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Knowledge-driven and data-driven methods are the two representative categories of
intelligent technologies used in fault diagnosis in nuclear power plants. Knowledge-driven
methods have advantages in interpretability and robustness, while data-driven methods
have better performance in ease of modeling and inference efficiency. Given the
complementarity of the two methods, a combination of them is a worthwhile
investigation. In this work, we introduce two new techniques based on Bayesian
theory (knowledge-driven) and artificial neural network (data-driven) for fault diagnosis
in nuclear power plants. The first approach exploits an integrated technique, Bayesian
Neural Network (BNN), which introduces Bayesian theory into the neural network to
provide confidence in diagnosis. The second approach, denoted as Simplified Bayesian
Network-Artificial Neural Network (SBN-ANN), adopts a hierarchical diagnosis idea, which
firstly uses a simplified Bayesian network to diagnose fault types and then a neural network
to diagnose the severity of faults. The two new techniques are implemented and verified
with simulated faults data of a typical pressurized water reactor. Compared with single-
algorithmic diagnostic approaches such as Bayesian network and neural network, the new
combinatorial techniques show better performance in diagnostic precision. The results
suggest the feasibility to develop the data and knowledge dual-drive technologies for fault
diagnosis.

Keywords: fault diagnosis, nuclear power plant, data-driven, knowledge-driven, bayesian neural network

1 INTRODUCTION

Nuclear safety is one of the most critical tasks in the construction and operation of nuclear power
plants (NPPs). The main aim is to prevent nuclear accidents caused by nuclear facilities due to their
defects, improper human operations, or natural disasters, as well as to protect the environment and
the public from the adverse effects of radioactive substances when faults occur (Chao-jun et al.,
2013). A fault is a failure of a system or equipment to perform a specified function with at least one
performance or parameter clearly deviating from its normal level (Gao et al., 2015). Combining the
five lines of defense in depth (Zhang et al., 2018) and the definition of faults, it can be seen that the
strength of fault diagnosis capability has an important impact on nuclear safety. The current fault
diagnosis in nuclear power plants mainly relies on the judgment of operators. Since there are
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hundreds of subsystems and a large number of monitoring
parameters in nuclear power plants (Kim and Safety, 1994),
although the operators have been trained, the complexity of
systems, enormous information as well as tremendous
psychological stress may cause them to make wrong
judgments when a fault occurs, which may lead to serious
radiological consequences. Nuclear accidents in history have
shown the risk to rely only on operators for fault diagnosis in
NPPs. On the other hand, advances in artificial intelligence (AI)
technology (Dietterich 2017) have made it possible to process a
huge amount of information. Applying AI to fault diagnosis in
NPPs, or intelligent fault diagnosis, is a technology to help
operators extract critical information and take the right
actions during NPP emergencies. Research on AI-based fault
diagnosis for nuclear power plants have been focusing on two
types of methods, knowledge-driven and data-driven methods.

A knowledge-driven fault diagnosis method is essentially an
attempt to make computers think more like humans, aiming to
capture the knowledge of human experts to support decision-
making. The term “knowledge-driven” in this paper refers to
information and experience to distinguish between knowledge-
driven and data-driven methods. A typical knowledge-driven
fault diagnosis model consists of a knowledge base and a
inference machine. The knowledge base stores domain
knowledge-based information and experience, the essence of
which is the logical relationship between faults and
phenomena and between phenomena and phenomena. The
types of faults that can explain the physical signs are solved by
importing the actual physical signs obtained into the inference
machine. Knowledge-driven fault diagnosis methods can
explicitly represent the process of arriving at the results and
have a natural interpretability (Lo et al., 2006). In the nuclear
field, the applications of this method show different
characteristics in the early and current stage. In the early
stage, expert knowledge was commonly represented by
deterministic IF-THEN rules (Ciftcioglu et al., 1970). Bergman
et al. used expert systems for the fault diagnosis in boiling water
reactors (Bergman and Åström, 1983). Buckle et al. introduced
the concepts of fuzzy affiliation, fuzzy sets, evidence theory, and
confidence rule base on the representation of expert knowledge,
which can handle the uncertainty in expert knowledge (Buckley
et al., 1986; Sutton and Parkins 1991; Yang et al., 2006; Yang et al.,
2007). At present, new technologies with interpretability,
uncertainty expression and information fault tolerance are
introduced, which are different from early expert systems
based mainly on IF-THEN rules. Wu et al. thoroughly studied
the application of the SDG method for fault diagnosis in the
nuclear field, and successively combined SDG with fuzzy theory
and correlation analysis for online monitoring and diagnosis of
nuclear power plants (Wu et al., 2017; Guohua et al., 2020;

Guohua et al., 2021). Zhao et al. proposed a fault diagnosis
technique for nuclear power plants based on dynamic
Bayesian networks seeking for fault diagnosis capability in the
case of on-demand faults and incomplete evidence information
(Wu et al., 2018; Zhao et al., 2020). Zhao and Nie proposed the
fault diagnosis method of nuclear power plants based on DUCG,
especially testing the fault tolerance for knowledge base and
signals with good results (Zhao et al., 2017; Nie and Zhang
2021). The essence of the above-mentioned expert systems
based on new technologies is still the transformation of the
expert knowledge base into a graph-theoretic representation,
i.e., the representation of knowledge rules as a graph. The
difference is that they use different inference mechanisms.

