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Wind power is a rapidly growing source of clean energy. Accurate short-term forecasting of
wind power is essential for reliable energy generation. In this study, we propose a novel
wind power forecasting approach using spatiotemporal analysis to enhance forecasting
performance. First, the wind power time-series data from the target turbine and adjacent
neighboring turbines were utilized to form a graph structure using graph neural networks
(GNN). The graph structure was used to compute the spatiotemporal correlation between
the target turbine and adjacent turbines. Then, the prediction models were trained using a
deep residual network (DRN) for short-term wind power prediction. Considering the wind
speed, the historic wind power, air density, and historic wind power in adjacent wind
turbines within the supervisory control and data acquisition (SCADA) system were utilized.
A comparative analysis was performed using conventional machine-learning approaches.
Industrial data collected from Hami County, Xinjiang, China, were used for the case study.
The computational results validate the superiority of the proposed approach for short-term
wind-power forecasting.

Keywords: wind power forecasting, spatial temporal analysis, graph neural networks, deep residual network,
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1 INTRODUCTION

To a large extent, wind energy can curb energy crises and global warming (Kumar et al., 2016). This
renewable energy resource is valuable to both humans and the environment. However, its natural
dynamics and uncertainty can deteriorate the system reliability of grid networks (Li et al., 2021a; Li
et al., 2021b). Therefore, high-quality forecasting of short-term wind power is of great significance
and practicability for optimal power system planning and reasonable arrangement of system reserves
(He and Kusiak 2017; Onyang et al., 2019a; Onyang et al., 2019b).

According to the literature, wind power forecasting models can be primarily categorized as
conventional statistical and artificial intelligence (AI) models. Conventional statistical models are
usually time-series models that are capable of characterizing the linear fluctuations of wind power
series. Han et al. (2017) utilized autoregressive moving average (ARMA) to fit a time-series wind
power dataset. Yunus et al. (2015) employed an autoregressive integrated moving average
(ARIMA) to forecast short-term wind speed data, and then integrated a physics model to
forecast short-term wind power. Kavasseri and Seetharaman (2009) adopted the fractional
ARIMA model to forecast the day-ahead wind power generation. Maatallah et al. (2015)
recursively forecasted short-term wind power using the Hammerstein autoregressive model. In
general, statistical models have exhibited good forecasting performance in very short-term wind-
power forecasting tasks.
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With advances in technology (Ouyang et al., 2017; Ouyang
et al. 2019c; Ouyang et al. 2019d; Long et al., 2021; Li et al., 2022;
Long et al., 2022), AI-based models are now being widely utilized
in wind-power forecasting tasks (Tang et al., 2020; Shen et al.,
2021). Wang et al. (2019) trained a support vector machine
(SVM) as a regression model to forecast short-term wind
power. Wang et al. (2015) used an improved version of the
SVM, namely the least square support vector machine (LSSVM),
to forecast wind power using the data collected from a wind farm
in northern China. Yin et al. (2017) employed a single hidden
feedforward neural network called an extreme learning machine
(ELM) to forecast the wind power. Crisscross optimization was
used to optimize the ELM model. Mezaache et al. (2016)
proposed using the kernel ELM (KELM) to predict wind
power in wind farms. Deo et al. (2018) developed a multi-
layer perceptron (MLP), whose parameters were optimized by
the firefly algorithm, to predict wind. Chen et al. (2020) trained a
back-propagation neural network (BPNN) to forecast short-term
wind power. Liu et al. (2018) integrated a long short-term
memory recurrent neural network (LSTM-RNN) with
variational model decomposition to construct a short-term
wind-power prediction approach. Wan et al. (2016) performed
day-ahead wind power forecasting using a deep belief network
(DBN) and deep features were learned from the power data. In
summary, the AI-based models are superior in terms of
forecasting accuracy and efficiency (Shen et al., 2020).

Most wind power forecasting models are applied to single wind
turbines, and the data include wind speed, air density, and other
related variables (Lee et al., 2015; Huang et al., 2018; Ulazia et al.,
2019; Long et al., 2020). Nevertheless, the power output from
adjacent wind turbines in the neighborhood can also improve the
wind power forecasting performance. In recent years, there has been
an increasing interest in using graphs to solve time-series forecasting
problems. The graph structure can handle non-Euclidean data
structures (Scarselli et al., 2009). The graph neural network
(GNN) (Gori et al., 2005) which learns graph structures, has
become a new actively-studied topic of research. It has been
successfully applied in many fields, including recommendation
systems (Han et al., 2020), traffic volume prediction (Chen et al.,
2019), and surface water quality prediction (Bi et al., 2020).

