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Multiple 5G base stations (BSs) equipped with distributed photovoltaic (PV) generation
devices and energy storage (ES) units participate in active distribution network (ADN)
demand response (DR), which is expected to be the best way to reduce the energy cost of
5G BSs and provide flexibility resources for the ADN. However, the standalone PV-
integrated 5G BS has the characteristics of wide distribution, small volume, and large load
fluctuations, which will bring strong uncertainty to the ADN by directly participating in the
DR. Therefore, a system architecture for multiple PV-integrated 5GBSs to participate in the
DR is proposed, where an energy aggregator is introduced to effectively aggregate the PV
energy and ES resources of 5G BSs. Then, a two-stage optimal dispatch method is
proposed. Specifically, in the large-timescale DR planning stage, an incentive mechanism
for multiple PV-integrated 5G BSs to participate in the DR is constructed based on the
contract theory, which ensures that multiple 5G BSs respond to and satisfy the peak-
shaving demand of the ADN. In the small-timescale online energy optimization stage,
based on the energy sharing mode among 5G BSs, a Lyapunov-based online energy
optimization algorithm is proposed to optimize the shared energy flow between the internal
layer and the interactive layer of 5G BSs, which further improves PV absorption and
ensures operation stability of ES in the 5G BS. Simulation results show that the proposed
two-stage optimal dispatch method can effectively encourage multiple 5G BSs to
participate in DR and achieve the win–win effect of assisting the ADN peak-shaving
and low-carbon economic operation of 5G BSs.

Keywords: multiple PV-integrated 5G BSs, active distribution network, demand response, Lyapunov optimization,
energy sharing

1 INTRODUCTION

The explosive growth of mobile data and the popularization of smart devices have accelerated the
deployment of fifth-generation (5G) communication systems (Singh et al., 2020). However, while
ensuring wide network coverage and high communication service quality, the high-power
consumption characteristic of 5G base stations (BSs) not only imposes high electricity bills for
communication operators but also exacerbates the non-negligible carbon emission problem
(Piovesan et al., 2019). On the one hand, 5G BSs are equipped with 64/32-channel massive
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multiple-input multiple-output (MIMO) to realize high
bandwidth and high communication traffic (Fu et al., 2019;
Chih -Lin et al., 2020; Zhou et al., 2021), which causes the
power consumption of a 5G BS to be 2–3 times higher than
that of an ordinary 4G BS. On the other hand, the deployment
density of 5G BSs is much higher than that of 4G BSs as 5G uses
higher-frequency bands for communication (Han et al., 2021).
Moreover, the standard 5G BS demands a power of more than
11.5kW (Israr et al., 2021), and the number of 5G BSs in China is
expected to reach 13.1 million by 2025, with a total power
consumption of 200 billion kWh. Therefore, the high-power
consumption characteristic of 5G BSs has become the primary
constraint to the ultra-dense network deployment in the 5G era,
and it also impacts the stable operation of an active distribution
network (ADN) (Pedram and Wang, 2019).

At present, powering BSs through distributed energy resources
(DERs), such as photovoltaic (PV) generation and energy storage
(ES), has become a common solution to reduce on-grid power
consumption and build low-carbon wireless networks (Zhou
et al., 2017; Hu et al., 2020). Although the introduction of
DER devices increases the investment cost of communication
operators, the cheapness and cleanliness of PV energy will greatly
reduce the energy cost of BSs, and the spatio-temporal shifting
characteristic of ES can further improve the absorption capacity
of renewable energy. Moreover, 5G BSs are already equipped with
battery backups during construction to ensure stable operation in
case of power supply interruptions, which can be considered the
inherent ES (Yong et al., 2021a; Tang et al., 2021). However,
under the normal power supply status, large-scale distributed ESs
in 5G BSs are always idle (Liao et al., 2020a; Ci et al., 2020).
Therefore, on the basis of ensuring the uninterrupted power
supply of the 5G BSs, if the energy source of the ES can be
dispatched, the energy consumption flexibility of 5G BSs will be
stimulated, and the high asset utilization of ES resources can be
realized.

With the continuous transition from the traditional grid to
smart grid (SG) and the widespread deployment of user-side
smart meters (Khan and Jayaweera, 2019), PV-integrated 5G BSs
participating in ADN demand response (DR) has become an
irreplaceable way to reduce energy cost (Li et al., 2021). On the
premise of ensuring the reliability of the 5G BS power supply, if
the ES and PV resources in 5G BSs can be coordinated, more
flexible dispatchable resources can be tapped to provide a
powerful guarantee for the real-time balance of the source and
load in the ADN. Moreover, communication operators can
reduce electricity bills or obtain DR subsidy based on the
time-of-use (TOU) tariff mechanism by fully exploiting the
power utilization flexibility of PV-integrated 5G BSs and fully
dispatching idle ES resources, thus reducing the energy cost of a
5G communication network (Yong et al., 2021b). Despite the
advantages mentioned previously, the multiple PV-integrated 5G
BSs participating in DR still confront several critical challenges,
which are summarized as follows.

1) Because of the different spatio-temporal distributions of
communication services (Huq et al., 2020) and light intensity,
different degrees of power imbalance will occur in different PV-
integrated 5G BSs, which increases the difficulty of 5G BS energy

dispatch in the ADN. In addition, as 5G BSs belong to
communication operators, the direct energy dispatch of 5G
BSs by the ADN is difficult to guarantee the communication
service quality of telecom users and involves user security and
privacy leakage issues.