A data-driven fault diagnosis method is essentially a way to
let the machine learn by itself by ingesting a large amount of
data. The machine learns patterns from large amounts of data,
generalizes some kind of mapping function, and then applies
this function to new data to solve the target problem. They can
model this by using extremely complex functions to match
equally complex structures, which also makes it difficult to
know how and why the models get such diagnostic results. This
is a significant difference between knowledge-driven and data-
driven methods (Jordan and Mitchell 2015). In the nuclear
field, investigations have been carried out with various data-
driven approaches, using either some individual machine
learning algorithms or hybrid algorithms. Zwingelstein et al.
successively used multiple algorithms such as artificial neural
networks, principal component analysis, support vector
machines, decision trees, and unsupervised clustering for
fault diagnosis in nuclear power plants, and preliminarily
demonstrated the feasibility of these single machine
learning methods (Feng et al., 2003; Mu and Xia 2010; Xia
and Zhang 2010; Baraldi et al., 2013; Jiang and Huang, 2020).
Liu et al. combined fuzzy logic, genetic algorithm, laminar flow
model, rough set, and principal component analysis with
artificial neural networks to significantly improve the
performance of fault diagnosis (Yong-Kuo et al., 2005; Ming
et al., 2006; Shi et al., 2006; Liu et al., 2007; Peng B.-S. et al.,
2018). Jamil et al. combined Fisher discriminant analysis, long
short-term memory neural network with principal component
analysis, providing a new idea of data dimensionality
reduction before fault diagnosis (Jamil et al., 2016; Saeed
et al., 2020). Peng et al. combined multi-layer flow model,
improved particle swarm algorithm and support vector
machine to compensate some shortcomings of knowledge-
driven based methods (Peng M.-j. et al., 2018; Wang et al.,
2019). Current research tends to combine multiple algorithms
to construct diagnostic models.

The advantage of knowledge-drivenmethods is that there is no
need to establish a systematic analytical model, and the diagnosis

TABLE 1 | Comparison of fault diagnosis methods.

Characteristic Ease of modeling Interpretability Robustness Inference efficiency

Knowledge-driven No Yes Yes No
Data-driven Yes No No Yes
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results are highly interpretable and robust. However, there are
shortcomings in these methods: it is difficult to obtain expert
knowledge and the diagnostic accuracy depends on the richness
of the knowledge base; more inference rules can lead to matching
conflicts in the inference process, which makes the inference
inefficient. The advantages of the data-driven approaches are that
the modeling process is relatively simple and efficient.
Nevertheless, the shortcomings are also obvious. First, it is
difficult to obtain the necessary data, for both historical and
real-time monitoring data. Second, generalization of the model is
limited by the learning data, which means once the actual data is
slightly different from the sample data, it may lead to inaccurate
diagnosis results. Lastly, the data-driven models are
uninterpretable to users. The “black box” characteristic makes
it difficult to be accepted by nuclear regulation. Table 1 compares
the advantages and disadvantages of the two methods.

Through the comparison, we can see that the knowledge-
driven and data-driven methods have strong complementary
abilities. However, most of the previous research focuses only
on one of the two methods, which cannot take advantage of both
methods. A combination of the two methods seems to be
attractive. Based on the two representative technologies of
Bayesian theory (knowledge-driven) and neural network (data-
driven), this paper proposes two new fault diagnosis methods for
NPPs. The first approach is an integration technique, namely
Bayesian neural network method, which introduces the Bayesian

formula to neural network parameters and replaces the original
fixed value with a probability distribution. We apply it to nuclear
power plant fault diagnosis to solve the problem in which
traditional neural network fault diagnosis cannot model and
express the uncertainty. The second approach adopts a
hierarchical diagnosis idea which uses Bayesian network as the
first level to diagnose fault types and neural network as the second
level to diagnose the fault severity.

FIGURE 1 | BN model (A) and BPNN model (B).

FIGURE 2 | Comparison of neural network (A) and Bayesian neural network (B).