In this study, we propose a combinatory framework that
integrates the GNN and Deep Residual Network (DRN) for
short-term wind power prediction. First, the wind power from a
single turbine is defined as the outtarget output. The historical wind
power data from the target turbine and adjacent turbines are learned
by the GNN and a graph structure with correlations of the wind
power among the selected turbines is obtained. The DRN can then
serve as a regression model to predict the wind power of the target
turbine in the near future. The DRN considers the supervisory
control and data acquisition (SCADA) variables and historic wind
power from adjacent turbines as the input and the future wind power
of the target turbine as the output. The computational experiments
validated the superiority of the proposed approach.

The main contributions of this study are summarized below:

• This paper used graph neural network (GNN) to produce a
graph structure between the target turbine power and power

generated by adjacent turbines. The graph structure
indicates correlation among the power outputs and
enhanced power prediction outcome.

• The deep residual network (DRN) is introduced to reinforce
the short-term wind power prediction performance. The
impact of filter size on the prediction performance are
thoroughly investigated.

The remainder of this study is organized as follows. Section 2
provides a detailed introduction to the methods used in this
study. Section 3 presents experimental results. Section 4
summarizes the results of this study.

2 METHODOLOGY

2.1 Graph Neural Network
As we all know, a graph is a kind of structured data, which
comprises a series of objects (nodes) and relationship types
(edges) (Scarselli et al., 2008). As a type of non-Euclidean
data, graph analysis applied to node classification, link
prediction, and clustering. Recently, GNN, a neural network
model, has been used for fire detection because of its powerful
ability for data processing in graph structures. They resemble
convolutional neural networks (CNN) in terms of local
connections, weight sharing, and multilayer networks. A GNN
can generate reasoning graphs from unstructured data, which
makes it advantageous over CNN.

The basic idea of a GNN is to embed nodes based on their local
neighbor information (Luo et al., 2020). Intuitively, it aggregates
the information of each node and its neighbors using a neural
network. To obtain information about its neighbor nodes, the
average method, which utilizes the neural network for
aggregation, is used to aggregate the neighbor node
information of a node.

As shown in Figure 1, the prediction task can be defined as
follows: a GNN is built, the historical wind power data
X ∈ RN×Tin×D (where N denotes the number of wind power
generators, Tin denotes the length of the time window, D
denotes the feature dimension of inputs) is set as the input,
the spatial connectivity between each wind power generator, and
the output of wind power for a prediction period Y ∈ RN×Tout

(where Tout denotes the forecast step). Based on the spatial-
temporal dependencies between wind power generators, more
positive deep features can be obtained for the next step.

2.2 Deep Residual Network
In the practice of deep learning, there are problems in which the
learning efficiency is lowered, and accuracy cannot be effectively
improved owing to the deepening of the network. The essence of this
problem is the loss of effective information caused by the deepening
of the training process, commonly known as the network-
degradation problem. In contrast to overfitting, this problem
causes an overall decline in the training and testing accuracy.

He et al. (2016) proposed the DRN, a new network which
provides an idea for effectively solving the problem of gradient
disappearance when the network depth increases. A DRN can
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solve this problem in two ways, namely, identity mapping and
residual mapping (Sun et al., 2020a; Sun et al., 2020b). If the
network has reached the optimum and continues to deepen, the
residual mapping will be pushed to 0, leaving only identity
mapping. Thus, the network is in the optimal state, and its
performance will not decrease with the deepening of the network.

During residual learning, input x passes through a few stacked
nonlinear layers (Boroumand et al., 2018).Anydesiredmapping canbe
expressed as h(x), which can directly use a shortcut connection named
identitymapping x, while the stacked nonlinear layers can be used tofit
a residual mapping function F(x) = h(x) − x. Therefore, assuming that
the two weight layers fit the residual function F(x), let h(x) = F(x) + x.
In practice, the residualmapping F(x) are found to be easier to optimize
than h(x). The details of the residual block are expressed as follows:

yl � h(xl) + F(xl,Wl) (1)
xl+1 � f (yl) (2)

where xl is the input of the lth block of the residual network and
xl+1 is the output. h(xl) � xl denotes identity mapping and f()
denotes the activation function.

Eq. 3 can be obtained recursively:

xL � xl +∑L−1
i�l F(xi,Wi) (3)

The input of the Lth residual block can be expressed as the sum
of the input of a shallow residual block and all the complex
identity mappings. Introducing a loss function ε, the parameter
learning can be described as

δε

δxl
� δε

δxL
⎛⎝1 + δ

δxl
∑L−1

i�l F(xi,Wi)⎞⎠ (4)

Explicit modification of the network structure and residual
mapping make it easier for the network to learn the optimal
solution. In this study, the filter size and filter number were
selected to optimize the computational performance.

