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With the rapid development of urban power grids, distributed renewable energy sources
and adjustable loads have increased significantly, resulting in more complex operation
conditions, increasing the difficulty of power flow calculations. The usage of artificial
intelligence technology to assist in calculating power flows for large-scale urban grids has a
wide range of application prospects. It is currently difficult to generate enough grid
operation database with controlled distribution for artificial intelligence (AI) method
research. Data is one of the important factors affecting the performance of deep
learning algorithms, and the lack of research on data distribution characteristics also
hinders the performance of deep learning algorithms. The distributional characteristics of
data sets in high-dimensional feature spaces are difficult to represent and measure, and
the algorithm design process is prone to encounter curse of dimensionality. This paper
proposed a novel method for generating databases to improve the solving efficiency of
data-driven power flow calculation problems. The proposed method removes samples
based on the characteristics of data distribution. It constructs two databases, namely the
blue noise distribution database and the variable density boundary enhanced distribution
database. Compared with the classical stochastic sampling database, the proposed
boundary-enhanced variable density (BEVD) database has significantly improved the
judgment accuracy of power flow convergence. Finally, the China Electric Power
Research Institute-36 (CEPRI-36) bus system is used to verify the effectiveness of the
proposed method. The judgment accuracy was improved by 2.91%–9.5%.

Keywords: High-dimensional space, blue noise distribution, boundaryenhanced variable density (BEVD) distribution,
Power flow calculation, Database construction

1 INTRODUCTION

As the complexity of power grid operation increases, new power systems’ safe and stable operation is
facing severe challenges. Traditional state sensing and operation control technologies are
challenging. Artificial intelligence (AI) technology is increasingly required to participate in
power grid security and stability analysis. At present, the application research of artificial
intelligence technology in power system analysis has been gradually carried out (Shi et al., 2020;
Wang et al., 2021), and it has become an inevitable trend to use big data and deep learning technology
to assist and supplement traditional time-domain simulation methods. The training and prediction
effects of deep learning are highly dependent on sufficient and reasonable datasets (Sun et al., 2017).
Among them, supervised learning, as the most mature research branch, is highly dependent on large-
scale labelled datasets and requires that each sample contains labelled information. In power systems,
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the research of database distribution and generation methods
have always been a relatively weak link in related research. When
migrating deep models and learning algorithms that have
performed well in other fields to the power system analysis,
the primary problem is the data problem (Zhang et al., 2021).

The scope of application of data problem-solving methods is
affected by data acquisition, which can be divided into actual
acquisition and simulation. In some tasks, acquisition can only
obtain samples, and adjusted or synthesized samples are
primarily meaningless. Such tasks can only maximize the
sample capacity to improve the generalization ability of the
depth model, but the marginal benefit of its enhancement
gradually decreases (Joulin et al., 2016) and the enhancement
efficiency is low, and it is prone to the class imbalance problem
(Japkowicz and Stephen, 2002; He and Garcia, 2009), which also
leads to the decrease of the generalization ability of the deep
model. In some other tasks, samples can only be supplemented by
minor adjustments of a single sample, such as in the image field.
Adjustments to databases in the image domain are called data
augmentation techniques (Cubuk et al., 2018), including rotation,
translation, cropping, and fine-tuning of colours for a single
image sample.

More general approaches include simple resampling
techniques, such as undersampling and random over-sampling
(ROS) (Batista et al., 2004), which do not add new samples to the
database. Still, other tasks, where the simulation samples are valid
in a particular area, can apply some data synthesis methods, such
as the SMOTE (Synthetic Minority Oversampling Technique)
(Chawla et al., 2002) algorithm, the ADASYN (Adaptive syn-
thetic sampling) (He et al., 2008) algorithm, and the mixup
algorithm (Zhang et al., 2017). Reference (Tan et al., 2019)
uses the Generative Adversarial Networks (GAN) method to
generate a database with a similar distribution to the original
data and extract unstable samples to supplement the original
sample set, which can quickly adjust the class ratio. However, the
above sample supplementation methods are all based on existing
samples, and the reconstructed database does not change the
cover but only changes the class ratio. In the literature (Chen
et al., 2019), a grid simulation sample generation method based
on the LSTM (Long short-term memory) algorithm was
proposed, which achieved good results in automatic sample
generation and improved the efficiency of simulation sample
generation but did not consider the sample distribution
characteristics, which made it difficult to evaluate the
generated sample set.

