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Harvesting the salinity gradient power (SGP) between concentrated brine discharged from
seawater desalination installations and seawater and converting into electric energy by
reverse electrodialysis (RED) is a promising technique. However, trace ions in brine and
seawater may affect the performance of the RED stack, and little attention has been
focused on this issue. Therefore, the influences of trace ions in seawater and concentrated
brine are analyzed in this work. The effects of these ions on power density, open-circuit
voltage, and internal resistance of the RED stack are analyzed by configuring manual
seawater and concentrated brine including K1+, Mg2+, SO4

2-, and Ca2+. Experimental
results show that divalent ions (Mg2+, SO4

2-, and Ca2+) can significantly increase the
internal resistance of the RED stack and reduce power density. Mg2+ especially has the
largest reduction in the output power of the stack. Oppositely, potassium ions (K1+) in feed
solutions will reduce the internal resistance and improve power output. In addition,
increasing the salinity gradient of feed solutions, temperature, and flow rate can
increase open-circuit voltage and power density, and reduce inner power consumption
of the RED stack. This study can provide references for the recovery of SGP in seawater
desalination plants.
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1 INTRODUCTION

Salinity gradient power (SGP) is a chemical store of energy formed from the potential difference
existing in the confluence of rivers and seas (Roldan-Carvajal et al., 2021); approximately 30 TWh of
SGP can be harvested from the principal rivers of the world (Jang et al., 2020). However, large-scale
utilization of this energy is still limited due to the poor net power density of natural water bodies
(Tufa et al., 2018). The method of converting the energy to electric energy mainly includes pressure-
retarded osmosis (PRO) (Achilli and Desalination, 2010; Ngai and Menachem et al., 2012; Helfer
et al., 2014) and reverse electrodialysis (RED) (Simões et al., 2020; Kim et al., 2021). Of these
methods, RED is a relatively feasible and potential conversion technology owing to its simple and
compact assembling (Tedesco et al., 2017), and has drawn some attention from researchers.

Most research is focused on NaCl solution based on the RED model and experiment due to the
complexity and heterogeneity of natural water components (Ortiz-Imedio et al., 2019; Jin et al.,
2021). When NaCl solution is used as a working fluid, the internal resistance of the RED stack is very
low (Moreno et al., 2018), and the maximum energy conversion efficiency of the stack can reach 83%
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(Post et al., 2008; Hu et al., 2020). Moreover, concentrations,
temperatures, and flow velocity of feed solutions strongly affect
the power density (Mei and Tang, 2017; Hu et al., 2019). In a
single RED stack, a high-power density of 3.0 W/m2 can be
achieved under the conditions of high concentration gradients
and elevated temperatures (Zhu et al., 2015; Hulme et al., 2020).
However, when natural seawater is used, the performance of the
stack is not ideal (Chon et al., 2020). Differently from pure NaCl
solution, natural seawater contains multiple ions, which affect the
performance of RED stack (Vermaas et al., 2013; Choi et al.,
2022). It is found that multiple ions are the principal reason for
the low performance of the stack (Avci et al., 2018). Many
scholars attempted to study the effect of different ions in
seawater on the performance of RED stack.

Tedesco et al. (Merino-Garcia and Velizarov, 2021) found
maximum power density of the RED stack only reached 1.6 W/
m2 when nature river water and seawater were used as feed
solutions, which was far lower than the 2.7 W/m2 of NaCl
solutions with the same concentration. The reason for the
power reduction is caused by multiple ions in the natural feed
solutions (Pintossi et al., 2021). The inner resistance of MgCl2
solution with the same molar concentration of NaCl solution
increased three times (Avci et al., 2016). Vermaas et al. (2014)
concluded that the membrane penetration was more obvious in
the presence of Mg2+ by analyzing the stack performance of NaCl
solution and MgSO4 solution. They found that multivalent ions
could reduce the electromotive force and increase the internal
resistance of the stack. Jan et al. (Post et al., 2009) conducted an
experiment by using standard grade ion exchange membrane and
monovalent selective membrane, and investigated whether SO4

2-

or Mg2+ could increase the resistance of the stack and reduce the
electromotive force of the stack. The reason for this phenomenon
is the upward transportation of the multivalent ions (Moya, 2017;
Pintossi et al., 2020). Rijnaarts et al. (2017) found that divalent
cations could increase the non-ohmic resistance and reduce the
open circuit voltage of the stack by adding Mg2+ and Ca2+ into
NaCl solution.