FIGURE 3 | BNN fault diagnosis framework.
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The rest of this paper is organized as follows: Section 2
introduces the relevant theory and principles, including
Bayesian network, artificial neural networks, and the two new
fault diagnosis methods proposed in this paper. In Section 3, the
verification results are given based on typical faults data of a
pressurized water reactor, and intercomparison is made on the
performance of different fault diagnosis methods. In Section 4,
conclusions and future research directions are given.

2 METHODOLOGIES

2.1 Basics of Bayesian Theory and Artificial
Neural Network
Bayesian theory is one of the typical representatives of
knowledge-driven methods. In view of industrial systems with
high safety requirements such as nuclear power plants, Bayesian
theory introduces domain knowledge for modeling to get rid of
the dependence on historical data.

The theoretical foundation of Bayesian methods is the Bayes
theorem which describes the probability of an event under some
known conditions. The formula is as follows (Hong-chun, 2010):

P(A|B) � P(A)P(B|A)
P(B) (1)

where A and B are random variables and P(B) are not zero.
P(A|B) is the probability distribution of the occurrence of
variable A in the case of variable B, also called the posterior
distribution of A. P(A) is the prior distribution of A, P(B) is the
prior distribution of B, and P(B|A) refers to the probability
distribution of the occurrence of variable B in the case of variable
A, also called the posterior distribution of B.

Bayesian networks (BNs) are probabilistic graphical models
that present uncertain causal relationships between variables in
the form of graphs using Bayes’ theorem (Friedman et al., 1997).
With certain inference algorithms, BNs can predict the likelihood
of possible causes given information about the events that
occurred, which just fits for fault diagnosis in systems with
complex and uncertain information. In addition, the diagnosis
process with BNs is highly robust and interpretable. Structurally,
Bayesian networks consist of nodes, directed lines and
conditional probability tables. The directed lines represent the
causal relationships among the nodes and the conditional
probabilities represent the strength of the causal relationships.
For Bayesian networks of industrial systems, the nodes represent
the system parameters. A simple Bayesian network model is
shown in Figure 1A. Assuming that the state information of
the parameter nodeX5 is currently obtained as l1, the probability
that the faulty node is X1 in the state “1" (indicating that the
system is in a faulty state) is inferred from Eq. 2. For a complex
industrial system, the complexity of building a Bayesian network
increases dramatically, and the exact inference of the network will
become a problem. Although there are some approximate
inference algorithms, such as the EM algorithm (McLachlan
and Krishnan 2007) and Monte Carlo algorithm (Tierney and
Mira 1999), for nuclear power plants with high safety
requirements, it is not acceptable to use only approximate
inference. Therefore, the second fault diagnosis method in this
paper proposes a simplified Bayesian network model, and the
feasibility of the method is demonstrated by comparison tests.

FIGURE 4 | Simplified schematic diagram of a Bayesian network.

FIGURE 5 | SBN-ANN fault diagnosis framework.
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P(X1 � 1|X5 � l1) � P(X1 � 1, X5 � l1)
P(X5 � l1) � ∑i,j,k P(X1 � 1, X2 � i, X3 � j, X4 � k, X5 � l1)

P(X5 � l1)

� ∑i,j,k P(X5 � l1
∣∣∣∣X3 � j,X4 � k)P(X3 � j

∣∣∣∣X1 � 1)P(X4 � k|X1 � 1)P(X2 � i|X1 � 1)P(X1 � 1)
P(X5 � l1)

(2)

Artificial neural networks (ANNs) are mathematical models
imitating the structure and function of the biological neural
network for the purpose of approximating or evaluating
functions (Wang 2003). ANNs can be used to learn and
summarize through the experiment of known data. Through
the comparison of local conditions, it can infer and produce
an automatic recognition system. According to the network
architecture, ANNs can be divided into feedforward neural
networks (Bebis and Georgiopoulos 1994), recurrent neural
networks (Medsker and Jain 1999) and reinforcement-based
architectures (Baker et al., 2016). In this paper, the two
proposed fault diagnosis methods introduce the most classical
feedforward neural networks.

As shown in Figure 1B, this network, also known as BPNN,
is a feedforward neural network with three layers, which
consists of an input layer (Layer L1), a hidden layer (Layer
L2), and an output layer (Layer L3). When BPNN obtains the
learning samples, the activation value is transmitted from the
input layer to the output layer through the hidden layer, which
is the input response of the network. If the network fails to
obtain the expected target output at the output layer, the error
signal will enter the backpropagation phase and return to the

input layer along the original connection path. The error signal
can be reduced by modifying the weights of each layer. As
errors are propagated repeatedly, the correct prediction of the
output layer increases, resulting in mapping between inputs
and outputs that can eventually perform the desired function.
Theoretically, it has been proved that a neural network with
only one hidden layer can approximate a continuous nonlinear
mapping of any accuracy when the number of hidden layer
nodes is free to be adjusted as needed (Guliyev and Ismailov
2016). Therefore, the feedforward neural networks involved in
the two fault methods presented in this paper were designed as
three layers.

