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Single-phase earth ground faults are themost frequent faults likely to occur but

hard to identify in a distribution system, especially in a neutral ineffectively

grounded system. Targeting on this goal, a novel AdaBoost-based single-phase

earth ground fault identification model is put forward. First, after depicting the

zero-sequence circuit of the distribution system, a feature engineering that can

reflect local and global evolutionary processes in the fault period is constructed

in detail. Second, to overcome two problems, namely, different number

problems between fault and non-fault samples and curse of dimension,

principal component analysis is used for feature extraction, in which only a

small number of low-dimension mapped features are extracted, and then

transmitted into the AdaBoost-based ground fault identification model.

Subsequently, this work borrows from machine learning and applies its

learning curve and receiver operating characteristic curve to guide the

optimization of the proposed identification model. Numerical studies verify

the effectiveness and adaptability of the proposedmodel toward solving single-

phase earth ground faults.
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1 Introduction

In extreme short-circuit situations, designing feeder relays would be simple in general.

However, the single-phase earth ground fault is out of this category, especially in low- and

medium-voltage distribution networks (3~66 kV) with ineffectively grounded neutral

points (Cui et al., 2011; Xue et al., 2015). In this regard, it is also referred to as a small-

current grounded system. In contrast with other short-circuit faults, single-phase earth

ground faults are mostly to happen, and by incomplete statistics, they account for around

60%~80%. Interestingly, most interphase faults are the deteriorated outcomes of single-
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phase earth ground faults. Therefore, detecting this “weak” earth

fault is very important for protection engineers in order to

prevent more severe hazards and to ensure the safety and

reliability of power delivery.

Most scholars have conducted many studies in this field. So

far, some staged and conclusive achievements have been made.

Specifically, the approach in identification single-phase earth

ground fault can be normally categorized into two

mainstream branches: steady-state method and transient

method. As for the former, it includes six sub-approaches (Xu

et al., 2005; Ai et al, 2009; Gautam and Brahma, 2012; Li, 2017):

zero-sequence current amplitude comparison method, zero-

sequence current phase comparison method, fifth harmonic

component method, zero-sequence active power component

method, zero-sequence reactive power method, and zero-

sequence admittance method. The main principal of these

methods is that zero-sequence current of the fault line is the

summation of all non-fault lines, and it shall be larger than any of

other lines. Considering the line-to-ground conductance and the

resistance loss of an arc suppression coil, a new protection

criterion is established via recognizing the direction difference

of active power (Xu et al., 2005; Li, 2017). Although not limited to

the arc suppression coil, its active component is generally small,

especially when the three-phase imbalance degree is relatively

large, it will be easier to misjudge faults due to the false active

current component. With respect to the transient method, it

includes three parts: first half-wave polarity method, transient

power direction method, and transient parameter identification

method (Yao and Cao, 2009; Zeng et al., 2012). Compared with

the former, this method is relatively less influenced by the form

that the neutral point is grounded or noneffective. From this

perspective, it possesses better adaptability (Zhu, 2011). Hence, it

has been gradually becoming more important and popular in this

single-phase earth ground fault identification field, especially as

the function of transient-recording-type devices is becoming a

mainstream product (Jiale et al., 2007; Zhang and Yin, 2011;

Ghaderi et al., 2017).

Moreover, revolving around this target, there are several

novel techniques, such as three-phase current method and

transient frequency band method. Specifically, Song et al.

(2011) propose the three-phase current method, which collects

the sudden change of three-phase current in a transient process,

calculates the relevant coefficients between each pair of phases,

and subsequently discriminates the ground fault according to the

fault phase that has the smallest relevance degree. As for the

latter, some scholars have proposed a method of extracting

information of specific frequency in transient zero-sequence

current and then identifying single-phase earth ground faults

by comparing the difference between the amplitude and polarity

(Xue et al., 2003; Liu et al., 2018). An et al. (2020) propose the

grounding protection principle based on half-wave Fourier

algorithm and establish an action criterion algorithm model

based on half-wave Fourier algorithm. Shu et al. (2019)

propose the wavelet transform method to realize the

extraction of transient zero-sequence information. Lishan

et al. (2020) propose a fault line identification scheme with

admittance asymmetry parameters as the criterion and utilize

the fifth harmonic principle to solve the issue regarding the

disappearance of fault differences between the fault lines and

non-fault lines of the neutral point after passing through the

extinction coil grounding system. He et al. (2017) identify

grounding faults by using relative entropy of the generalized

S-transform energy of zero-sequence current. Zhou (2016)

establishes a dynamic grounding fault sensing criterion based

on the features of injection current variables after fault

occurrence and identifies fault lines by comparing the effective

value of zero-sequence current variables of different feeders.