The above studies are based on a combination of seawater and
river water (Hong et al., 2014; Avci et al., 2018), and the
combination of concentrated seawater and seawater are not
involved. There are only a few studies on the influence of
multiple ions on the stack when concentrated seawater and
seawater are used as feed solutions. Guo et al. (2018) found
the influence order of ions coexisting with NaCl is Ca2+ > Mg2+

(>SO4
2-) > K+ in a concentrated seawater and seawater

combination. In their study, the concentration of NaCl is set
to 66 g/L. However, a wider salinity range needs to be studied if
the RED stack is used to capture the SGP between seawater and
concentrated brine discharged from seawater desalination
installation.

In our previous study, the SGP capture between
concentrated brines from desalination and seawater for
power production was proposed within a wide salinity range
(Jianbo et al., 2021). The influences of insoluble substances in
natural seawater are also investigated (Kang et al., 2022).
However, the influence of various ions in natural seawater
needs to be investigated in a wide concentration range.

Therefore, this work aimed to study the contribution of
various ions (K+, Mg2+, SO4

2-, and Ca2+) in concentrated
brine and seawater to the performance of RED stack by
adding one or various ions to feed solutions. A performance
evaluation index including power density, open-circuit voltage,
internal resistance, and other parameters of the RED stack are
compared under different ion combinations. This work can
provide some guidance for the utilization of SGE.

2 EXPERIMENT

Figure 1A illustrates the RED experimental test diagram based
on different concentrations of brine, and Figure 1B shows the
actual setup. As shown, the experimental system is mainly
composed of a RED stack, feed pumps, and testing
instruments. The principal test instruments are listed in
Table 1. The principal structural parameters of the stack are
given in Table 2. Table 3 shows the properties of ion exchange
membranes produced by the Fujifilm company. The solvent
used is of analytical grade (Sinopharm Chemical ReagentCo.,
Ltd.), with a content greater than 99.5%.

A magnetic heater and a constant temperature water bath are
used to heat the feed solution and maintain it at the desired
temperature, respectively. The temperature difference of the
solution after passing through the stack is less than 1°C. Two
peristaltic pumps with metering functions are used to draw feed
solutions to the RED stack and record their flow rate. A peristaltic
pump is used to circulate the electrode rinse solution in the
cathode, anode chamber, and the reservoir. Two differential
pressure sensors are used to test the flow resistances of feed
solutions. A conductivity meter is used to test the conductivity of
feed solutions and discharge solutions. A data acquisition unit is
used to receive the temperature signal, flow signal, and pressure
signal. An electrochemical station coupling with a current
amplifier is used to test the voltage and current of the RED stack.

Experimental procedures are described as follows. Sodium
chloride solution with the concentration of 0.5 and 2.5 mol/L
were prepared as the basic solution, in which 0.5 mol/L was used
to simulate the salinity of seawater and 2.5 mol/L was the
maximum salinity of brine discharged from desalination unit.
To study the influence of trace ions in seawater on the stack,
different kinds of ions (K+, Mg2+, SO4

2−, and Ca2+) were added to
the basic solution. In the experiment, K3Fe(CN)6 solution of
0.3 mol/L and K4Fe(CN)6 solution of 0.26 mol/L were used as
electrode leaching solution, and 1.5 mol/L sodium chloride was
used as supporting electrolyte. Ions in the experiment are listed in
Table 4.

On the basis of the above experimental data, the performances
of a RED stack can be expressed as follows.