For power systems, data can be obtained either through
measurement or simulation. The continuous power flow
method (Chiang et al.) shows that samples extending
continuously beyond the acquisition range are also meaningful
in power grid analysis. Therefore, the collected data can be
effectively supplemented with simulation-generated data for
grid analysis applications. The calm conditions allow more
operation space when constructing the database, and the room
for improving the quality of the database is also larger. For such
tasks, improving the performance of machine learning algorithms
by tuning databases rather than tuning model parameters has
become a new research direction known as “data-centric machine

learning” (Alvarez-Melis and Fusi, 2020). Research has been
carried out on the problem of solving partial differential
equations satisfying the conditions for sampling methods to
improve the generalization ability of the model (Tang et al.,
2021). However, in power grid applications, research on high-
quality database generation methods is still very rare. The
research on data problems has become a critical technical
problem restricting the application of deep learning methods
in power grid analysis, which needs to be improved and solved
urgently. Because of this, the blue noise sampling in computer
graphics (Dippé and Wold, 1985; Cook, 1986; Yuksel, 2015) is
borrowed in this paper to enhance the quality of the database
from the perspective of its distributional characteristics, and a
sample generation method that considers distributional
characteristics in a high-dimensional feature space is
implemented using a weighted sample elimination method.
For deep learning methods, whether the database distribution
characteristics are better or worse is reflected in the model’s
generalization performance after training. The task selected in
this paper is convergence discrimination of power flow
calculation. Using deep learning to judge the convergence of
power flow calculation is a classification process. The trained deep
model classifies the grid operation samples as feasible or not. The
model can be regarded as an implicit representation of the
boundary of the feasible region of power flow (Hu et al.,
2017). Fitting the boundary of the feasible region is the basis
for subsequent power system analysis and planning.

In this paper, for the first time, the distribution characteristics
of the database suitable for the task of convergence discrimination
of grid tide calculation are analyzed, the sampling rules of high-
dimensional blue noise and BEVD under the framework of the
elimination method are proposed, and sampling in high-
dimensional feature space considering the distribution
properties is realized. Finally, the CEPRI36 node model is used
to verify the effectiveness of the database generation method and
the correlation between the database distribution characteristics
and the generalization performance of the deep learning method.
The experiments specifically verify two conclusions.

1) The distribution characteristics of the dataset do have an
impact on the generalization performance of the deep learning
algorithm, and that the randomly generated database with the
lowest generation cost is not the optimal distribution
characteristic, so it is meaningful to investigate the
distribution characteristics of the database.

2) It is verified that the BEVD distribution characteristics
proposed for the classification problem with attention to
boundaries have a positive impact on the generalization
performance of deep learning algorithms.

2 DISTRIBUTION CHARACTERISTICS OF
EXISTING DATABASES AND TARGET
DISTRIBUTION CHARACTERISTICS
The database required for artificial intelligence methods is
composed of samples, which are a collection of features that
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have been quantified. These features are collected from some
objects or tasks that need to be processed. The sample is usually
represented as a vector x ∈ Rn, where each entry xi of the vector is
another feature. For the task of power flow convergence
discrimination, the samples need to contain all the
information that can be used for power flow calculation. The
result of the power flow calculation is the power flow operating
point, which is the combination of the power and voltage of all
nodes in the system.

{{Pi,Qi,Vi, θi}∣∣∣i � 0, 1, . . . ,N} (1)
where N is the number of nodes in the system. The power flow
calculation process is to specify one part of the features and find
another part of the features through the power flow equations.
Usually, the input features are the node injection power, that is,
the active power and reactive power of the PQ node, and the
active power and voltage of the PV node. Therefore, the number
of feature values, i.e., the dimensionality of the feature space, is
two times the number of nodes. Whether the power flow
calculation can converge to a feasible solution is the label of
this task, and the label and feature together constitute a sample
required for supervised learning. Specifically, the sample is
labelled as convergent if the remaining values can be obtained
by computing the power flow equations, and conversely, the
sample is labelled as non-convergent if the power flow equations
cannot be solved by the computational program.

From a geometric point of view, a sample can be regarded as a
data point in a high-dimensional feature space, and a sample set is
a point cloud in a high-dimensional feature space. The
distribution characteristic of the database is the distribution
characteristic of the sample point cloud. This paper’s research
on distributional properties aims to improve the generalization
ability of deep learning methods. In the task of convergence
discrimination of power flow calculation, the generalization
ability is reflected in the discrimination accuracy of the model
to the test set. In the following, the distribution characteristics of
the existing database are analyzed from a specific task. Based on
this, a potentially better distribution characteristic is proposed as
the goal of the generation method in this paper.

2.1 Analysis of the Distribution
Characteristics of Existing Databases
The existing power system operation data are mainly obtained
based on offline simulation or online collection. The original
online and offline databases cannot meet the requirements of
deep learning. Specifically, the online analysis data are collected
under the actual operation condition, which constitutes a large
amount of sample data but is unevenly distributed, thus showing
the characteristics of many similar samples with low importance;
the offline analysis data are obtained under the manually adjusted
extreme operation mode, which constitutes a sample with solid
typicality. However, the data volume is small, and it is challenging
to cover all the typical working conditions of the grid. The
distribution of samples consisting of two types of data in the
operational feature space is shown in Figure 1.

