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Editorial on the Research Topic

Nanoconfined Fluids in Energy Applications

Nanoconfined fluids (NCFs) (Sun et al., 2020) exhibit a rich array of physical and chemical
phenomena. Formally, a fluid is nanoconfined if it is situated in an environment in which the
distance between solid boundaries is of nanometer scale in at least one spatial dimension. NCFs can
be confined within a diversity of geometries, including those with cross-sections that are planar [e.g.,
nanochannels (Neek-Amal et al., 2016)], circular (e.g., nanotubes), or irregular [e.g., various
nanopores (Thiruraman et al., 2020; Hassani et al., 2021a; Hassani et al., 2021b)]. NCFs are
remarkable for a number of reasons. Chief among these (potentially interconnected) phenomena are
surface effects [owing to the high surface-area-to-volume ratios typical of NCF systems (Wang et al.,
2019; Wang and Hadjiconstantinou, 2019)], finite-size effects [owing to the comparability of the
confining length scale with the fluid internal length scale (Wang and Hadjiconstantinou, 2015)], and
even quantum-mechanical effects [owing to the rough comparability of the confining length scale
with the thermal de Broglie wavelength (Tocci et al., 2014)]. As a consequence of these effects, NCFs
may exhibit many distinctive characteristics in their mass, momentum, and energy transport as
compared to their unconfined (bulk) counterparts.

Research on NCFs presents a number of new challenges and opportunities, ranging from
experimental design, to simulation methodology, to approaches for uncertainty quantification
for material and transport properties of fluids under nanoconfinement (Li and Wang, 2022).
Such work is critical for advancing fundamental physics and chemistry; from an engineering
perspective, this work can also promote the development of novel energy-related technologies, with
applications ranging from energy storage [e.g., supercapacitors (Yoo et al., 2011; Salanne, 2017)], to
energy harvesting [e.g., solar evaporation (Liu et al., 2018; Chen et al., 2019) or electricity generation
via reverse electrodialysis (Vanoppen et al., 2018; Zhu et al., 2021)], to enhanced oil and gas recovery
(Lee et al., 2016), to membrane-based separation processes (Gong et al., 2021). A schematic
illustration of energy applications of NCFs is presented in Figure 1. In this Research Topic, we
aim to present Frontier research in experimental, computational, and theoretical approaches to
thermodynamics; mass, momentum, and energy transport; flow physics; and phase behavior of
NCFs, especially in energy-related applications. We also aim to discuss and identify research
challenges in the field, worthy of the community’s broader attention. The main topics of interest in
this Research Topic include 1) reviews on recent developments in the field of NCFs, 2) novel
experimental and theoretical investigations of NCFs, 3) novel computational studies of NCFs, and 4)
NCFs in energy-related applications. In this Research Topic, four high-quality papers were accepted
for publication, which we briefly summarize below.

Cui et al. study diffusion of nanoconfined fluids as motivated by problems of shale gas production.
In particular, the authors investigate the diffusivity of high-temperature and high-pressure CH4 gas
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in silica nanochannels by employing molecular-dynamics
simulations. Their results show that the diffusivity is clearly
anisotropic, owing to restricted motion of fluid molecules near
solid walls. Furthermore, their work reveals the dependence of the
diffusivity on the channel height and wall potential interaction.

Zhou et al. make a contribution to the fundamental theory of
nanoconfined fluids by studying the specific heat capacity of
water in graphene nanochannels. They find a commensurability
effect within the specific heat capacity data as channel height
decreases to 1.7 nm. The anomalous heat capacity of
nanoconfined water (as compared to bulk water) originates
from the combination of configurational features (as assessed
via density distributions and hydrogen bonds) and vibrational
features (as assessed via the vibrational density of states).
Specific heat capacity is an important thermophysical
property related the heat transfer performance of fluids, and
thus this work has significance for thermal energy-related
applications of nanoconfined fluids.

Yu et al. study nanoconfined fluids in the context of oil
production from reservoirs with a matrix permeability of 68.1 mD
and an average pore throat radius of 60 nm. They carry out
hydrocarbon gas gravity drainage experiments in two dimensions
to investigate the influence of reservoir heterogeneity on the gas-oil
interface and sweep characteristics of injected gas. In their
experiments, they directly observe the miscible zone of crude oil
and hydrocarbon gas, and find that the interlayer has a shielding
influence that can destabilize the gas-oil interface and miscible zone.

Sun et al. report onmembrane separation with two-dimensional
nanoporous materials and study the transport of confined gas in
nanopores. They investigate a graphene-hexagonal boron
nitride bilayer nanopore to realize high-permeance molecular
sieving by virtue of quasi-unidirectional molecular transport
through nanopores. The quasi-unidirectional molecular
transport results from the discrepancy in the gas adsorption
abilities on the two sides of bilayer nanopores. The bilayer pore
in their work exhibits 3.7 times higher selectivity of CO2/CH4 as

FIGURE 1 | Schematic illustration of nanoconfined fluids in energy applications. Inserted figures are adapted from references (Yoo et al., 2011; Lee et al., 2016; Liu
et al., 2018; Gong et al., 2021; Zhu et al., 2021).
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compared to the single-layer graphene nanopore of the
same size.

In summary, this Research Topic highlights the promising
prospects of nanoconfined fluids in energy applications,
showcases several areas of exciting current research, and
also highlights several open questions in this field. We
sincerely hope that more researchers will invest effort in
the study of nanoconfined fluids, from basic theory to

application, and especially in the context of energy
applications.
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