2.3 Benchmark
In this study, three benchmarking machine learning algorithms,
namely, neural network, support vector regression, and extreme
learning machine, were compared with the proposed method in
power prediction.

Neural networks (NN) are the underlying models of AI that
have a wide range of applications in many fields (Ouyang et al.,
2019a). The NN model with the backpropagation optimization
mode was selected in this work. The number of hidden layers
with values of 3, 4, and five and the number of hidden neurons
in each hidden layer with values of 10, 20, 30, 40, and 50 were
all evaluated in the training process via 10-fold cross
validation. The activation function used in NN is the
sigmoid function.

The (SVR) algorithm is used to find a regression plane and
position all the data in a set closest to the plane (Li et al., 2020).
The SVR parameters included the capacity factor C and
γ � 1/2σ2. The values of C (1, 10, 100, 1,000, 10,000), and σ
(0.0001, 0.001, 0.01, 0.1, 1) were all evaluated in the training
process via 10-fold cross-validation. The kernel function used in
SVR is the RBF function.

An extreme learning machine (ELM) is a type of machine
learning algorithm based on a single hidden layer feedforward
neural network that is suitable for both supervised and
unsupervised learning. The number of hidden neurons with
values of 5, 10, 15, . . ., 100 were evaluated during the training
process via 10-fold cross-validation. The activation function used
in ELM is the sigmoid function (Li et al., 2018).

2.4 Evaluation Metrics
In this study, the mean square error (MSE) and coefficient of
determination (R2) were used to assess the prediction accuracy of
the proposed framework. Here, R2 measures the percentage of the
variance explained by the prediction outcome. It basically
interprets what percentage of variance of the actual outcome
are explained by the prediction outputs.

FIGURE 1 | Schematic diagram of the graph neural network.
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MSE � 1
n
∑n

i�1

∣∣∣∣∣∣∣∣∣∣
yi − yi
yi

∣∣∣∣∣∣∣∣∣∣ (5)

R2 �
∑(�y − yi)2

∑(�y − yi)2 (6)

whereyi, yi, �y, and n represent the actual power, predicted power,
average value of yi, and number of test datasets, respectively.

3 CASE STUDY AND DATA COLLECTION

The SCADA dataset used in this study was recorded at a wind
farm named Kushui Wind Farm, which is located in the Gobi
Desert in the east of the camel circle, approximately 120 km away
from Hami City, Xinjiang, China. The wind farm is located in an
alpine area at an altitude of 1,135—1,395 m that is rich in wind

energy potential. The entire wind farm has many wind turbines
distributed on open and flat terrain. Detailed information about
the location is presented in Figure 2.

According to Table 1, the SCADA system collected datasets of
individual wind turbines, usually including the wind speed (unit:
m/s), wind direction (unit: rad), temperature (unit: °C), barometric
pressure (unit: kPa), humidity (unit: %), and wind power (unit:
kW). In this case, to predict the wind power, the inputs based on
domain knowledge included the first five parameters above.

4 RESULTS

4.1 GNN
In this section, extensive experiments are presented to validate
the effectiveness of the proposed approach. The dataset
utilized for the experiments was collected from a wind farm

FIGURE 2 | Location of the case study wind farm in Hami County, Xinjiang, China.

TABLE 1 | Summary of the dataset in the case study.

Variable name Unit Description

Wind speed m/s The rate at which air moves relative to a fixed location on the earth
Wind direction Rad Refers to the direction of the wind
Temperature °C A numerical value used to measure the temperature of an object
Barometric pressure kPa The atmospheric pressure acting on a unit area
Humidity % Meteorological elements indicating moisture content and moisture content in the air
Historic wind power from adjacent wind turbines kW The generated wind power from adjacent wind turbines
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located in Hami, Xinjiang, China, and the data collected were
obtained using the SCADA system. We select only the power-
related SCADA variables, as listed in Table 1. In this study, we
collected the SCADA variables from a single target turbine and
the historic wind power from its adjacent turbines, which are
the neighbors of the target turbine.

A heterogeneous graph was constructed among the six
turbines to learn the unified representation power time
series of the target turbine. In the graph, the measured real-
time power from the target turbine was treated as the target
node, and the historical power series from adjacent turbines
were defined as the source nodes. Inner-modality attention
and inter-modality attention were used to learn the different
contributions of graph-structured sources to the target node.
Weight values denote the correlation between the source and
target nodes. After computing all the weights, a threshold of
0.5 was implemented to determine whether the link between
the two nodes was worth retaining. In the final step, a learned
graph structure was utilized to determine the number of inputs
of wind power generated in adjacent turbines into the
prediction model to forecast the power of the target turbine
in the short term.