2.1 Output Voltage

U � OCV − IRi (1)
where, U is output voltage of the RED stack, V. I is the closed-
circuit current, A.
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The internal resistance of the stack includes ohmic resistance
and non-ohmic resistance. Non-ohmic resistance includes
surface resistance caused by a concentration change in body
fluid (Vermaas et al., 2011a; Vermaas et al., 2011b). Inner
resistance of the RED stack can be expressed as

Ri � (OCV − U)
I

(2)

2.2 Power of a Reverse Electrodialysis
Stack

P � UI (3)
Power density of a RED stack is defined as

Pd � P

ARED
(4)

ARED is the effective area of all battery cells in stack, m2.
The electromotive force generated at position x in the stack is

equal to the sum of the electromotive forces of anion and cation
exchange membranes. It can be expressed as

Ecell(x) � EAEM(x) + ECEM(x) (5)
Nernst potential predicts the electromotive at x position on

both sides of the ion exchange membrane

EAEM(x) � αAEM
RT

zF
ln(γHC − CHC −

γLC − CLC− ) (6)

ECEM(x) � αCEM
RT

zF
ln(γHC + CHC +

γLC + CLC+ ) (7)

FIGURE 1 | Test system of the RED stack experiment.

TABLE 1 | Main instruments.

Numbers Instruments Specifications

1 Magnetic stirrer JB-2A
2 Electronic balance LabN6
3 Ultrapure water filter UPT-I-10T
4 Conductivity meter FE38-Standard
5 Electrochemical workstation CHI-660E
6 Constant temperature water bath HH-600
7 Electronic balance XY-1000-2C

TABLE 2 | Principal structure of the RED stack.

Components Descriptions Value Unit

RED stack Cell unit 10 —

Width 300 mm
Length 200 mm

Electrode plate Width 118 mm
Length 65 mm

Spacer Number 22 —

Thickness 0.3 mm

TABLE 3 | Properties of ion exchange membranes.

Properties AEM/CEM-type II Units

Membrane type Homogeneous —

Thickness 160 μm
Permselectivity (NaCl) 95–96 %
Permselectivity (KCl) 95–96 %
Electrical resistance (NaCl) 3.5 Ω·cm2

Electrical resistance (KCl) 6.1 Ω·cm2

Water permeation 3/3.5 ml/bar·m2·hr

TABLE 4 | Ion concentration in feed solution.

Ion type
(solvent)

Dilute brine
(mol/L)

CH = 1
(mol/L)

CH = 2
(mol/L)

CH = 3
(mol/L)

CH = 4
(mol/L)

Na+ (NaCl) 0.500 1.000 1.500 2.000 2.500
Mg2+ (MgCl26H2O) 0.054 0.108 0.162 0.216 0.270
Ca2+ (CaCl2) 0.011 0.022 0.033 0.044 0.055
K+ (KCl) 0.010 0.020 0.030 0.040 0.050
SO4

2- (Na2SO4) 0.028 0.056 0.084 0.112 0.14
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FIGURE 2 | Performance variation of the RED stack with the current. Feed temperature is set as 19°C, flow rate is 50 ml/min. 0.270 mol/L MgCl2, 0.055 mol/L
CaCl2, 0.050 mol/L KCl, and 0.140 mol/L Na2SO4 were added to 2.5 mol/L NaCl solution. 0.054 mol/L MgCl2, 0.011 mol/L CaCl2, 0.010 mol/L KCl, and 0.025 mol/L
Na2SO4 were added to 0.5 mol/L NaCl solution.

FIGURE 3 | Performance variation of the RED stack with the flow rate (Φ). Feed temperature is set as 19°C and concentrations of trace ions are as same as that in
Figure 2.
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αAEM and αCEM represent the selective permeability
coefficients of anion and cation exchange membrane,
respectively. R is the gas constant. T is Kelvin temperature.

Z is the ionic valence state. F is the Faraday constant. Γ is the
average ionic activity coefficient of the solution. In practice,
the selective permeability coefficient of ion exchange

FIGURE 4 | Schematic diagram of ion influence mechanism.