2) The participation of multiple 5G BSs in the DR increases the
operation and maintenance cost of ESs and impairs the
participation enthusiasm of communication operators.
Meanwhile, the power supply demands of 5G BSs with
different spatio-temporal distributions vary greatly, and the
randomness of PV energy and BS load further exacerbates the
uncertainty of ES dispatchable capacity. How to effectively
encourage and quantify the participation of 5G BSs in DR is
an important problem to be solved.

3) During the participation of multiple 5G BSs in the DR, the
imbalance between PV generation and load demand will lead to
an over-discharge of ESs or the curtailment of PV energy. In
addition, the accurate prediction of PV generation and load
demand increases the difficulty of ensuring the real-time
energy balance and puts higher requirements on real-time
energy scheduling decisions (Wang et al., 2020). How to
manage the energy of 5G BSs participating in DR is another
challenge.

Multiple 5G BSs can be incentivized to participate in the DR
through energy aggregators. It was pointed out that energy
aggregators can aggregate BSs into a limited number of groups
and act as third parties to dispatch BSs to participate in the DR
(Xu et al., 2015). By introducing energy aggregators, encouraging
and quantifying the participation of 5G BSs in the DR can be
modeled as a social welfare maximization problem based on the
contract theory, that is, maximizing the total utility of energy
aggregators and BSs. A contract theory–based direct trading
framework was proposed by Zhang et al. (2016) to address the
lack of enthusiasm for direct trading between small-scale
electricity suppliers and electricity consumers. Given the low
enthusiasm of electric vehicles to participate in the DR, a contract
theory–based charging rate allocation criterion and access control
scheme were proposed by Zhang et al. (2018). However, the
application of the contract theory can only ensure that multiple
5G BSs participate in the DR regularly and quantitatively in a
large timescale but cannot guarantee the low-carbon and stable
operation of 5G BSs in a small timescale.

The energy optimization of 5G BSs aims to alleviate the
imbalance between PV generation and load demand by fully
utilizing renewable energy, thereby reducing the energy cost and
maintaining the stability of ES. An energy sharing model with
energy aggregators as physical carriers was proposed by Guo et al.
(2014), which allowed BSs to coordinate with each other for
addressing energy imbalance by simultaneously transmitting and
receiving energy to and from energy aggregators. Considering the
unpredictability characteristics of the shared energy of 5G BSs,
the Lyapunov optimization algorithm can be used to optimize the
energy sharing among BSs online and in real-time. Under the
energy sharing mode, Liu et al. (2017) proposed an online energy
management method based on Lyapunov optimization, aiming to
fully absorb renewable energy and control the energy flow of the
nano-grid group in real-time. Zhong et al. (2019) proposed an
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online Lyapunov optimization–based control algorithm to
optimize the shared energy in real-time in the multi-
user–shared centralized ES system.

As the construction of 5G BSs is still in its infancy, research on
the optimal energy dispatch of multiple PV-integrated 5G BSs
participating in the DR is still relatively lacking. Motivated by the
aforementioned challenges, we propose a two-stage optimal
dispatch method for multiple PV-integrated 5G BSs
participating in the ADN DR to fully dispatch PV and ES
resources by combining Lyapunov optimization and contract
theory. The main contributions of this study are summarized
as follows.

1) The system architecture of multiple PV-integrated 5G BSs
participating in the ADN DR is proposed, where the energy
aggregator is introduced as the third party to motivate and
assist the PV-integrated 5G BSs to participate in the DR.

2) A contract theory–based DR incentive mechanism is
proposed to guide the discharge behavior of 5G BSs with
different discharge capacities in the large-timescale DR
planning stage. The peak-shaving demand of the ADN and
the profit of BSs can be satisfied by optimizing the
contract items.

3) A Lyapunov-based online energy optimization algorithm is
proposed to make real-time decisions on the shared energy of
multiple 5G BSs in the small timescale. The complex energy
sharing problem is transformed into a linear programing
problem, and only real-time information is required to
make online decisions.

The remainder of this study is organized as follows. Section 2
introduces the proposed system architecture and methodology of
multiple PV-integrated 5G BSs participating in the ADN DR.
Section 3 elaborates the proposed contract theory–based large-
timescale DR planning mechanism. In Section 4, the small-
timescale online energy optimization algorithm for multiple

PV-integrated 5G BSs based on Lyapunov optimization is
proposed. Section 5 analyzes the numerical results, followed
by the conclusion in Section 6.

2 SYSTEM ARCHITECTURE AND
METHODOLOGY

2.1 System Architecture
The system architecture of multiple PV-integrated 5G BSs
participating in the ADN DR is shown in Figure 1, which
consists of a 5G communication network, an ADN, and an
energy aggregator. The 5G communication network comprises I
PV-integrated 5GBSs, which is denoted as I � {BS1, ..., BSi, ..., BSI}.
Each 5G BS is equipped with an ES unit and a distributed PV
generation device, denoted as ESi,∀BSi ∈ I and PVi,∀BSi ∈ I ,
respectively. Because of the intermittent and volatile nature of PV
energy, its high penetration in the ADN will lead to risk of
overvoltage and continuous fluctuations in electricity prices.
Therefore, we assume that the PV output from multiple PV-
integrated 5G BSs can only interact with the energy aggregator to
indirectly participate in the ADN DR. The ADN can provide a
conventional power supply for the BSs and encourage the aggregator
to provide auxiliary services such as frequencymodulation and peak-
shaving during peak and valley load periods, but is unable to directly
dispatch and control the energy resources of 5G BSs. Fortunately, the
aggregator plays an intermediary role between the 5G
communication network and the ADN and acts as a DR agent to
encourage 5G BSs to participate in the DR and assist in energy
sharing among 5G BSs. Under the coordination of the aggregator,
the ADN and the 5G communication network are connected
through power lines and communication links to support the
interaction of energy flow and information flow (Lu et al., 2020).