The red triangle represents the offline analysis sample, the
green triangle represents the online analysis sample, and the
yellow squares represent samples that need replenishment. The
operation space is divided into three regions by two lines: the
green line indicates the boundary of online operation, and the
resulting region one is the online operation region; the red line
shows the boundary of stable operation of the grid, and the region
three outside the boundary indicates the characteristic region of
infeasibility or fault instability; the middle region two indicates
the characteristic region where online operation does not occur,
but the stable operation is possible. The samples in region two
and region three provide critical information in the tasks related
to the stability boundary, so the corresponding sample
supplement operations need to be done.

2.2 Blue Noise Distribution
In computer graphics, the blue noise distribution is recognized as
the best distribution property.

As shown in Figure 2, the left figure shows the point set
formed by blue noise sampling, and the right figure shows the
point set formed by random sampling. Many researchers
default to random sampling as a form of uniform sampling;
in fact, pure randomness does not give the desired results, and
points tend to clutter the region and leave blank space, while
blue-noise sampling makes the sample points uniform as
possible. Assuming that each sample point can represent
the information in a certain range, the blue noise
distribution can cover a larger feature space. In contrast,
the distribution formed by random sampling shows the
characteristics of some regions are blank while some other
regions are denser in points. The online data of the power grid
presents a more heterogeneous distribution characteristic.
Many duplicate samples are represented in the feature space
as a dense cloud of points in a region. At the same time, there
are no non-converging samples in the online data, so the
region of non-convergence in the feature space is blank. In
this paper, the blue noise distribution characteristic refers to
the distribution characteristic in the high-dimensional space.
Since the configurable number of samples in the feature space
is much larger than the usually used sample set capacity as the

FIGURE 1 | illustration on grid operation sample sets.
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dimensionality grows, forming a significant sparsity, the blue
noise characteristic referred to in this paper cannot cover the
entire feature space uniformly but can only ensure that no two
sample points are too close to each other. Under the above
assumptions, the blue noise distribution is still a distribution
characteristic covering the largest feature space range with the
same sample size.

2.3 Boundary-Enhanced Variable Density
Distribution
Unlike the classical classification problem in computer vision, this
task is more concerned with the situation near the boundary
between classes. Specifically, the task of power flow solvable
discrimination is consistent with the definition of a binary
classification problem. The input feature x of the database is
the node injected power of the grid. The class label y of the output
is the presence or absence of a solution. And the performance
metric is the accuracy of the discrimination, where the DL model
classifies the input represented by x to the output
represented by y.

However, unlike the classical binary classification problem,
in the task of power flow solvable discrimination, the input
features x moves continuously toward another class without
passing through the other class, and there is a clear boundary
between the two classes. In contrast, in the classical
classification problem of computer vision, input features x
belonging to one class movecontinuously toward another class,
usually passing through a region that belongs to neither class 1
nor class 2, and the samples in this region are also considered
as invalid samples and discarded. For example, identify
whether the picture is of a “cat” or a “dog”. The input
feature X moves from the “cat” class to the “dog” class,
passing through the “non-cat” and “non-dog” classes, which
do not usually appear in the database either. Thus, a more
precise interpretation of the physical meaning of the task is
formed: fitting the viable domain boundary.

The deep learning model makes sense of the task from the data
and acquires knowledge. A database that better meets the
requirements of this task should provide more boundary
information. There should be more sample points near the
boundary, fewer samples far from the boundary, and the
distribution characteristics of this database are referred to
as BEVD.

3 DATABASE GENERATION METHODS
CONSIDER-ING DISTRIBUTION
CHARACTERISTICS
This paper implements the database generation method
considering the distribution characteristics by the weighted
sample elimination method. This section introduces the
definition and algorithmic process of the weighted sample
elimination method. Then the rules for implementing each of
the two distributions proposed in the previous section in the
framework of the elimination method, i.e., the weight calculation
formula, are designed.