FIGURE 5 | Performance variation of the RED stack with the feed temperature. Flow rate is 50 ml/min, and concentrations of trace ions are the same as that in
Figure 2.
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membrane may change due to the influence of temperature
and humidity.

3 RESULTS AND ANALYSIS

3.1 The Influence of Adding Trace Ions on
the Performance of the Reverse
Electrodialysis stack
Figures 2A,B shows the variation law of the power density (PA)
and voltage of the RED stack (corresponding U) with the current
(I) after adding different trace ions. The slope of the curve in
Figure 2B represents the internal resistance (Ri) of the stack, and
the open circuit voltage (OCV) is the voltage when the current is
zero. It can be found that the addition of KCl can improve the
output performance of the stack. Compared with pure NaCl
solution, the maximum PA and OCV are increased by 4.8% and
0.014 V, respectively, while Ri changes little. This is related to the
ionic group of Fujifilm type II, which is designed for the exchange
of monovalent ions. Therefore, adding KCl to the basic solution

can improve the performance of the stack. Different from the
addition of KCl, the maximum PA in Figure 2A is decreased by
1.5%, 20.9%, 28.9%, and 34.1% respectively after adding Na2SO4,
CaCl2, MgCl2, and all ions to the basic solution. This effect is the
same as the research of Hong, who used seawater and river water
as feed solution (Hong et al., 2014). In addition, Ri changes little
(increased by 0.08Ω) when Na2SO4 is added to the basic solution.
The explanation for this phenomenon is that the addition of
SO4

2- only affects the membrane potential, and the uphill
transport of magnesium ions will be offset by the added Na+.
It can also be found in Figure 2B that the addition of Mg2+ and
Ca2+ are the principal reasons for the increase of Ri, which is
increased by 0.781 and 0.769Ω respectively compared with pure
NaCl solution. This is due to the low diffusion coefficient or the
shielding effect of Mg2+ and Ca2+ on the ionic groups on the
cation exchange membrane (Vermaas et al., 2014). This also
proves that the membrane resistance of CEM is more sensitive to
multivalent ions. Therefore, the divalent cations in the feed
solution should be eliminated or the structure of CEM
changed by adding some groups that hinder the passage of
multivalent ions to the CEM. Ri is increased by 0.731Ω when

FIGURE 6 | Performance variation of the RED stack with the concentration of the brine (CH). The experiment was carried out at t = 14°C, Φ = 50 ml/min. In the
experiment, one or all of 0.270 mol/LMgCl2, 0.055 mol/L CaCl2, 0.050 mol/L KCl, and 0.140 mol/L Na2SO4were added to 2.5 mol/L sodium chloride solution, one or all
of 0.054 mol/L MgCl2, 0.011 mol/L CaCl2, 0.010 mol/L KCl and 0.025 mol/L Na2SO4 were added to 0.5 mol/L sodium chloride solution. They are used as feed
solutions.
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all ions are in the basic solution, which is lower than adding Mg2+

or Ca2+ alone. This is due to the rise of conductivity of feed
solutions when all ions are added (Post et al., 2009).

3.2 Influencing Factors Analysis
3.2.1 Influence of Flow Rate
As shown in Figure 3A, the max. PA has a large increment of
17.7% with flow rate (Φ) increasing from 10 to 30 ml/min when
the feed solution is the base solution, while it increases 9.0% with
Φ increasing from 30 to 110 ml/min. As shown in Figure 3D,
OCV also increases with the increase ofΦ. The principal reason is
that the concentration polarization is weakened and the salinity
difference on both sides of the exchange membrane is more
stable, so as to increase the PA when Φ is high [39]. However,
excessive Φ will cause the loss of pump power. Therefore,
selecting the appropriate solution flow rate is conducive to
improving the net power density of the stack. As shown in
Figure 3C, Ri changes very little when Φ varies. In addition,
the phenomenon of high Ri and low PA are also found in
Figures 3A,C, which is in line with the influence law of
divalent ions on the stack. Inside, the Max. PA is reduced by
50% after adding MgCl2 to the basic solution, which is consistent
with the prediction of Diego (Pintossi et al., 2021).