1) Information flow interaction: in the DR planning stage, the
incentive price signal of the aggregator and DR results of 5G
BSs can be shared through two-way communication links. In
the online energy optimization stage, the energy sharing
requirements and results of 5G BSs also can be shared
through two-way communication links.

2) Energy flow interaction: with the assistance of the aggregator,
5G BSs can be used as response loads or sources. Specifically,
5G BSs can serve as typical prosumers of the ADN, which can
both generate and consume electricity.

FIGURE 1 | System architecture of multiple PV-integrated 5G BSs
participating in the DR.

FIGURE 2 | Timescale for multiple 5G BSs participating in the DR.
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In this study, we explore how the aggregator encourages and
assists multiple 5G BSs to participate in the ADN DR during
peak load periods. Since the DR during peak load periods and
the real-time energy management of 5G BSs are optimization
problems on different timescales, the participation of 5G BSs in
the DR includes two stages, that is, DR planning and online
energy optimization. As shown in Figure 2, we utilize a multi-
timescale model (Yu et al., 2021) to divide the peak load period
into T time slots, that is, small timescale, with length τ, the set of
which is defined as T � {1, ..., t, ..., T}. Consecutive T0 time slots
are combined into a time interval, that is, large timescale, the set
of which is defined as M � {1, ..., m, ...,M}. Therefore, the set of
time slots contained in the m − th time interval can be denoted
as T(m) � {(m − 1)T0 + 1, (m − 1)T0 + 2, ..., mT0}. At the
beginning of each interval, the aggregator designs a contract
as an incentive mechanism to encourage the BSs to participate in
the DR according to the discharge capacity of the 5G BSs. In
each time slot, the aggregator performs the online energy
optimization of 5G BSs based on the optimal contract
determined in the large timescale.

2.2 Large-Timescale Demand Response
Planning
In the DR planning stage, a contract theory–based large-
timescale DR planning method is proposed, which takes the
peak-shaving demand of the ADN as the constraint and
maximizes social welfare to obtain the optimal discharge
power of 5G BSs participating in the DR. Specifically, as the
DR agent, the aggregator needs to coordinate multiple 5G BSs
with discharge capacity to provide peak-shaving services during
the peak load period. Because of the differences in power
consumption, PV energy, and the state of charge (SoC) of
ES, 5G BSs show different discharge capacities. Therefore, the
aggregator will design different contract items for BSs with
different discharge capacities to encourage them to respond to
the peak-shaving demand of the ADN. Each contract item
stipulates the relationship between the discharge power and
reward. Each BS will select a contract item matching its type to
provide stable power to obtain the best utility. The details of the
contract design and optimization will be introduced in
Section 3.

2.3 Small-Timescale Online Energy
Optimization
In the online energy optimization stage, we focus on the impact of
the real-time imbalance between the PV energy and load demand
of BSs participating in the DR on the stable operation of ES. In the
small timescale, the PV energy is first used to supply the load
demand of the BS. When the PV energy is balanced with the load
demand, the ES only needs to stably participate in the DR
according to the contract item. When the PV energy is more
than the load demand, surplus PV energy will be generated, which
will affect the stable output of the ES and may cause PV energy
abandonment. When the PV energy is less than the load demand,
a load gap will be generated. To satisfy the communication

reliability requirements, the ES needs to respond to the
demands of the ADN while balancing the BS load gap, leading
to over-discharge of ES. In addition, since the PV energy and load
demand of BSs are usually independent, some BSs may lack
sufficient PV energy to satisfy the load demand, while other BSs
may abandon surplus PV energy because of the inability of
complete absorption. Therefore, the aggregator is introduced
as a shared energy carrier to support energy sharing among
multiple 5G BSs, and a small-timescale online energy
optimization algorithm is proposed to optimize the imbalance
energy between the PV energy and load demand of multiple 5G
BSs. The specific procedures will be introduced in Section 4.

3 CONTRACT THEORY–BASED DEMAND
RESPONSE PLANNING

3.1 Base Station Type Modeling
In this study, we assume that the BS with more remaining ES
energy and lower load demand has a larger discharge capacity and
is more willing to participate in the DR to obtain higher rewards.
For the aggregator, BSs can be classified into different types based
on the discharge capacity. Assuming that in the m − th time
interval, I 5G BSs can be classified into I BS types by arranging
their discharge capacity in ascending order. The set of BS types
can be denoted as Θ(m) � {θ1(m), ..., θi(m), ..., θI(m)}, where
θi(m) is the discharge capacity of BSi and
θ1(m)≤/≤ θi(m)≤/≤ θI(m).

