm and has good generalization
performance.

4.4.2 Ultra Short Term Prediction of the Total Power of
Wind Farm
In order to further verify the prediction ability and practicability
of the model proposed in this paper, the prediction results of the
whole wind farm are compared and analyzed. Some prediction
results and error indicators of the GRU model, BiGRU model,
and BiGRU model based on the Attention mechanism are shown
in Figure 7. The following conclusions can be drawn from
Figure 7:

1) The fitting effect of the single GRUmodel is the worst, and the
values of RMSE, MAE, and MAPE are the largest. The BiGRU
model showed a significant improvement compared with the
GRU model, and the evaluation index values RMSE, MAE,
and MAPE decreased by 10.00, 9.20, and 17.50, respectively. It
shows that the BiGRU model plays a significant role in
improving the accuracy of wind power prediction than the
single GRU model.

2) Compared with the BiGRU model, the prediction results of
the BiGRU + Attention model are improved by introducing
the Attention mechanism, and the evaluation index values
RMSE, MAE, and MAPE are reduced by 2.40, 0.80, and 1.70,
respectively. It can be seen that the addition of the Attention
mechanism enhances the key information and weakens the
redundant information, helps the model learn potential
features more effectively, and improves the prediction
accuracy and robustness of the model.

3) Based on the BiGRU model based on the Attention
mechanism, CNN is introduced to form the model CNN-

FIGURE 5 | Power prediction results of different models’ wind turbines #20, #50, and #80.
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BiGRU proposed in this paper. Compared with the BiGRU
model based on the Attention mechanism, the evaluation
index values of RMSE, MAE, and MAPE are reduced by 0.80,
0.10, and 0.10, respectively, which further improves the
prediction accuracy of wind power. Combined with the
comparison of prediction results, it can be seen that the
introduction of CNN plays a role in feature extraction of
the input data set and reduces the input of redundant
information. In particular, the power trough between
prediction point 40 and prediction point 50 is pronounced.
Other models do not capture the fluctuation characteristics of
power decline in a short time, while the model in this paper

can effectively capture the relevant characteristics of
downward power fluctuation, showing the ability of wind
power prediction in more extreme cases.

4) The power prediction value of the whole wind farm is
obtained by accumulating the prediction values of each
wind turbine, and the final prediction accuracy of the wind
farm is high. Combined with the comparative analysis and
research of wind turbines #20, #50, and #80, it shows that the
CNN-BiGRUmodel proposed in this paper has more accurate
results for the prediction of each wind turbine in the wind
farm, and this model has strong prediction ability and
practicability.

FIGURE 6 | Power prediction and evaluation indexes of different models of wind turbines #20, #50, and #80.

FIGURE 7 | Partial prediction results and prediction error indexes of different models of the whole wind farm.
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Since both LSTM and GRU are improved versions of RNN,
they have similar predictive performance. Therefore, the
prediction performance and efficiency of the proposed model
are compared with that of the CNN-LSTM model based on the
Attention mechanism. In order to ensure the accuracy and
rationality of the experiment, the two models adopt the same
neural network structure and the number of training iterations.
The model’s prediction result, error evaluation index, and
training time are shown in Figure 8. It can be seen that the
prediction effect and error of the two models are almost the same,
but the efficiency of the former in training time is slightly higher
than that of the latter. This indicates that the model presented in
this paper has higher time efficiency while ensuring better
prediction performance and is more valuable for promotion
and application in ultra-short-term wind power prediction.

5 CONCLUSION

Aiming at the problem of low accuracy and efficiency in the
current ultra-short-term wind power prediction, a new ACNN-
BiGRU multi turbine wind power prediction model based on the
Attention mechanism is proposed. On the one hand, a
convolutional neural network with double convolution layers
is constructed and effectively mines the feature of input
uncertain time series through its multi-layer feature catcher
and maximum pooling structure. On the other hand, the
Attention mechanism is introduced to enhance the influence
weight of key information, which effectively helps the model learn
potential features and ultimately improves the model’s prediction
accuracy. In the experimental comparison stage, the experiments
of ultra-short-term power prediction of a single wind turbine and
total power prediction of the whole wind farm are designed.
Compared with the advanced mainstream model, the
experimental results show that the model effectively improves
the accuracy and speed of wind power ultra short-term power
prediction and has obvious advantages in prediction performance

and efficiency. Furthermore, for the practical application of wind
farms, some fans often cannot work due to maintenance, yet their
prediction accuracy will not be affected. It effectively solves the
problems existing in the practical application of current wind
farm power prediction and has strong generalization ability and
high engineering application value.

The model used in this paper needs to carry out parallel
training and prediction for multiple wind turbines, which
requires high hardware operation ability and high application
cost for scale. The next step is to analyze further and study the
wind turbines of the wind farm to reduce the computing pressure
of hardware and save costs. In addition, the model proposed in
this paper is not only applicable to the prediction of wind power
generation but also applicable to applied research in other fields.
Such as the study proposed by Diaz et al. (2021), the diagnosis
and classification of Parkinson’s disease based on sequential and
one-dimensional convolution BiGRUs; and Lucas et al. (2022),
who proposed the application of BiGRU-CNN neural network in
the detection of electric theft, etc., which also achieved good
results. Therefore, this model can be extended to other fields for
research and application.
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