3.1 Weighted Sample Elimination Algorithm
The algorithm that takes a set of samples as input and selects a
subset as output is sample elimination. The method of assigning
weights to all samples and eliminating the samples with the
highest weights until the target number of samples is reached
is called weighted sample elimination. The weighted sample
rejection method is an algorithmic framework that can
generate databases with different distribution characteristics by
replacing the core rules. In other words, for sampling tasks
targeting different distribution characteristics, the workflow of
the elimination method is the same, and the only difference is the
design of the weighting formula that determines the elimination
order. The core idea of the algorithm is to guarantee the overall
distribution characteristics of the sample point set by ensuring its
local characteristics so that the elimination rule only needs to
consider the nearby region of each sample point, which means
that the weight calculation is only relevant to the sample points in
its nearby region. Therefore, an efficient algorithm
implementation requires two relatively common data
structures: a spatial division structure for quickly finding the
neighboring samples and a priority queue for selecting the sample
with the highest weight. In the implementation of this paper, the
kd-tree and the heap are used, respectively, and the detailed steps
of the algorithm are shown in the following Figure 3. The first
three operations are preparing the input terms of the algorithm,
including the generation of the original database and the
calculation of the parameters, the former of which requires the
use of a power system simulation program. The middle two
operations are the preparation of the algorithm and, finally, the
loop operation of eliminating samples. The weight value of each
sample is formed by the joint contribution of other points in the
range, which is calculated as follows.

wi � ∑n
j�0
wij (2)

where wi denotes the weight of sample i, wij denotes the weight
contributed by each sample in the range to sample i, and the
search range is a spherical region with sample point si as the
center and radius r, and n is the number of other sample points in
this range. The formula for wij reflects the elimination rule and is
given in the next section.

When a sample is eliminated, only the weights of a few
samples within its search range need to be adjusted, which

FIGURE 2 | Blue noise sampling and stochastic sampling in the two-
dimensional plane.
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means that the weights wij contributed by two sample points to
each other are subtracted, so the computational complexity is
significantly reduced. To further optimize the algorithm
execution speed, the hardware parallel acceleration method
provided by the tbb library is introduced in the kd-tree
construction process. The various data structures and
hardware accelerations mentioned above allow the
algorithm to be practically applied in a limited high-
dimensional space without suffering the curse of
dimensionality.

3.2 Design of Weighting Formula for Blue
Noise Sampling
The blue noise distribution in the high-dimensional feature space
is a distribution that keeps no two sample points too close to each
other, such that duplicate or similar samples can be eliminated
under such a rule. The blue noise database covers the largest range
in the feature space or has the largest amount of information for
the same sample size. Here, the sample point distance represents
the similarity between two samples, which is the similarity
between two operation methods for the grid operation sample.
The distance between two sample input features is in vector form
in practical calculation, such as the distance between sample Xi

[xi1,xi2,. . .,xin] and sample Xj[xj1,xj2,. . .,xjn] is calculated by the
formula

dij

�����������∑n
k�0

(xik − xjk)2√
(3)

The formula for calculating the weight function wij can be
expressed as

wij � ⎛⎜⎝1 − d
�

ij

2rmax

⎞⎟⎠α (4)

Where, d
�

ij � min(dij, 2rmax). α is the parameter that indicates the
strength of the influence of dij on wij. dij can be the Euclidian
distance as well as the geodesic distance on a surface or any other
function. The value of rmax depends on the sampling domain and
the number of target samples. In 2D and 3D,

rmax ,2 �
������
A2

2
�
3

√
N

√
(5)

rmax ,3 �
������
A3

4
�
2

√
N

√
(6)

where A2 and A3 are the area and volume of the sampling
domain, N is the number of target samples.

In higher dimensions we use a conservative estimate for rmax,d

with d > 3, assuming that the hypervolume of the domain Ad can
be completely filled with hyperspheres with no overlap. Note that
this assumption causes overestimation of the rmax values. The
hypervolume Vd of a hypersphere with radius r is Vd � Cdrd,
where Cd is a constant such that Cd � Cd−2(2π/d) with C1 � 2
and C2 � π, resulting

rmax ,d �
����
Ad

CdN
d

√
(7)

The above scanning radius is also referred to as the maximum
Poisson disc radius in Poisson disc sampling.

3.3 Design of Weighting Formula for
Boundary-Enhanced Variable Density
Sampling.
Traditional variable density sampling requires specifying the
interval location and density. In contrast, the location is the
area near the boundary in this task. The explicit representation of
the boundary is the result of power flow calculation convergence
discrimination, which cannot be known in advance. Obtaining a
more accurate representation of the boundary requires a higher
density of sampling near the boundary, and sampling near the
boundary requires information about the location of the
boundary, which is the main difficulty of the problem. In this
paper, we use the label information and the distance information
between sample points to make a judgment on the location of the
sample points where the distance between sample points
represents the similarity between two samples, and for grid
operation samples, it can represent the similarity between two
operation states. The distance of two samples in this paper is
calculated using vector operation representation form, such as
sample Xi = [xi1,xi2,...,xin] and sample Xj = [xj1,xj2,...,xjn] are
calculated as

dij �
�����������∑n
k�0

(xik − xik)2
√

(8)

The weight of the mutual contribution between the two
samples is calculated by the formula：

wij �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 yi � yj

−⎛⎜⎝1 − d
�

ij

2r
⎞⎟⎠β

yi ≠ yj
(9)

where yi and yj are the label value of the samples and
d
�

ij � min(dij, 2r). β is the parameter indicating the strength of
dij’s effect on wij. There are two cases according to whether the
label information is the same or not, the samples in the range with
the same class do not contribute to the weight value, while the
samples in the range with different classes contribute a negative
value to it.