The discharge capacity of a BS is determined by historical
statistics of the source-load imbalance energy and ES energy in
the first time slot of the m − th time interval (Wang et al., 2018).
After the DR, the remaining ES energy should be greater than the
minimum requirements of the ES discharge depth, which can be
expressed as

Ei(tm0 ) + ci − pi(m) · T0τ ≥Emin, t
m
0 � (m − 1)T0 + 1, (1)

where tm0 is the first time slot of them − th time interval. Ei(tm0 ) is
the initial ES energy in time slot t0. T0τ is the duration of the time
interval. pi(m) is the discharge power of BSi in the m − th time
interval. pi(m) · T0τ is the total discharge electricity. ci is the
source-load imbalance margin, which is determined by the
difference between the historical average PV energy and the
load demand. When the historical average PV energy is
greater than the load demand, ci is a positive value. Otherwise,
ci is a negative value. Emin is the lower bound of the remaining ES
energy. According to (1), the discharge power of BSi satisfies

pi(m)≤ Ei(tm0 ) − Emin + ci
T0τ

, tm0 � (m − 1)T0 + 1. (2)

Therefore, the BS type of BSi can be quantified as

θi(m) � Ei(tm0 ) − Emin + ci
T0τ

, tm0 � (m − 1)T0 + 1. (3)

Considering the information security and privacy, the BS type
of a specific BS is unknown to the aggregator, which means that
the information is asymmetric (Zhou et al., 2019a). We assume
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that the aggregator can learn that there are a total of I types of BSs,
and a BS belongs to type θi(m),∀θi(m) ∈ Θ with probability Pi,
that is, ∑I

i�1Pi � 1,∀BSi ∈ I .

3.2 Contract Formulation
The aggregator can design a contract including I different
contract items for I types of BSs based on the contract theory
to incentivize BSs to participate in the DR. For a type θi(m) BS,
the aggregator pays a corresponding reward ri(m) for the
discharge power pi(m) involved in the DR and specifies the
performance-return correlation through the contract item
(pi(m), ri(m)). The contract is denoted as π �
{(pi(m), ri(m)),∀BSi ∈ I}.

The principle of the aggregator contract design and BS
contract signing is to maximize their own utility. Considering
there are I types of 5G BSs, the utility of the aggregator is the
subsidies for dispatching all response electricity minus all
payment rewards, which is given by

UA({pi(m)}, {ri(m)}) � I∑
i�1
Pi(T0τλ(m)pi(m) − ri(m)), (4)

where λ(m) is the feed-in tariff of electricity in the m − th time
interval. T0τλ(m)pi(m) is the DR subsidy received by the
aggregator. The inequality T0τλ(m)pi(m) − ri(m)≥ 0 is always
true for ∀BSi ∈ I , which means that the BSs participating in the
DR are beneficial to the aggregator. Otherwise, the aggregator will
lose momentum to aggregate energy of 5G BSs.

The utility of the type θi(m) BS which accepts the contract
item (pi(m), ri(m)) is defined as the received reward minus the
cost of discharging electricity, which is given by

UBS
i (pi(m), ri(m)) � θi(m)f(ri(m)) − T0τξpi(m), (5)

where ξ is the cost coefficient of discharging loss (Dragicevic et al.,
2014). θi(m)f(ri(m)) is the value of ri(m) for type θi(m) BS,
where the function f(ri(m)) is a monotonically increasing
concave function of ri(m) and represents the reward
evaluation. Without the loss of generality,f(ri(m)) is defined
as a quadratic function, that is, f(ri(m)) � −ar2i (m)/2 + bri(m),
where a and b are positive constants which enable f(ri(m)) to
satisfy the constraints of f(0) � 0, f′(ri(m))> 0, and
f″(ri(m))< 0.

According to the principle of contract design and signing, the
problem of incentivizing 5G BSs to participate in the DR is
transformed into the social welfare maximization problem. The
expected social welfare is defined as the total utility of the
aggregator and I BSs, which is given by

SW({pi(m)}, {ri(m)}) � UA({pi(m)}, {ri(m)})
+ I∑I

i�1PiU
BS
i (pi(m), ri(m)). (6)

3.3 Optimization Problem Modeling
The aggregator faces three constraints from the BS side when
optimizing the contract design, namely, the individual
rationality (IR) constraint, the incentive compatibility (IC)
constraint, and the monotonicity constraint (Chen and Zhu,

2017). The IR constraint means that the BSs should receive
non-negative utility after signing the contract and
participating in the DR. The IC constraint means that a BS
can only obtain maximum utility when signing the contract
item designed for its own type. The monotonicity constraint
means that the higher the BS type, the higher the reward will
be. Therefore, the social welfare maximization problem is
formulated as

P1: max{(pi(m),ri(m))} SW({pi(m)}, {ri(m)})
s.t.C1: θi(m)f(ri(m)) − T0τξpi(m)≥ 0,

C2: θi(m)f(ri(m)) − T0τξpi(m)≥
θi(m)f(ri′(m)) − T0τξpi′(m),

C3: 0≤ r1(m)< . . . < ri(m)< . . . < rI(m),
C4: pi(m)≤ θi(m),
C5: ∑I

i�1
pi(m) � R(m) ∀i, i′ ∈ {1,/, I},

(7)

where C1, C2, and C3 are the IR constraint, IC constraint,
and monotonicity constraint, respectively. C4 means that
the discharge power demand stipulated in the contract
should not exceed the discharge capacity of the BS. C5 is
the peak-shaving demand constraint for power balance,
where R(m) is the peak-shaving demand in the m − th
time interval.

3.4 Problem Transformation and Optimal
Contract Solution
The formulated optimization problem includes I IR constraints
and I(I − 1) IC constraints, the complexity of which is absolutely
high. To facilitate the solution of the problem, the Contract
Feasibility Necessary and Sufficient Condition Theorem (Zhou
et al., 2019b) is used to reduce the dimensionality of IR
constraints and IC constraints.