As shown in Figure 3A, increasing theΦ can increase theMax.
PA of the stack. As shown in Figure 3C, the feed solution
containing Ca2+ and Mg2+ shows high Ri, resulting in a lower
Max. PA is caused by the uphill transportation of multivalent ions
(Moreno et al., 2018). Uphill transportation will lead to the
exchange of some multivalent ions and monovalent ions. For
example, in the mixed solution of NaCl and Na2SO4, one SO4

2+

and two Cl− exchange due to the electrochemical potential
difference (Vermaas et al., 2014). This part of ion exchange
will not generate Max. PA in an external circuit is shown in
Figures 4A,B. After the uphill transportation is balanced, the
electromotance is generated by the forward transportation, as
shown in Figures 4A,C. As shown in Figure 3B, the increase ofΦ
leads to a higherMax. PA, and the correspondingU at theMax. PA
also increases. As shown in Figure 3C, the Ri increases with the
increase of Φ in the presence of Mg2+. This phenomenon may be
caused by the shielding effect of Mg2+ on the ion groups on the
ion exchange membrane. The greater theΦ, the more obvious the
shielding effect. The addition of Ca2+ to NaCl solution resulted in
high Ri, but the Ri decreased with the increase of Φ. As shown in
Figure 3D, with the increase of Φ, the concentration polarization
in the stack is reduced, which causes the OCV to increase.

3.2.2 Influence of Feed Temperature
Figure 5 shows the (A) max. PA and (B) corresponding U and
(C) Ri of stack and (D) OCV varying with temperature. As
shown in Figure 4, the temperature can effectively increase the
OCV and reduce the Ri, thus increasing the Max. PA of the
stack. This is demonstrated by Eqs 6, 7. The effect of
temperature on the electromotance of the stack can be
predicted using the Nernst equation. The electromotive force
of the membrane increases with the increase of temperature. In
practical experiments, due to the limited thermal stability of the
ion exchange membrane, too high a temperature will have an

irreversible impact on the polymer materials and ionic groups.
Therefore, the effect of temperature on the Max. PA of the stack
is limited. As shown in Figure 5B, the correspondingU range at
the Max. PA is enlarged as the temperature increases. As shown
in Figure 5D, from the OCV, 35°C is a more reasonable
temperature.

3.2.3 Influence of Concentration
Figure 6 shows the (A) max. PA and (B) corresponding U and (C)
Ri of stack and (D)OCV varyingwith concentration. Increasing the
salinity gradient energy (SGE) between solutions can increase the
Gibbs energy between solutions. As shown in Figure 6A, under low
SGE, theMax. PA of all experimental groups is very small; the Max.
PA increases with the SGE increases. As shown in Figure 6B, with
the increase of SGE, the correspondingU to theMax. PA also shows
an upward trend. As shown in Figures 6C,D, increasing the SGE
between the feed solutions can reduce the Ri and increase the OCV.
This is due to the fact that the Ri of the stack is high and more
sensitive when the SGE is low. In addition, Mg2+ in feed solution
makes the sensitivity of Ri and OCV decrease.

4 CONCLUSION

In this work, the effects of trace ions in concentrated brine and
seawater on the performance of RED stack are experimentally
studied by preparing NaCl solution with the same concentration
and containing trace ions. The principal conclusions are as
follows.

Multivalent ions in feed solutions will reduce the OCV and
PA, and increase the Ri of the RED stack, especially for
multivalent cations. The influence of ions on the
performance relates to salinity gradient. A greater SGE
between concentrated solution and dilute solution means a
greater OCV, Max. PA, and a smaller Ri. Increasing theΦ of feed
solutions can maintain the stability of SGP in the compartment
and improve the output performance of the stack. However,
excessive Φ will cause Ri to become unstable. Increasing feed
temperature can improve the performance of the stack, but too
high a temperature will damage the performance of the ion
exchange membrane. Therefore, an appropriate feed
temperature should be carefully considered according to the
properties of the ion exchange membrane.
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