2.2 Combinatorial Approach 1: Bayesian
Neural Network
2.2.1 Principles of BNN
Bayesian neural networks are an integration of Bayesian theory
and neural networks. This approach differs from the
traditional neural networks which use fixed weights and
biases. As shown in Figure 2, The Bayesian neural network
sets the weights and biases to follow a Gaussian distribution
with mean μ and variance δ (MacKay et al., 1995).

The prediction output of a traditional neural network is
often a deterministic classification result, which has the issue
of overconfidence. When untrained sample types are
predicted, they are confidently classified into only one
known type, i.e., they do not express prediction uncertainty.
For nuclear power plant accidents, traditional neural networks
have the potential to predict accident A as accident B without
expressing the uncertainty of that outcome. This is obviously
unacceptable for nuclear power plants with high safety
requirements. In addition to expressing the uncertainty of
the outcome, the following two types of uncertainty are
described in the Bayesian neural network model (Kendall
and Gal 2017):

1) Data uncertainty. In practical situations, the data are generally
uncertain due to random noise, insufficient information, and
other factors. For example, sensor failures, aging and other
unknown random factors in nuclear power plants may cause
traditional neural network models to misjudge.

TABLE 2 | Monitored physical parameters for fault diagnosis.

Number Parameters name

1 Regulator pressure (RP)
2 Regulator water level (RWL)
3 Containment pressure (CP)
4 Containment temperature (CT)
5 Pit water level (PWL)
6 Average temperature of the coolant (ATC)
7 Containment radioactivity (CR)
8 Outlet flow of steam generator (OFSG)
9 Outlet pressure of steam generator (OPSG)
10 Pressure of main steam header (PMSH)
11 Feed water flow of steam generator (FWFDG)
12 Overshoot flow (OF)

TABLE 3 | A sample of data within 1 min after a LOCA.

Time(s) 0 1 2 . . . 59

RP(Pa) 1.54786e+07 1.54787e+07 1.54788e+07 . . . 1.54819e+07
RWL(m) 0.172838 0.17283 0.172827 . . . 0.174076
OF (kg/s) 2.83571 2.83569 2.83572 . . . 2.84383
FWFDG (kg/s) 530.195 530.144 530.118 . . . 529.579
OPSG(Pa) 6.96487e+06 6.96495e+06 6.96499e+06 . . . 6.9674e+06
OFSG (kg/s) 526.822 526.801 526.802 . . . 526.619
PMSH(Pa) 6.83119e+06 6.83128e+06 6.83132e+06 . . . 6.83382e+06
CP(Pa) 100.069 100.068 100.068 . . . 100.047
CT (°C) 36.3825 36.3804 36.3791 . . . 36.3012
CR (GBq·m−3) 0 0 0 . . . 2.73042e-07
PWL (m) 7.34784e-08 3.30653e-07 4.7761e-07 . . . 8.70747e-06
ATC (°C) 309.846 309.846 309.847 . . . 309.861
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2) Model uncertainty. The volume of network models is now
increasing, for example, the GPT-3 model has reached nearly
100 billion parameters (Brown et al., 2020). We need to focus
on whether the valid information in the training set is
sufficient to support learning an optimal model. Although
model uncertainty can be removed by giving sufficient data,
nuclear power plants have almost no large sample of failure
datasets. Therefore, there may be many conventional neural
network models that perform the same on the training set, but
may appear very different on the testing set.

Bayesian neural network provides an effective basis for dealing
with the above two kinds of uncertainty. Its core is to transform
the weight and bias into probability distribution based on the
Bayesian theorem, as shown in Eq. 3

P(W|D) � P(D|W)P(W)
P(D) (3)

whereW represents the weights and biases, and D represents the
training set. P(W) represents the prior distribution, which refers
to the description of model uncertainty. The distribution is
generally determined according to the knowledge of domain
experts. P(D|W) represents the data likelihood, which
provides a way to model and infer data uncertainty. P(W|D)
represents the posterior distribution, which is the probability

distribution of weights and biases. Unlike the traditional neural
networks, a Bayesian neural network is equivalent to an
integrated model that considers an infinite number of adapted
training sets as well as the uncertainty of the samples, which
makes the final prediction results more robust.