The purpose of this is to make the effect of samples with
different classes tend to retain the sample more, and the more
samples with different classes in the range and the closer the
distance, the more that sample point should be retained. As
shown in Figure 4 below, the dot’s color indicates the class, and
the circle indicates the scanned area of the three sample points,
where the same class surrounds the sample point s1, and its
weight value w1 is the maximum value of 0. s2 and s3 sample
points contain sample points of different classes within the
scanned area. The sample points of different classes around s2
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are more and closer, so their weight values will be smaller, which
means that they are retained with the highest priority.

Since it is difficult to visualize the high-dimensional feature
sample set, the morphology of the variable density distribution
characteristics is demonstrated here by a 2-dimensional
arithmetic example, as shown in Figure 5. The two images to
the left of the arrow are the algorithm’s input database and output
database, respectively. The color is the label information, which
indicates the class to which the samples belong. The algorithm
prioritizes eliminating sample points far from the boundary, thus
forming BEVD distribution characteristic, which characterizes
the data as more sample points near the boundary and a smaller

number of sample points in the region far from the boundary.
The right side of the arrow is the probability density heat map of
the output database, which can reflect the target distribution
characteristics more intuitively. The color scale on the right side
indicates the number of samples in the region. The brighter it is,
the more samples there are, and the distribution characteristics
show a higher density near the boundary between classes.

4 DATABASES QUALITY COMPARISON
METHOD

In this paper, the study of database distribution characteristics
aims to improve the performance of deepmodels, so the quality of
databases cannot be compared only from some statistical
characteristics of databases but needs to be put into the
complete training-testing process of deep learning. The ability
to train a model with higher discriminative accuracy is the
indicator to evaluate the database distribution characteristics.

The specific comparison method is shown in Figure 6 below.
The databases to be compared are used as training sets. The same
deep network structure is trained. The same learning algorithm is
used to update the parameters in the network. The training result
models corresponding to the training set are obtained, and then
the same test set is evaluated to obtain the discrimination
accuracy of each model. The difference in database quality in
this paper is only reflected in the distribution characteristics of the
database, so the sample size should be kept consistent when used
as the training set.

The confusion matrix generally represents the test results of
the binary classification problem, as shown inTable 1, where m, n
represents the true number of samples in category one and
category 2, respectively, and s, t represents the number of

FIGURE 3 | Algorithm flow chart of weighted sample elimination.

FIGURE 4 | Schematic of the rule of BEVD sampling.
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samples predicted to be in two categories in the test classification;
w is the sum of all samples; a, b represent the number of samples
correctly classified and c, d represent the number of samples
incorrectly classified. From the confusion matrix, it can be
directly observed which class of samples the problem occurs in
the discriminations.

Amore detailed analysis is possible from the confusion matrix,
which is divided into the following three indicators.

Accuracy is the proportion of correct predictions among the
total number of cases examined. The formula for quantifying
binary accuracy is:

ACC � a + b
w

(10)

Precision is for classification results and is defined as the
probability that all samples predicted to be of a certain class have
a real label of that class.

PRECclass1 � a
s

(11)
PRECclass2 � c

t
(12)

Recall is for real labels and is defined as the probability that all
samples that are actually of a class are classified as samples of that
class.

RECclass1 � a
m

(13)

RECclass2 � b
n

(14)

5 EXPERIMENTAL VERIFICATION

5.1 Case Introduction
The grid model used in this paper is CEPRI36, and the specific
structure is shown in Figure 7, in which some nodes are connected
to capacitors or reactors not involved in regulation. There are 18
nodes involved in the regulation of generating units or loads. The
nodes inject power as input feature values, for a total of 36 variables,
i.e., the sample contains a feature dimension of 36 dimensions.

The original database generation method required for the
weighted sample rejection method: The feature values are
formed by randomly specifying the nodes to inject power and
dynamic balance pre-processing. The power flow calculation

FIGURE 5 | Input/output of the algorithm in 2D arithmetic and Density heat map of BEVD sampling results.

FIGURE 6 | Overall diagram of database comparison method.

TABLE 1 | Confusion matrix of the two-category task.