3.4.1 Individual Rationality Constraint Dimensionality
Reduction
The utility of the type θi(m)(i ≠ 1) BS should satisfy

θi(m)f(ri(m)) − T0τξpi(m)≥
θi(m)f(r1(m)) − T0τξp1(m)≥
θ1(m)f(r1(m)) − T0τξp1(m)≥ 0,

(8)

where the first inequality satisfies the IC constraint, the second
inequality satisfies the BS type definition, and the third inequality
satisfies the IR constraint. Combining the first and third
inequalities, we can draw that if the type θ1(m) BS satisfies
the IR constraint, the BSs with higher types will automatically
satisfy the IR constraint. Therefore, only one IR constraint is
retained through IR constraint dimensionality reduction, that is,
θ1(m)f(r1(m)) − T0τξp1(m)≥ 0.

3.4.2 Incentive Compatibility Constraint
Dimensionality Reduction
We consider three adjacent BS types, that is,
θi−1(m)< θi(m)< θi+1(m), the utilities of which should satisfy
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θi+1(m)f(ri+1(m)) − T0τξpi+1(m)≥
θi+1(m)f(ri(m)) − T0τξpi(m), (9)
θi(m)f(ri(m)) − T0τξpi(m)≥
θi(m)f(ri−1(m)) − T0τξpi−1(m). (10)

Based on ri−1(m)< ri(m)< ri+1(m), we have
θi+1(m)f(ri+1(m)) − T0τξpi+1(m)≥
θi+1(m)f(ri−1(m)) − T0τξpi−1(m). (11)

Combining (9) and (11), it can be further concluded as

θi+1(m)f(ri+1(m)) − T0τξpi+1(m)≥ θi+1(m)f(ri−1(m))
−T0τξpi−1(m) ≥/ ≥ θi+1(m)f(r1(m)) − T0τξp1(m). (12)

Therefore, we can derive that all IC constraints hold if the IC
constraint between the adjacent types holds. Through IC
constraint dimensionality reduction, the number of IC
constraints will be reduced from I(I − 1) to I − 1.

3.4.3 Optimal Contract Solution
Based on the aforementioned analysis, P1 is rewritten as follows:

P2: max{(pi(m),ri(m))} SW({pi(m)}, {ri(m)})
s.t.C6: θ1(m)f(r1(m)) − T0τξp1(m)≥ 0,

C7: θi(m)f(ri−1(m)) − T0τξpi−1(m)≤
θi(m)f(ri(m)) − T0τξpi(m),

C3, C4, C5∀i ∈ {1,/, I}.

(13)

By checking the Hessian matrix, it can be known that the
objective function of P2 is concave. Because the
difference between two concave functions is involved in
C7, P2 cannot be solved directly by convex optimization.
Therefore, we adopt the concave–convex process (CCP)
algorithm (Wei et al., 2016) to transform P2 into a convex
optimization problem. Denote Fi(ri(m)) � θi(m)f(ri(m)),
which can be differentiable with regards to ri(m). Then,
Fi(ri(m)) can be approximated by the first-order Taylor
series expansion as

Fi(ri(m)) ≈ Fi(ri,0[s]) + ∇Fi(ri,0[s])(ri(m) − ri,0[s]), (14)
where ri,0[s] represents the initial point in the s − th iteration.
Therefore, C7 is converted to the difference between a concave
function and an affine function, which is expressed as

~C7: θi(m)f(ri−1(m)) − T0τξpi−1(m)
≤ θi(m)[Fi(ri,0[s]) + ∇Fi(ri,0[s])(ri(m) − ri,0[s])] − T0τξpi(m).

(15)
By replacing C7 with ~C7, P2 is transformed into a convex

optimization problem. In the s − th iteration, the local optimal
solutions r̂i[s] and p̂i[s] can be obtained by solving the
transformed convex optimization problem. Then, the initial
point of the Taylor series expansion in the (s + 1) − th
iteration is defined as ri,0[s + 1] � r̂i[s], and the new local
optimal solutions are derived until the iteration stop condition
is met, that is, the change in the expected social welfare is less than
or equal to a certain threshold, which is given by

SW({p̂i[s + 1]}, {r̂i[s + 1]}) − SW({p̂i[s]}, {r̂i[s]})≤ ε. (16)
Then, the iteration is terminated and the contract design is

completed. The discharge power and corresponding reward of 5G
BSs participating in the DR can be obtained based on the contract.

4 LYAPUNOV-BASED ONLINE ENERGY
OPTIMIZATION

4.1 Dynamic Energy Queue Model
On the basis of obtaining the optimal discharge power of 5G BSs
participating in the DR, we analyze the energy flow of BSs in the
small timescale and propose the energy sharing strategy among
multiple 5G BSs to further reduce the energy cost of the 5G
communication network. Specifically, we classify the BSs into
energy output BSs and energy input BSs, where energy output BSs
share energy to absorb the surplus PV energy and energy input
BSs receive the shared energy to balance the load gap. We define
BS+ and BS− as the sets of energy output BSs and energy input
BSs, respectively. The load demand and the PV energy of BSi in
time slot t are denoted as Li(t), t ∈ T(m) and Si(t), t ∈ T(m),
respectively. The surplus PV energy of BSi in time slot t is denoted
as Ci(t), t ∈ T(m), which is given by

Ci(t) � {min(Si(t) − Li(t), Cmax), BSi ∈ BS+

0, BSi ∈ BS−
i
, (17)

where Cmax is the maximum surplus PV energy limited by the
transmission line capacity, and the energy sharing among BSs
obeys the following principles.

FIGURE 3 | Energy flow of 5G BSs.
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1) For BSi ∈ BS+, the shared energy only comes from Ci(t), and
ESi does not participate in energy sharing. When there is no
load gap in other BSs, Ci(t) and ESi will participate in the DR
together.

2) For BSi ∈ BS−, the input energy can only be used to balance
the load gap to reduce the discharge depth of ESi and cannot
participate in the DR.