In the training process of BNNs, the goal is to establish the
model of P(Y|X), namely given the data X to obtain a
distribution of Y which corresponds to each class in the
classification task. Suppose the training set is D � {X,Y} and
testing set is Dp � {Xp, Yp}, then the predicted value is:

P(Ypred
∣∣∣∣Xp, D) � ∫P(Ypred

∣∣∣∣Xp,W)P(W|D)dW (4)

The key to solving the above equation is to calculate P(W|D).
Because of its complex probability distribution, it is difficult to
obtain the distribution parameters (θ � (μW, σW)), so the Bayesian
neural network approximates the function P(W|D) by creating a
simplified functionQ(W|θ) for approximation. The final mean μW
and variance σW are parameters to be updated and adjusted. The
measure of the approximation effect of the function Q(W|θ) is
based on the relative entropy of the two distributions, namely KL
divergence. The optimization goal is to obtain the minimum KL
divergence, which is mathematically defined as follows:

θp � argmin
θ

KL[Q(W|θ)||P(W|D)]

� argmin
θ

∫Q(W|θ)log Q(W|θ)
P(W|D)dW

� argmin
θ

EQ(W|θ)[log Q(W|θ)
P(W|D)]

(5)

Substituting Eq. 4 into the above equation and assuming that
the data are independently and identically distributed, we get

θp � argmin
θ

EQ(W|θ)[log Q(W|θ)P(D)
P(D|W)P(W)] � argmin

θ

EQ(W|θ)[log Q(W|θ)
P(D|W)P(W)]

� argmin
θ

⎡⎣∑
i

logQ(Wi|θi) −∑
i

logP(D|Wi) −∑
i

logP(Wi)⎤⎦
(6)

where,

Q(Wi|θi) � N(Wi

∣∣∣∣∣μWi
, σ2Wi

) (7)
P(Wi) � N(Wi|0, 1) (8)

The second term on the right side of Eq. 6 is approximated by
Monte Carlo sampling, and the optimization objective θ* is equivalent
to the loss function of the traditional neural network. As shown in Eq.
9, the parameters θ � (μW, σW) are updated by deriving θ*,
and the distribution parameters θ � (μW, σW) are obtained after
training.

θ � θ − α
zθp

zθ
(9)

When predicting samples by BNN models, multiple
predictions can be obtained by sampling the weights and
biases of the network several times, and the best prediction
value can be selected.

TABLE 4 | Overview of the data set.

Accident Fault severity Samples size

LOCA Small break (SLOCA) 11
Medium break (MLOCA) 31
Large break (LLOCA) 58

MSLB Small break (SMSLB) 21
Medium break (MMSLB) 21
Large break (LMSLB) 58

SGTR Small break (SSGTR) 14
Medium break (MSGTR) 32
Large break (LSGTR) 54

NORMAL — 5

TABLE 5 | BNN parameter settings.

Parameter Setting

Input layer node number 12
Hidden layer node number 100
Output layer node number 10
Learning rate 0.1
Learning rate optimization Adam
Activation function Relu
Training sample size 80%
Testing sample size 20%
The maximum number of iterations 3,000
Predicted Sampling Number 20
Weight prior distribution Normal distribution
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TABLE 6 | Comparison of BPNN and BNN results.

Network type Diagnosis of a single
sample

Diagnostic accuracy

0 s (%) 10 s (%) 30 s (%) 50 s (%)

54.09 81.97 83.61 83.61

62.30 68.86 78.69 83.61

TABLE 7 | Partial samples of wrong prediction.

Real value

Predicted value

Output value

Proportion 50% 55% 70%
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2.2.2 BNN Diagnostic Framework
A fault diagnosis framework based on Bayesian neural network
is implemented, as shown in Figure 3. Firstly, a fault diagnosis
model is established based on historical data, which is
processed in several steps, including historical data
acquisition, selection of key parameters, data normalization,
dataset construction, division of training and testing sets,
training of the model, and adjustment of hyperparameters,
etc. Then the real-time fault diagnosis is performed with real-
time data.

2.3 Combinatorial Approach 2: Simplified
Bayesian Network- Artificial Neural
Network (SBN-ANN)
2.3.1 Principles of SBN-ANN
The SBN-ANN fault diagnosis method is a fully combined
knowledge-driven and data-driven approach. The method
divides the diagnosis process of faults (such as LOCA, SGTR,
MSLB, etc.) into two levels in which the fault type and fault degree
are diagnosed with a simplified Bayesian network and BPNN
respectively.

In the first level, the knowledge-driven Bayesian network
is adopted for the diagnosis of fault types. It should be noted
that Bayesian networks can be also modeled by data learning.
This paper chooses domain knowledge-based modeling.
Especially, the normal Bayesian network are simplified for
the purposes of fast modeling, avoiding rule combination
explosion and obtaining higher diagnostic accuracy. The
simplified method is shown in Figure 4 where all
parameter nodes are directly connected to the fault nodes.
The mathematical principle is as follows: the fault nodes are
considered as categories and the parameter nodes are
considered as attributes, assuming that the attributes are
independent of each other and all attributes are only
affected by the fault nodes (categories), then Eq. 1 has the
following transformations.