Although these transient signal methods produce ideal effects

in handling faults with a large zero-sequence current, they are

likely to be affected by systematic influences inmultiple processes

(e.g., constant startup value, sampling noise, and electromagnetic

interference, etc.) during actual operation when fault zero-

sequence current is low, leading to low algorithmic sensitivity.

They are too easily affected by operating conditions of the

distribution network and rely excessively on the differential

configuration of various configuration parameters.

In fact, the issue of identifying faults can be viewed as the

scope of classification, for which it is highly relevant to machine

learning (e.g., clustering, classification, and regression under the

semi-supervised/supervised mode). Recently, machine learning

technology has developed rapidly. With reference to the

2016 International Summit on Application of Machine

Learning Industry jointly held by IBM and CDA Data

Analysis and Research Institute, this has been applied in

many fields, for e.g., finance, IT, computers, and

transportation, and has proven to be extraordinarily valuable.

In view of this, some researchers are working on building an

intelligent fault identification model via machine learning

FIGURE 1
Capacitance current distribution represented by the three-
phase system during single-phase grounding.
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technology (Wang et al., 2021). Although relatively reliable

identification results have been elementarily achieved, the lack

of hyperparameter adjustment, over/underfitting judgment, and

feature extraction in optimizing the identification model is its

critical defect. In general, exploring the application of machine

learning in the fault identification field requires more systematic

and theoretical discussions in depth.

In light of the aforementioned background, this article

borrows from machine learning and puts forward a novel

single-phase earth ground fault identification method jointly

driven by practical fault data and Simulink model.

Major contributions of this article include:

1) In reflecting the local and global evolutional process of fault

features and forms, this article chooses two major fault

features (including their amplitudes, delta variations and

phase degrees), which could form an entire feature

engineering taking the stable/transient state of the faulty

network into account.

2) In combination with machine learning, a mainstream feature

reduction method of principal component analysis (PCA) is

applied into which feature reduction of high-dimension fault

features can in validity select only a small number of but key

mapped features of potential values and further elevate model

identification efficiency in engineering practice.

3) AdaBoost-based single-phase earth fault identification model

is designed in this work into which the features of high

priority are fed, where several manners of learning curve,

validation curve, and receiver operating characteristic curve

(ROC) are all brought out into guiding model optimization,

and thus an entire fault identification technology based on

machine learning is gradually formed. Additionally, model

performance is quantitively analyzed from the perspective of

accuracy and area under the curve (AUC) indicators.

The remainder of this article is organized as follows: in

Section 2 depicts the equivalent circuit diagram of a

distribution system when a single-phase earth ground fault

occurs in this system and constructs the ground fault feature

engineering. Next, a machine-learning-based ground fault

identification model is built. To overcome its underfitting/

overfitting possibilities, some hyperparameter optimization

techniques have been applied, such as up-sampling

technology, feature reduction, learning/validation curve, and

receiver operating characteristic curve (ROC). Finally, the

practical dataset and the Simulink dataset are both used as

learning samples in the Numerical studies part, and in this

section, it demonstrates the validity and adaptability of the

proposed ground fault identification model under multiple

scenarios.