Therefore, in the process of energy sharing, BSi ∈ BS+ can
share energy to other energy input BSs for absorbing surplus PV
energy, and BSi ∈ BS− can balance the load gap by obtaining
input energy to reduce the excessive utilization of ESi energy. It is
to be noted that when the input energy is insufficient to balance
the load gap, the ESi will increase the discharge energy to satisfy
the load demand for BSi ∈ BS−. The energy flows of BS+ and
BS− are shown in Figure 3.

The set of shared energy of BSs in time slot t can be defined as
X(t) � [X1(t), X2(t), . . . , XI(t)], where Xi(t) is the shared

energy of BSi. Denote Xi(t) as Xi(t)+ if Xi(t)> 0, which
means the surplus PV energy Ci(t)> 0. Denote Xi(t) as
Xi(t)− if Xi(t)< 0, which means BSi confronts the load gap.
The power balance constraint and upper/lower bound constraint
of Xi(t) can be expressed as

∑
i
Xi(t) � 0 and 0≤ |Xi(t)|≤Xmax, (18)

where Xmax is the maximum transmission energy of the shared
energy. In addition, based on the basic principle of energy
sharing, the shared energy should satisfy

Xi(t) � { 0≤Xi(t)+ ≤Ci(t), BSi ∈ BS+

−(Li(t) − Si(t))≤Xi(t)− < 0, BSi ∈ BS− . (19)

Without the energy sharing mode, the set of discharge energy
of ESs in time slot t is denoted as B(t) � [B1(t), B2(t), . . . , BI(t)].
The discharge energy of ESi in time slot t is given by

Bi(t) � {pi(m) · τ, BSi ∈ BS+

min([pi(m) · τ + Li(t) − Si(t)], Bmax), BSi ∈ BS− ,

(20)
where Bmax is the maximum discharge energy, which depends on
the maximum discharge power of ES.

The energy level of ES can be regarded as an ES queue, the
length of which represents the remaining energy of the ES. We
define the set of ES queues in time slot t as
E(t) � [E1(t), E2(t), . . . , EI(t)], where Emin ≤Ei(t)≤Emax.
According to the energy flow of BS+ and BS−, the dynamic
update equation of Ei(t) can be further obtained as

Ei(t + 1)�{Ei(t)−(Bi(t)+Xi(t)+−Ci(t)), BSi ∈ BS+

Ei(t)−(pi(m)·τ+Li(t)−Si(t)+Xi(t)−), BSi ∈ BS− .

(21)
E(t) is called to be mean rate stable (Zhou et al., 2019c) if it
satisfies

lim
t→+∞

E{|Ei(t)|}
τ

� 0,∀i ∈ {1,/, I}. (22)

The reason for ensuring the stability of ES queues during 5G
BSs participating in the DR is that the frequent and excessive
discharge of ESs will seriously shorten the life span and increase
the maintenance cost of ES.

4.2 Online Energy Optimization Problem
Formulation
The objective of the online energy optimization problem is to
realize the full absorption of PV energy by energy sharing among
5G BSs, while ensuring the stability of ES queues. The PV
absorption rate is denoted as the percentage of PV energy that
can be absorbed by 5G BSs, which is given by

Kpcr(t) � ∑i(Xi(t)+ +Ni(t))∑iLi(t) , (23)

whereNi(t) is the self-produced PV energy Si(t) absorbed by the
load demand of BSi in time slot t, and Ni(t) � min(Si(t), Li(t)).

FIGURE 4 | PV output of 5G BSs.

TABLE 1 | Simulation parameters.

Project Attribute Value

PV generation Capacity/kWp 10
Power generation/kWh 64.8227

ES unit Capacity/kWh 20.24
Maximum discharging power/kW 10.24
Lowest level of SoC/% 30
Cost coefficient of discharge loss 0.14

ES initial SoC/% BS1 38
BS2 39
BS3 43
BS4 46
BS5 48
BS6 52
BS7 55
BS8 56
BS9 59
BS10 61
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Furthermore, the time-average PV absorption rate can be
described as

�Kpcr(t) � lim
T0→∞

1
T0

∑mT0

t�(m−1)T0+1
∑i(Xi(t)+ +Ni(t))∑iLi(t) . (24)

The focus of online energy optimization is formulated to
improve the PV absorption rate during the whole peak load
period to minimize the energy cost of multiple 5G BSs
participating in the DR by real-time decision-making on the
shared energy among BSs, which can be expressed as

P3: max
Xi(t)+

�Kpcr(t)
s.t. (18), (19), (21), (22), ∀i, t.

(25)

As P3 is a time-coupling optimization problem due to the
long-term constraints, traditional methods, such as
stochastic optimization and dynamic programming, will
suffer from the problem of dimensionality. Lyapunov
optimization is an effective method to solve long-term
optimization problems, which can transform the coupled
long-term optimization problem into an independent
single-slot deterministic sub-problem. Compared with

traditional methods, Lyapunov optimization requires less
prior information and poses lower computational
complexity (Liao et al., 2020b). Therefore, we propose a
Lyapunov-based online energy optimization algorithm for
multiple 5G BSs participating in the DR.

4.3 Lyapunov-Based Problem
Transformation and Online Energy
Optimization Algorithm
The Lyapunov function is defined as L(E(t)) � ∑iEi(t)2/2, which
represents a scalar measure of the remaining energy in ES queues.
To reflect the stability of the ES queues, we define the one-slot
conditional Lyapunov drift as the conditional expected change of
the Lyapunov function between two adjacent time slots, which is
given by

Δ(E(t)) � E{L(E(t + 1)) − L(E(t))|E(t)}. (26)
As (25) is a maximization problem, we define the drift-minus-

reward (Li et al., 2020) to maximize the PV absorption rate while
ensuring the queue stability, which is given by

TABLE 2 | Optimal contract parameters.