P(A|B) � P(A)P(B|A)
P(B) � P(A)

P(B)∏
m

i�1
P(Bi|A) (10)

The denominator P(B) in the above equation is the same for
all samples, so the classification criteria for fault diagnosis results
is as follows:

TABLE 8 | Partial samples of correct prediction.

Real value

Predicted value

Output value

Proportion 100% 100% 90%
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h � argmax
A∈y

P(A)∏m
i�1

P(Bi|A) (11)

Therefore, for highly complex systems like nuclear power
plants, only the key parameters that determine the failure class
need to be identified without considering the interactions
between parameters, avoiding rule combination explosions
and reducing the difficulty of modeling. On the other hand,
the computational complexity is reduced and the inference
efficiency is increased because there is no need to solve for joint
probabilities P(B). However, if a fault mechanism is complex
and the causal connection between the fault phenomenon is
obvious, normal Bayesian network may be considered.

In the second level, typical data-driven method, BPNN, is
used to diagnose the fault severity. Since the physical

phenomena caused by the same fault are similar, it is
difficult for Bayesian networks (knowledge-driven method)
to diagnose the fault severity whereas this is not an issue for
BPNN which has a powerful nonlinear fitting capability. The
BPNN adopts a three-layer design, namely an input layer, a
hidden layer, and an output layer. The input layer is the
manually selected key parameters related to the fault, and
the output layer is the fault severity.

2.3.2 SBN-ANN Diagnostic Framework
A fault diagnosis framework based on Simplified Bayesian
Network-Artificial Neural Network is implemented, as shown
in Figure 5. Firstly, the first-level diagnosis model is
established based on historical knowledge, which is
processed in several steps, including the collection of

FIGURE 7 | SBN-ANN graded diagnosis process.

FIGURE 6 | Simplified Bayesian Network (A) and diagnostic accuracy (B).
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domain knowledge, fault analysis, selection of key
parameters, determination of node status, and construction
of conditional probability table of simplified Bayesian
network, etc. Secondly, the second-level diagnosis model is
established based on historical data, which is processed in
several steps, including data acquisition, selection of key
parameters, data normalization, dataset construction,
division of training and testing sets, training of the model,

and adjustment of hyperparameters, etc. Then the real-time
fault diagnosis is performed with real-time data.

3 EXPERIMENTS AND RESULTS

In this section, we take a three-loop pressurized water reactor,
CPR1000, as an example to verify the performance of the two
combinatorial approaches proposed in Section 2.

3.1 Knowledge and Data Description
Three typical faults, LOCA (loss of coolant accident), MLSB
(main steam line break), SGTR (steam generator tubes
rupture), were selected for the study. Among them, the
knowledge is derived from the description of the fault
mechanisms in the CPR1000 Deterministic Safety Analysis
Report (DSAR) and the Probabilistic Risk Assessment Report
(PRAR). Taking the LOCA as an example, these phenomena
will occur when the accident occurs according to DSAR and
PRAR: pressure and water level drop in the regulator, increase
in the upcharge flow, increase in the containment pressure,

FIGURE 8 |Confusionmatrix of diagnostic results of SBN-ANNmodel at 10 smoment. (A) Fault type diagnosis result confusionmatrix (first level) (B) SGTR severity
diagnosis result confusion matrix (second level) (C) LOCA severity diagnosis result confusion matrix (second level) (D) MSLB severity diagnosis result confusion matrix
(second level).

TABLE 9 | Parameter settings for three types of neural networks.

Parameter Setting

Input layer node number 12
Hidden layer node number 15
Output layer node number 3
Learning rate 0.01
Learning rate optimization Adam
Activation function Softmax
Training sample size 80%
Testing sample size 20%
Epoch 500
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increase in the containment temperature, increase in the
containment radioactivity, and increase in the pit water
level. we extracted parameters such as RP, RWL, OF, CP,
CT, CR, and PWL based on these phenomena. When the
three types of accident parameters were extracted, we
determined the final 12 parameters, as shown in Table 2.
The data comes from the full scope simulator of the
CPR1000 reactor. The simulator can simulate the basic
physical processes of a nuclear power plant and perform
real-time simulation of important systems of the unit,
including steady-state operation of the unit, start-up and
shutdown of the unit between the normal cold stop and
100% full power, power up and down at a set rate, and fault
operation under equipment functional failure conditions. The
full scope simulator is used to simulate the above three fault
conditions and normal conditions, and the data within

1 minute of each condition is obtained. The simulator can
set the severity of the fault ((1% ~ 100%) × 100cm2),
and Table 3 shows a sample of data from a LOCA with
a breakage level of 1%. The data description is shown in
Table 4.