4.2 Hyper-Parameters of DRN
In this section, the hyper-parameters of DRN are studied.
Three experiments were designed to evaluate the effect of the
filter size on the computation, as well as four experiments for
filter number. Owing to the limitations of the hardware, the
filter sizes were set as 2 × 2, 3 × 3, and 4 × 4, while the filter
numbers were set as 16, 32, 64, and 128.

For the filter size, the DRN is trained with a filter number of
16, which indicates that three reference computational results can
be obtained during the validation set. Figure 3A shows that the
maximum and minimum RMSE appear at the first and second
filter sizes, respectively. The RMSE increases with the filter size.
As shown in Figure 3B, the best R2 of 0.958 is obtained when the
filter size is 3 × 3.

Next, a computation was conducted using a filter size of 3 ×
3 and various values of the filter number, as mentioned above.
Figure 3C shows that the RMSE decreases when filter number
increases, and the optimal solution occurs when the filter
number is 64, possibly owing to the overfitting of the model

with continuously increasing filter numbers. Figure 3D
provides the same evidence for the computation. Therefore,
the best performance is achieved when the filter size and
number are 3 × 3 and 64, respectively.

4.3 Wind Power Prediction
Experiments were performed with three selected algorithms
were performed using two measurement metrics (RMSE and
R2) to comprehensively evaluate the prediction performance
of the proposed method. The hyperparameters of all the
algorithms were tuned. In each training-validation
experiment, the steps of input time and output time
range were 1, 2, . . ., 20. In all the experiments conducted,
the wind power was predicted for different input and
output time steps. The relevant computational behavior is
shown in Figure 4, which shows the correspondence
between the predicted power obtained numerically and
experimentally.

According to Figure 4, the RMSE from all the algorithms
decreases when the input time step increases, whereas it
increases when the output time step increases. When the
same length of historical data is input, longer the output steps
yield larger prediction errors. Furthermore, a deeper analysis
of the results for R2 indicated good linearity between the
predicted and measured wind power values and the error
occurring in the long-term horizon of the output time step.
The two measurement metrics yielded similar results.
Overall, the computational results demonstrated that the
proposed method based on DRN significantly
outperformed the other three benchmarking machine
learning algorithms, exhibiting the lowest RMSE and
maximal R2 with increasing input time step and output
time step. The DRN exhibited its outperformance in terms
of prediction in the temporal domain owing to its ability to
handle redundant information.

Moreover, this study also investigated the influence of the size
of the training samples on the prediction results. Three
approaches based on NN, SVR, and ELM were adopted to
demonstrate the superiority of the DRN model. The
hyperparameters of all the algorithms were selected from
previous results, and the data samples ranged from
400—4,000, at intervals of 200.

FIGURE 3 | Tuning the filter size and filter number for DRN.
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From Figure 5, it can be observed that the prediction
performance varies with the training data size. As the
training data size increases, the RMSE of NN decreases
from 116.61 to 80.07 kW. The smallest RMSE values of
SVR, ELM, and DRN were 74.74, 66.25 and 60.28 kW,
respectively. The R2 of the DRN increases from 0.941 to
0.976, and the maximal R2 values of the other three
algorithms were 0.862, 0.908, and 0.943, respectively. The
computational results imply that the worst case result from
DRN surpasses the other best cases. This phenomenon
provides strong evidence for DRN optimization.

Table 2 shows that the proposed DRN-based method
produces the lowest prediction error and best prediction
performance based on the case study presented. The mean
values of the RMSE from NN, SVR, ELM, and DRN were
99.32, 88.26, 80.53, and 70.19, respectively. The Std. for the
four methods are 10.79, 12.36, 10.46, and 5.93, respectively.
For R2, the mean value from DRN is 0.96, which possesses the
most advantages compared to NN, SVR, and ELM. This
phenomenon indicates that the proposed method for wind-
power prediction is a statistical outlier and can be utilized to
further improve related prediction tasks.

FIGURE 4 | Impact of input/output size on the prediction performance.
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5 CONCLUSION

In this study, we present a data-driven short-term wind power
prediction framework that integrates GNN and DRN. GNN was
used to obtain a graph structure to describe the correlation between
the power of the target turbine and that generated by adjacent turbines.
The DRN was trained to predict the short-term wind power. The
SCADAvariables, alongwith the power generation of adjacent turbines,
were all considered as inputs of the forecasting model. A comparative
analysiswas conducted against other benchmark forecasting algorithms.

Computational results demonstrated that the graph structure can
effectively capture the spatial-temporal relationships among adjacent
turbines.Comparative analysis demonstrated that theDRNhas superior
power in short-termwind power forecasting. The proposed approach is
expected to be useful to field engineers at wind farms. Ouyang
et al., 2019c.
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