Classification results

Class 1 Class 2 Total

Real
Label

Class 1 a c m
Class 2 d b n
Total s t w
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program automatically generates the label information based on
the feature values. The resulting original database contains 15,000
samples. THE WEIGHTED ELIMINATION METHOD
GENERATED a BEVD database of 5000 samples and a blue
noise database of 5000 samples, respectively; the comparison
group randomly sampled 5000 samples from the original
database. The above three subsets of the original database are
used as the train set in the experiment. The test set contains 2000
samples different from the original database, of which 1000
samples each for the two classes of convergence and non-
convergence. Two types of deep learning models are selected.

Model 1: Multilayer Perceptron Model (MLP). The MLP is a
forward-structured artificial neural network that maps a set of
input vectors to output vectors and consists of multiple layers
of nodes, each fully connected to the next layer. In addition to
the input nodes, each node is a processing unit with a
nonlinear activation function.
Model 2: Convolutional neural network (CNN). CNN
contains two convolutional layers and two fully connected
layers. Each node is a processing unit with a nonlinear
activation function except the input node.

The experimental environment of the database generation
program is 3.30Gis Hz, the CPU is AMD Ryzen9 5900 HS,
and the kd-tree construction process calls tbb to achieve 8-
core parallel acceleration, which takes less than 1 min to
generate 5000 samples from 15000 samples elimination, which
can meet the practical application.

The weighted elimination algorithm is implemented in C++ to
ensure the performance; the deep learning algorithm is
implemented through the pytorch framework.

5.2 RESULTS AND DISCUSSION

The confusion matrix of the experimental results is shown in
Figure 8. Combining different databases and deep models
forms six confusion matrixes of model test results.
According to the combination of different databases and
depth models to form six sets of confusion matrices of
model test results, where the column direction of each
confusion matrix represents the model’s predicted class, and
the row direction represents the real class to which the samples
belong. Class 0 in the figure is convergence, and class 1 is non-
convergence. The color shade of each cell of the matrix
indicates the number of samples. The discrimination
accuracy of the deep model trained by the BEVD database
is significantly higher than the other two in the non-
convergence class. And the case of the blue-noise database
compared with the random sampling database is that the blue-
noise database is better under the MLP model and the random
sampling database is better under the CNN model.

The collated 2-level metrics are shown in Table 2, where P0
and P1 denote the precision of converged and non-converged
samples, R0 and R1 denote the recall of converged and non-
converged samples, and A denotes the accuracy. In terms of
accuracy A, the combination of the variable density boundary

FIGURE 7 | CEPRI36 grid model topology connection diagram.
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enhancement database with both depth models is the highest;
while the blue noise database and the random sampling database
present performance related to the deep model, with the blue
noise database performing better under the MLP model and the
random sampling database performing better under the CNN
model. In terms of precision and recall, the error in
discrimination mainly occurs in the error of discriminating
non-converging samples as converging samples.

The above experimental results show that the generalization
performance of the deep learning algorithm has the following
relationship with the database.

1) The generalization performance of deep learning algorithms is
determined by the database together with the model and
algorithm. The discriminative accuracy of the BEVD
database with the combination of both models is the
highest and has similar values, while the accuracy of the
other two datasets with the combination of different deep
models are significantly different, with a difference of 5.55%
and 4.5%, respectively

2) For the class boundary fitting task like convergence
discrimination of power flow calculation, the database with
BEVD distribution is more suitable for the demand.

3) The uniformity of the database distribution has no significant
effect on the generalization performance of this task. The blue-
noise database is more uniform than the random sampled
database, The blue-noise database is more uniform than the
random sampled database, and the discriminative accuracy of
the MLP combined with the former is 6.45% higher than that
of the combination with the latter, while the CNN with both
has the opposite result of 3.6% lower.

Among the above three conclusions, the third one is
inconsistent with intuition. This phenomenon can be
understood as follows: if the labels of the database are
continuously changing in the feature space, then a more
uniformly distributed database should have a positive impact
on the generalization performance of the deep model, while the
labels in the trend convergence discrimination task are step-
changing at the boundaries, and the positions of the samples in

FIGURE 8 | Confusion matrix for the results of experiment.

TABLE 2 | Level 2 indicator for the results of experiment.

Train set Deep model P0/% P1/% R0/% R1/% A/%

BEVD database MLP 88.7 98.3 98.5 87.4 92.95
CNN 87.3 98.3 98.6 85.7 92.15

random sampling database MLP 75.6 99.4 99.6 67.9 83.75
CNN 82.8 98.9 99.1 79.5 89.3

blue noise database MLP 84.2 98.6 98.9 81.5 90.2
CNN 78.1 98.6 99 72.4 85.7
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the feature space have different levels of importance. Therefore,
the uniformity of the database distribution does not show a
significant relationship with the model generalization
performance.