3.2 Verification of BNN Approach
3.2.1 Data Processing
According to the diagnosis framework of BNN (Figure 3), the
data obtained by the simulator needs to be normalized in the step
of building the data set. The purpose is to avoid the large order of
magnitude difference between parameters and reduce the
diagnosis performance of the algorithm. Data normalization is
to map the original data to the range of 0–1. In this paper, the
min-max normalization method is adopted, and the formula is as
follows (Patro and Sahu 2015):

FIGURE 9 | Loss curves of three neural networks for the secondary diagnosis model of SBN-ANN. (A) LOCA training loss curve (B) LOCA test loss curve (C) SGTR
training loss curve (D) SGTR test loss curve (E) MSLB training loss curve (F) MSLB test loss curve.
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xp � x −min
max −min

(12)

where x is the original data, xp is the standardized data, max and
min are the maximum and minimum values in the original data
respectively.

3.2.2 BNN Structure and Results
BNN is based on the integration of the traditional neural
network and Bayes’ theorem. It adopts a three-layer
structure, in which the input layer contains 12 neurons
(corresponding to the 12 parameters selected in Table 2),
the hidden layer contains 14 neurons, and the output layer
contains 10 neurons (corresponding to the 10 fault severity in
Table 4). All parameters of the BNN model are shown in
Table 5.

In this method, the moments 0, 10, 30 and 50 s after the
occurrence of four operating conditions were selected as
diagnostic time points. BNN and BPNN models were
established for each of the four moments. Considering that
BNN has multiple predicted values for one test sample, the
final output value of BNN is the predicted value with the
largest number of percentages. The results are shown in
Table 6. It is seen that although BNN has no significant
advantage in diagnostic accuracy, it is advantageous in
providing information about prediction uncertainty.
Multiple predicted results are obtained for each test sample,
which can help make more intelligent decisions in real
scenarios. Specifically, partial samples of wrong predictions

(50 s) are used as an example, where “proportion” indicates the
proportion of output values to the total number of predictions,
as shown in Table 7. BNN model samples the distribution of
weight and bias 20 times during diagnosis, so each test sample
has 20 predicted values. It can be seen from Table 7 that the
“proportion” of these wrong predictive samples is relatively
low, but the “proportion” of correct prediction results in
Table 8 reaches more than 90%. Therefore, in the real
scenarios, we can observe the multiple predicted results.
When there are several different predicted values and the
“proportion” is low, we need to combine other aspects of
the diagnostic opinion for further analysis, which is the
advantage of the BNN model.

3.3 Verification of SBN-ANN Approach
Unlike BNN, SBN-ANN adopts the hierarchical diagnosis idea.
Simplified Bayesian network and BPNN are applied for the
diagnosis of fault type and fault severity respectively.

3.3.1 SBN Diagnostic Model Construction
A Simplified Bayesian Network for the three faults is built based
on domain knowledge. Specifically, in the establishment of SBNs,
key parameters of a fault in NPP are selected based on the fault
mechanisms. Figure 6A gives an example to illustrate the process.
After the occurrence of LOCA, a decrease in pressure (RP) and
water level of the regulator (RWL), a rise in containment pressure
(CP) and temperature (CT), a rise in containment radioactivity
(CR), and a rise in-pit water level (PWL) will be observed.

FIGURE 10 | Accuracy of SBN-ANN (A) accuracy of first level diagnosis (B) accuracy of second level diagnosis.

TABLE 10 | The comparative results of the four methods.

Methods Types Ease of
modeling

Interpretability Robustness Average accuracy
(%)

Inference efficiency

BPNN DD Yes No No 75.82 Yes
BN KD No Yes Yes 62.50 No
BNN KD-DD Yes Yes Yes 73.37 Yes
SBN-ANN KD-DD Yes Yes Yes 98.75 Yes
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To verify the performance of Simplified Bayesian Network, the
models are applied to the same test set and moments as the
Bayesian neural network to diagnose the types of faults in the test
set, and the diagnostic accuracy is shown in Figure 6B. The
results show that the diagnostic accuracy is 100%. The simplified
Bayesian network exhibits a strong diagnostic capability for
fault types.

3.3.2 SBN-ANN Verification and Results
The hierarchical diagnosis method of SBN-ANN is
implemented based on the verification results in Section
3.3.1. Note in SBN-ANN, simplified Bayesian network is
used to diagnose the fault type and BPNN is used to
diagnose the fault severity. Since three kinds of faults are
selected, three neural networks are needed to diagnose their
respective severity. The hierarchical diagnosis process is
shown in Figure 7.