2 Feature engineering of single-phase
earth ground faults

2.1 Physical model of single-phase
grounding faults

To construct reasonable and complete fault features, this

section will analyze the change features of system parameters in

single-phase earth ground faults, like the capacitance current

distribution in the system, from the perspective of the circuit of

the distribution network. The distribution of capacitance current

during single-phase grounding is shown in Figure 1. In Figure 1:

COG, COI, and COII are the capacitive parameters over the ground

of each generator, line I, and line II, respectively; _IBG and _ICG are,

respectively, the capacitive parameters over the ground of phase

B and phase C on generator G; _IBI and _ICI are, respectively, the

capacitive parameters over the ground of phase B and phase C on

line I; and _IBII and _ICII are, respectively, the capacitive parameters

over the ground of phase B and phase C on line I.

In combination with information from Figure 1, it can be

seen that the voltage drop of load current and capacitance current

on line impedance can be ignored after phase A of line II is

grounded. It can be inferred that capacitance current over the

ground of phase A of all element equipment also equals zero

when phase A of the entire system is grounded, and voltage and

capacitance current over the ground of phase B and phase C are

increased by 1.732 times. The distribution of the capacitance

current under such circumstances is as shown in “→” of Figure 1.

The zero-sequence equivalent network and phasor network of

single-phase grounding are, respectively, depicted in

Figures 2A,B.

2.2 Feature engineering of single-phase
grounding faults

According to the zero-sequence equivalent network model of

single-phase grounding faults in Figure 2, the fault features of

fault lines, non-fault lines, and non-fault elements are totally

different. Given this understanding, we could construct the

FIGURE 2
Zero-sequence equivalent network and phasor network
during single-phase grounding.
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features of single-phase grounding faults. In addition, as we also

take into account the needs of wildfire prevention, it is necessary

to give further consideration to integration with transient

recording data when constructing the features. The

engineering constructed in this article puts focus on and

includes the amplitude, phase position, and variables of the

zero-sequence voltage and zero-sequence current of the same

cycle.

2.2.1 Features of zero-sequence voltage
There are three features of zero-sequence voltage: amplitude

cycle sequence, variable amplitude cycle sequence, and phase

position cycle sequence. The cycle sequence that they belong to

refers to the sampling dataset of a cycle. The definitions of the

three features, namely, zero-sequence voltage amplitude cycle

Uamp
p , zero-sequence voltage variable amplitude cycle ΔUamp

p ,

and zero-sequence voltage phase position cycle Utheta
p , are,

respectively, shown in Eqs 1–3.

_Up � [ _U1

P, _U
2

p,/, _U
k

p,/ _U
T

p],∀k ∈ T,

_U
k

p � fft([ _Ut−T
p ,/, _U

t−1
p , _U

t

p], base),
Uamp,k

p � func ext( _Uk

p, amp),
Utheta,k

p � func ext( _Uk

p, theta),
Uamp

p � [Uamp,1
p , Uamp,2

p ,/, Uamp,k
p ,/Uamp,T

p ],
(1)

⎧⎪⎪⎨⎪⎪⎩
ΔUamp

p � [ΔUamp,1
p ,ΔUamp,2

p ,/,ΔUamp,k
p ,/,ΔUamp,T

p ],
ΔUamp,k

p � Uk,t
p − Uk,t−1

p ,

Uk,t
p � func ext( _Uk

p),
,

(2)
Utheta

p � [Utheta,1
p , Utheta,2

p ,/, Utheta,k
p ,/, Utheta,T

p ]. (3)

Here, Up is the zero-sequence voltage cycle vector sequence; _U
k
pis

the kth zero-sequence voltage phasor in the zero-sequence

voltage vector, which can be obtained by extracting the

fundamental wave phasor with Fourier decomposition after

the corresponding moment t moves forward by a cycle and

constructs a sequence; T is the cycle sequence scale related to

equipment sampling frequency (in this article, sampling

frequency = 12,800 Hz, T � 256);Uamp,k
p and Utheta,k

p ,

respectively, correspond to the amplitude and phase mass of

the kth zero-sequence voltage; fft(·) and func ext(·),
respectively, correspond to Fourier decomposition function

and amplitude/phase position extraction function; and

ΔUamp,k
p is the kth zero-sequence voltage variable amplitude.