The weighted sample elimination algorithm has the following
features:

1) It Allows specifying the number of samples in the target
database, and the termination condition of the algorithm
can be controlled.

2) Good scalability to generate databases with different
distribution characteristics by designing different sample
weight calculation formulas.

3) It Supports the sampling domain as an arbitrary stream shape,
which can meet the pre-processing operations such as the
active balance of the original data.

4) The computational complexity of the algorithm is O(NlogN)
and the storage complexity is O(N), which can be applied in
high-dimensional feature space.

6 CONCLUSION

In order that the application of artificial intelligence in grid
analysis can be further developed and model algorithms can
be compared and optimized in a unified database, this paper
researches the impact of the distribution characteristics of power
flow database on the performance of deep learning generalization,
and the methods for generating database considering the
distribution characteristics, with the following contributions:

1) A database generation method T considering distribution
characteristics in high-dimensional feature space is
proposed, which can effectively reduce the computational
complexity and storage complexity by typical data structure
design and parallel acceleration of hardware.

2) The sample weight calculation rules for blue noise distribution
and BEVD distribution in high-dimensional feature space are
proposed and applied in the framework of the weighted

elimination method, which can realize blue noise sampling
and BEVD sampling in high-dimensional feature space.

3) The requirements of the power flow convergence
discrimination problem on the database distribution
characteristics are analyzed, and it is verified that the deep
model trained by the variable density boundary-enhanced
distribution database has apparent advantages in handling
this task. The judgment accuracy was improved by
2.91%–9.5%.

Improving the generalization performance of learning models
from the perspective of improving the quality of databases
belongs to the field of data-centered machine learning. The
research results of this paper can lay the foundation for the
study of database distribution characteristics of classification
problems focusing on boundaries.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

XM: conceptualization, methodology, software, writing—original
draft. YL: validation, writing—review and; editing. DS: resources,
project administration, investigation. SH: data curation,
supervision, software. FZ: visualization.

FUNDING

This work was supported by State Grid Corporation of China
Science and Technology Project—Research on Evaluation and
Verification Technology of Artificial Intelligence Model for
Power Flow Adjustment and Stability Discrimination of Large
Power Grid—under Grant 5100-202155343A-0-0-00.

REFERENCES

Alvarez-Melis, D., and Fusi, N. (2020), Database Dynamics via Gradient Flows in
Probability Space. 12. doi:10.13334/j.0258-8013.pcsee.181622

Batista, G. E. A. P. A., Prati, R. C., and Monard, M. C. (2004). A Study of the
Behavior of Several Methods for Balancing Machine Learning Training Data.
SIGKDD Explor. Newsl. 6, 20–29. doi:10.1145/1007730.1007735

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). SMOTE:
Synthetic Minority Over-sampling Technique. jair 16, 321–357. doi:10.1613/
jair.953

Chen, J., Chen, Y., Tian, F., Guo, Z., and Li, T. (2019). The Method of Sample
Generation for Power Grid Simulation Based on LSTM. Proc. CSEE 39,
4129–4134. (in Chinese).

Chiang, H.-D., Flueck, A. J., Shah, K. S., and Balu, N. C. P. F. L. O. W. A Practical
Tool for Tracing Power System Steady-State Stationary Behavior Due to Load
and Generation Variations.10(2):623-634. doi:10.1109/59.387897

Cook, R. L. (1986). Stochastic Sampling in Computer Graphics. ACM Trans.
Graph. 5, 51–72. doi:10.1145/7529.8927

Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., and Le, Q. V. (2018).
Autoaugment: Learning Augmentation Policies from Data. 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), arXiv
preprint arXiv:1805.09501.

Dippé, M. A., and Wold, E. H. (1985). Antialiasing through Stochastic Sampling.
Proc. 12th Annu. Conf. Comput. Graph. Interact. Tech., 69–78. doi:10.1145/
325334.325182

Haibo He, H., and Garcia, E. A. (2009). Learning from Imbalanced Data. IEEE
Trans. Knowl. Data Eng. 21, 1263–1284. doi:10.1109/tkde.2008.239

He, H., Bai, Y., Garcia, E. A., and Li, S. (2008).ADASYN: Adaptive Synthetic
Sampling Approach for Imbalanced Learning. 2008 IEEE international joint
conference on neural networks. IEEE, 1322–1328. doi:10.1109/ijcnn.2008.
4633969

Hu, W., Zheng, L., Min, Y., Dong, Y., Yu, R., and Wang, L. (2017). Research on
Power System Transient Stability Assessment Based on Deep Learning of Big
Data Technique. Power Syst. Technol. 41 (10), 3140–3146. (in Chinese). doi:10.
13335/j.1000-3673.pst.2017.1889