5G BS Discharge capacity/kW Response power/kW BS utility Aggregator utility Social welfare

1 1.5 1.5 0.67 0.45 1.12
2 2.0 2.0 1.01 0.64 1.65
3 2.5 2.5 1.37 0.84 2.21
4 3.0 3.0 1.75 1.04 2.79
5 3.5 3.5 2.15 1.24 3.39
6 4.0 4.0 2.55 1.45 4.00
7 4.5 4.5 2.97 1.65 4.68
8 5.0 5.0 3.40 1.85 5.25
9 5.5 5.5 3.84 2.06 5.90
10 6.0 6.0 4.29 2.26 6.55
Summation 37.5 37.5 24 13.48 37.54

FIGURE 5 | Feasibility of the optimal contract for 5G BSs participating in DR.
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P4: min
Xi(t)+ ,Xi(t)−

Δ(E(t)) − VE{Kpcr(t)}
s.t.(18), (19), (21), ∀i, t,

(27)

where V is a non-negative weight parameter used to make a
tradeoff between ES queue stability and PV absorption rate
maximization. In the case of all possible E(t) and V≥ 0, the
drift-minus-reward is upper-bounded by

Δ(E(t)) − E
⎧⎨⎩V · ∑i

(Xi(t)+ +Ni(t))
∑

i
Li(t)

⎫⎬⎭
≤∑

i

E{Ei(t)[Ci(t) −Xi(t)+ − Bi(t)]|Xi(t)≥ 0}

+∑
i

E{Ei(t)[ − pi(m) · τ − Li(t) + Si(t) −Xi(t)−]|Xi(t)< 0}

−E⎧⎨⎩V · ∑i
(Xi(t)+ +Ni(t))

∑
i
Li(t)

⎫⎬⎭ + Z,

(28)
where Z is a positive constant and is given by

Z � ∑
i
(B2

max +X2
max). (29)

Proof: see Supplementary material.
Therefore, P4 can be further transformed into a linear

programing problem by taking the iterative expectation and
simplifying the upper bound of Δ(E(t)) − VE{Kpcr(t)} derived
in (28), which is given by

P5: min
Xi(t)+ ,Xi(t)−

− V

∑
i
Li(t)

∑
i

Xi(t)+ −∑
i

Ei(t)Xi(t)+ −∑
i

Ei(t)Xi(t)−

s.t. (18), (19), (21), ∀i, t, (30)

Since Ei(t) and Li(t) are available in time slot t, P5 is a linear
programing problem with shared energy as the optimization
variable, which can be solved directly using the CPLEX solver.
It is observed that the Lyapunov-based online energy
optimization algorithm only needs the real-time information
of the remaining energy of ESs and the load demand of BSs to
make the energy sharing decision, which effectively improves the
efficiency of the algorithm execution. Moreover, the
computational complexity of the proposed online energy
optimization algorithm only increases linearly with the
expansion of the number of BSs.

FIGURE 6 | Comparison of the ES SoC.

FIGURE 7 | Shared energy and imbalance energy of 5G BSs.
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5 CASE STUDY

5.1 Basic Data
In this section, we validate the performance of the proposed two-
stage optimal dispatch method by simulations. We consider a
scenario in which the aggregator signs the DR contract with 10 5G
BSs during the peak load period. The BSs provide peak-shaving
service for the ADN from 10:00 a.m. to 11:00 a.m. The feed-in
tariff is CNY 0.42/ kWh, and the peak-shaving demand is
37.5 kW. The case analysis uses 1 min as the small timescale
and 1 h as the large timescale. The minimum load demand is
2.193 kW when the BS is in a no-load operation state, and the
maximum load demand is 10 kW when the BS is in a full-load
operation state (China Mobile Research Institute, 2020).
Considering that 10 5G BSs are geographically close to each
other, we assume that the PV output of each BS adopts the same
data. The typical PV output curve of 5G BSs from 10:00 a.m. to
11:00 a.m. is shown in Figure 4, and the simulation parameter
settings of the DERs in 5G BSs are shown in Table 1. Moreover,
since the daily dynamic load data of 5G BSs are still undisclosed,
we assume that the load demand of 10 5G BSs obeys the random
distribution within the load demand interval (2.193 kW, 10 kW).

5.2 Comparative Analysis of Optimization
Results
5.2.1 Contract Theory–Based Large-Timescale
Demand Response Planning
According to the initial ES capacity of the 5G BSs, the minute-
level power consumption, and the PV output curve, the optimal
contract can be obtained, and the corresponding parameters are
shown in Table 2. The results show that the response power
coincides with the discharge capacity, which implies that the 5G
BSs with different discharge capacities choose the contract items
that conform to their own types. The optimal discharge power is
provided to obtain the optimal reward. The utilities of BSs and the
aggregator increase with the BS type, which indicates that the
aggregator prefers to sign the contract with BSs with higher
discharge capacity. Moreover, we can find that the sum of the
response power is equal to 37.5 kW, which accurately satisfies the
peak-shaving demand of the ADN.