In this method, the moments 0, 10, 30 and 50 s after the
occurrence of four operating conditions are selected as
diagnostic time points. The method is verified using the
same testing set as the BNN. For example, in the diagnosis
model with 10 s time points, the confusion matrix of the
diagnosis results of SBN-ANN is shown in Figure 8. There
are three neural networks in the second-level diagnostic
model of SBN-ANN, and their parameter settings are
shown in Table 9. The loss curves during the model
training are shown in Figure 9, and the model converges
relatively fast. As shown in Figure 8, for the first-level
diagnosis results, all four types of samples are accurately
predicted. For the second level diagnostic results, both
LOCA and MSLB accident severity categories are accurately
predicted. In the SGTR, two LSGTRs were incorrectly
diagnosed as MSGTRs, which was due to the artificial
severity range that made the model misdiagnose when the
LSGTR and MSGTR break sizes were close to each other.
Overall, the diagnostic accuracy of the model was significantly
higher than that of BNN. Meanwhile, the first-level diagnostic
model is a simplified Bayesian network rather than a black-
box model like neural network, which has natural
interpretability and is easily accepted by nuclear regulators.
The diagnostic results at 0, 10, 30 and 50 s are shown in
Figure 10. The diagnostic accuracy of the first level is 100%,
the second level is close to 100%, and the overall diagnostic
accuracy is close to 100%, which is much higher than the
previous diagnostic performance of BNN and BPNN.

4 CONCLUSION

Knowledge-driven and data-driven are two main categories of
methodologies for intelligent fault diagnosis in nuclear power
plants. Knowledge-driven methods have good interpretability
and high robustness, but the modeling complexity is high and
the inference efficiency is low. While the data-driven methods
are simple in modeling and usually show high inference
efficiency, the interpretability and robustness are poor.
There has been a lack of research that takes full advantage

of both knowledge-driven and data-driven methods. Thus, this
paper makes an attempt to explore combinatorial approaches
for the sake of performance improvement of fault diagnosis.
Specifically, with Bayesian theory (knowledge-driven) and
neural networks (data-driven) as the basic methods, two
new fault diagnosis frameworks are proposed based on
integration or combination techniques. Comparative
analyses of BPNN and BNN, BN and SBN-ANN are given
in Section 3.2 and Section 3.3, respectively. Combined with
the diagnostic process, the comparative results of the four
methods are given, as shown in Table 10, where DD stands for
data-driven and KD stands for Knowledge-driven. In terms of
robustness, Wu et al. demonstrated the robustness of Bayesian
networks in the face of incomplete information (Wu, Tong
et al., 2018). It is shown that the comprehensive performance
of the two methods proposed in this paper is significantly
better than that of a single data-driven or knowledge-driven
method.

The first is the Bayesian Neural Network (BNN) diagnosis
framework. BNN improves the overconfidence of traditional
neural network diagnosis. The uncertainty of the data and the
uncertainty of the model are modeled using a Bayesian
formulation, and the weights and biases of the neural network
are transformed into probability distributions. The method can
give multiple diagnostic results for the same fault. When multiple
diagnostic results are inconsistent, other auxiliary methods can be
used to make further decisions. Thus, BNN is capable to make
more reasonable decisions in fault scenarios than traditional
neural networks in NPPs.

The second is the Simplified Bayesian Network-Artificial
Neural Network (SBN-ANN) diagnosis framework which
adopts a two-step hierarchical diagnosis scheme. The fault
type and fault degree are diagnosed in two steps respectively.
Considering that the existing domain knowledge is sufficient and
the diagnosis of fault types requires high interpretability, the first
step uses Bayesian networks model. The second step, on the other
hand, uses neural networks, to make the most of their strong
nonlinear fitting ability. Numerical results on the PWR
simulation show that the SBN-ANN framework performs
quite well. It gives nearly 100% accuracy in fault type
diagnosis with good interpretability of the results using SBN,
while also showing high efficiency in the diagnosis of fault
severity with BPNN. The framework successfully demonstrates
the feasibility and effectiveness in the combination of knowledge-
driven and data-driven methods.

It should be noted this work is just a start of investigation on
data and knowledge dual-drive technologies for fault diagnosis.
More combinatorial approaches are to be explored with this work
as a reference. For example, in the Bayesian Neural Network
framework, instead of using BPNN, other neural networks such
as convolution neural networks can also integrated with Bayesian
theorem to form new frameworks. Likewise, as an example built
upon the hierarchical diagnosis idea, the Simplified Bayesian
Network-Artificial Neural Network can also be extended to
plenty of new forms. More innovative methods as well as
further evaluation and applications of these methods will be
investigated in the future work.
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