Japkowicz, N., and Stephen, S. (2002). The Class Imbalance Problem: A Systematic
Study1. Ida 6, 429–449. doi:10.3233/ida-2002-6504

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 91984210

Meng et al. Database Generation Method

https://doi.org/10.13334/j.0258-8013.pcsee.181622
https://doi.org/10.1145/1007730.1007735
https://doi.org/10.1613/jair.953
https://doi.org/10.1613/jair.953
https://doi.org/10.1109/59.387897
https://doi.org/10.1145/7529.8927
https://doi.org/10.1145/325334.325182
https://doi.org/10.1145/325334.325182
https://doi.org/10.1109/tkde.2008.239
https://doi.org/10.1109/ijcnn.2008.4633969
https://doi.org/10.1109/ijcnn.2008.4633969
https://doi.org/10.13335/j.1000-3673.pst.2017.1889
https://doi.org/10.13335/j.1000-3673.pst.2017.1889
https://doi.org/10.3233/ida-2002-6504
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Joulin, A., Van Der Maaten, L., Jabri, A., and Vasilache, N. (2016).Learning Visual
Features from Large Weakly Supervised Data. European Conference on
Computer Vision. Springer, 67–84. doi:10.1007/978-3-319-46478-7_5

Shi, Z., Yao, W., Zeng, L., Wen, J., Fang, J., Ai, X., et al. (2020). Convolutional
Neural Network-Based Power System Transient Stability Assessment and
Instability Mode Prediction. Appl. Energy 263, 114586. doi:10.1016/j.
apenergy.2020.114586

Sun, C., Shrivastava, A., Singh, S., and Gupta, A. (2017). Revisiting Unreasonable
Effectiveness of Data in Deep Learning Era. in Proceedings of the IEEE international
conference on computer vision, 843–852.doi:10.1109/iccv.2017.97

Tan, Bendong., Yang, Jun., Lai, Qiupin., Xie, Peiyuan., Li, Jun., and Xu, Jian. (2019).
Data Augment Method for Power System Transient Stability Assessment Based
on Improved Conditional Generative Adversarial Network. Automation Electr.
Power Syst. 43 (1), 149–157. (in Chinese). doi:10.7500/AEPS20180522004

Tang, K., Wan, X., and Yang, C. (2021). DAS: A Deep Adaptive Sampling Method
for Solving Partial Differential Equations. arXiv preprint arXiv:2112.14038.
doi:10.48550/arXiv.2112.14038

Wang, Zhengcheng., Zhou, Yanzhen., Guo, Qinglai., and Sun, Hongbin. (2021).
Transient Stability Assessment of Power System Considering Topological
Change: a Message Passing Neural Network-Based Approach. Proc. CSEE 44
(07), 2341–2350. (in Chinese).

Yuksel, C. (2015). “Sample Elimination for Generating Poisson Disk Sample Sets,”
Comput. Graph. Forum., 34, 25–32. doi:10.1111/cgf.12538

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D. (2017). Mixup: Beyond
Empirical Risk Minimization. arXiv preprint arXiv:1710.09412.

Zhang, Y., Zhang, H., Li, C., and Pu, T. (2021). Review on Deep Learning
Applications in Power System Frequency Analysis and Control. Proc. CSEE
4110, 3392–3406+3665. (in Chinese).

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Meng, Li, Shi, Hu and Zhao. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 91984211

Meng et al. Database Generation Method

https://doi.org/10.1007/978-3-319-46478-7_5
https://doi.org/10.1016/j.apenergy.2020.114586
https://doi.org/10.1016/j.apenergy.2020.114586
https://doi.org/10.1109/iccv.2017.97
https://doi.org/10.7500/AEPS20180522004
https://doi.org/10.48550/arXiv.2112.14038
https://doi.org/10.1111/cgf.12538
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

	A Method of Power Flow Database Generation Base on Weighted Sample Elimination Algorithm
	1 Introduction
	2 Distribution Characteristics of Existing Databases and Target Distribution Characteristics
	2.1 Analysis of the Distribution Characteristics of Existing Databases
	2.2 Blue Noise Distribution
	2.3 Boundary-Enhanced Variable Density Distribution

	3 Database Generation Methods Consider-ing Distribution Characteristics
	3.1 Weighted Sample Elimination Algorithm
	3.2 Design of Weighting Formula for Blue Noise Sampling
	3.3 Design of Weighting Formula for Boundary-Enhanced Variable Density Sampling.

	4 Databases Quality Comparison Method
	5 Experimental Verification
	5.1 Case Introduction

	5.2 Results and Discussion
	6 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