The optimal discharge power and discharge reward versus the
BS type are shown in Figure 5A. It can be seen that the optimal
discharge power and discharge reward increase monotonously
with the BS type, indicating that the contract satisfies the
monotonicity constraint, and the discharge capabilities of BSs
are well-exploited. Figure 5B shows the utility of 5G BSs versus
the type of the contract item. It can be seen that maximum utility
can be achieved only when the 5G BS signs the contract item

conforming to its type, indicating that the contract satisfies
the IC constraint. Moreover, all 5G BSs that sign the contract
can obtain non-negative utility, which is consistent with the
IR constraint. In addition, the utility of the 5G BS is
proportional to the BS type, which will increase the
motivation of the higher type of 5G BS to sign the
contract and participate in the DR.

5.2.2 Lyapunov-Based Small-Timescale Online Energy
Optimization
Figure 6 shows the comparison of ES SoC with and without
energy sharing. Simulation results show that 5G BSs
participating in the DR without energy sharing will lead to
an over-discharge or insufficient dispatching of ESs. At the
end of DR, the SoCs of BS1 and BS2 are lower than the
minimum capacity limit, while those of BS6 and BS7 still have
enough dispatchable space. By contrast, the proposed
Lyapunov-based online energy optimization algorithm
with energy sharing can achieve higher discharge stability
and a more balanced power level of ESs.

Figure 7 shows the shared energy and source-load imbalance
energy of 10 5G BSs during the DR period. The red curve and
the blue cylinder represent the shared energy optimized by
the proposed online energy optimization algorithm and the
imbalance energy, respectively. When the red curve is
tangential to the blue cylinder, it means that the shared
energy completely compensates for the imbalance energy.
At this point, the ES unit is in a stable output state and only
needs to output constant power based on the contract item.
From 10:00 a.m. to 11:00 a.m., most BSs have surplus PV
energy due to sufficient sunlight, and only a few BSs with high
power consumption require shared energy. Based on the
proposed online energy optimization algorithm, it can be
seen that most BSs can interact with each other to
compensate for the imbalance in energy through energy
sharing, which further promotes PV energy consumption,
reduces the curtailment of PV output, and ensures the output
stability of ES units.

Table 3 shows the comparison of the PV absorption rate
before and after the two-stage optimal dispatch. Compared with
not participating in the DR, 5G BSs participating in the DR can
improve the PV absorption rate by 17.47% and make it up to
99.87%. The reason is that the contract-based DR planning
ensures rough absorption of the overall PV output during the
entire peak load period, while the Lyapunov-based online energy
optimization algorithm ensures the approximately complete and
real-time absorption of the PV output, thus realizing the
maximum absorption of PV energy during the entire peak
load period.

TABLE 3 | Comparison of the PV absorption rate of 5G BSs.

Indicator Without DR participation DR participation Improvement/%

Abandoned PV/kWh 11.41 0.086 17.47
PV absorption rate/% 82.4 99.87
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6 CONCLUSION

In this study, we propose a two-stage optimal dispatch method
based on the contract theory and Lyapunov optimization for the
typical scenario of multiple PV-integrated 5G BSs participating in
the ADN DR. The following conclusions are obtained:

1) The system architecture for multiple PV-integrated 5G BS
participating in the ADN DR was proposed, which is
composed of aggregators, a 5G communication network,
and an ADN.

2) A contract theory–based large-timescale DR planning
method was proposed for modeling the interaction
between 5G BSs and the aggregator. Simulation results
show that the proposed method can improve the
motivation of 5G BSs to participate in the DR and satisfy
the peak-shaving demand of the ADN.

3) A Lyapunov-based small-timescale online energy
optimization algorithm was proposed for making real-
time decisions on energy sharing of 5G BSs. The
numerical results show that the proposed method can
improve the PV absorption rate up to 99.87%, which
achieves approximately complete absorption of PV energy
and ensures the stability of the ES queue.

Further research will be conducted in three directions, including:

1) Implementation of energy dispatch for large-scale 5G BSs at
multiple timescales including day-ahead, intra-day, and real-
time and the systematical evaluation of the respond capacity
of a PV-integrated 5G BS for ancillary services.

2) Energy sharing scheme and a demand response incentive
mechanism that take into account power transmission losses.

3) Multi-entity benefit allocation method for participating in the
DR under deregulated power markets.
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APPENDIX

Proof of (27):

Δ(E(t)) � E{L(E(t + 1)) − L(E(t))}
� 1
2
E{∑

i

[Ei(t + 1)2 − Ei(t)2]}
� 1
2
E{∑

i

[(Ei(t) − Bi(t) + Ci(t) −Xi(t)+)2 − Ei(t)2]|Xi(t)≥ 0}
+1
2
E{∑

i

[(Ei(t) − pi(m) · τ − (Li(t) − Si(t)) −Xi(t)−)2
−Ei(t)2]|Xi(t)< 0}
≤
1
2
E{∑

i

[Bi(t)2 + Ci(t)2 + (Xi(t)+)2 − 2Ei(t) (Ci(t) −Xi(t)+

− Bi(t))]|Xi(t)≥ 0} + 1
2
E{∑

i

[pi(m)2 · τ2 + (Li(t) − Si(t))2

+ (Xi(t)−)2

Thus, we can have (28)

ΔE(t) − E
⎧⎨⎩V · ∑i

(Xi(t)+ +Ni(t))
∑

i
Li(t)

⎫⎬⎭
≤∑

i

E{Ei(t)[Ci(t) −Xi(t)+ − Bi(t)]|Xi(t)≥ 0}

+∑
i

E{Ei(t)[ − pi(m) · τ − Li(t) + Si(t) −Xi(t)−]|Xi(t)< 0}

−E⎧⎨⎩V · ∑i
(Xi(t)+ +Ni(t))

∑
i
Li(t)

⎫⎬⎭ + Z

The proof is completed.
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