2.2.2 Features of zero-sequence current
Similarly, there are also three features of zero-sequence

current: amplitude cycle sequence, variable amplitude cycle

sequence, and phase position cycle sequence. The definitions

of the three features, zero-sequence current amplitude cycle Iamp
p ,

zero-sequence current variable amplitude cycle ΔIamp
p , and zero-

sequence current phase position cycle Ithetap , are shown in Eqs

4–6, respectively.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

_Ip � [ _I1p, _I2p,/, _I
k

p,/, _I
T

p],∀k ∈ T,

_I
k

p � fft([ _It−Tp ,/, _I
t−1
p , _I

t

p], base),
Iamp,k
p � func ext( _Ikp, amp),

Itheta,kp � func ext( _Ikp, theta),
Iamp
p � [Iamp,1

p , Iamp,2
p ,/, Iamp,k

p ,/, Iamp,T
p ],

, (4)

⎧⎪⎪⎨⎪⎪⎩
ΔIamp

p � [ΔIamp,1
p ,ΔIamp,2

p ,/,ΔIamp,k
p ,/,ΔIamp,T

p ],
ΔIamp,k

p � Ik,tp − Ik,t−1p ,

Ik,tp � func ext( _Ikp),
, (5)

Ithetap � [Itheta,1p , Itheta,2p ,/, Itheta,kp ,/, Itheta,Tp ]. (6)

Here, _Ipis the zero-sequence current cycle vector sequence; _I
k
ps is

the kth zero-sequence current phasor in zero-sequence current

vector, which can be obtained by extracting the fundamental

wave phasor with Fourier decomposition after the corresponding

moment t moves forward by a cycle and constructs a sequence;

Iamp,k
p and Itheta,kp , respectively, correspond to the amplitude and

phase mass of the kth zero-sequence current; fft(·) and

func ext(·), respectively, correspond to Fourier

decomposition function and amplitude/phase position

extraction function; and ΔIamp,k
p is the kth zero-sequence

current variable amplitude.

By using the zero-sequence voltage amplitude Uamp
p , zero-

sequence voltage variable amplitude ΔUamp
p , zero-sequence

voltage phase position Utheta
p , zero-sequence current amplitude

Iamp
p , zero-sequence current variable amplitude ΔIamp

p , and zero-

sequence current phase position Ithetap in Eqs 1–6, the feature

engineering of single-phase grounding faults can be constructed

as M � [Uamp
p ,ΔUamp

p , Utheta
p , Iamp

p ,ΔIamp
p , Ithetap ].

3 Single-phase grounding fault
classification model driven by
machine learning

Combined with the feature-target key value sequence of

single-phase grounding faults acquired from the true-type test

and simulation model, this model is categorized as supervised

learning in the field of machine learning and, to be more precise,

belongs to the classification category. In theory, supervised

learning is often oriented and signifies better training effects.

However, directly lifting machine learning to the classification of

single-phase grounding faults may lead to a result that falls short

of expectation. There are three reasons behind this possibility.

The first reason is that the present studies lack a complete and

sufficient database of single-phase grounding faults, which will

result in good training effects but will not lead to ideal practical

generalization ability. The second reason is that the present

database of single-phase grounding faults mainly contains

grounding faults and does not have the database of waveforms

related to the interfered system during normal operation. The

third reason is that, combined with the fault feature vector
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constructed in Section 2.2, there could be 1,536 dimensions.

When considering the vertical expansion of sample database

dimensions, the model classification effects would not be as good

as expected, even when high-performance machine learning

classification models are adopted.

Concerning the aforementioned three problems, this section

will introduce the sampling method, feature dimension

reduction, and classification algorithm in the machine

learning technique in the hope of constructing a single-phase

grounding fault classification model with great robustness.

3.1 Sampling technique

The sampling technique is mainly used to solve problems in

class-imbalance, namely, situations where training samples of

different types vary significantly from each other in the

classification task. Normally, the classifier decision rule is:

y/(1 − y)> 1, where y is the probability threshold predicted to

be a positive sample. The threshold y/(1 − y) is set at 0.5,

indicating that possibility of true-positive and -negative

samples is the same. However, when the number of positive

samples and the number of negative samples are not the same,

having m+ and m−, respectively, representing the number of

positive and negative samples, then the observation probability is

m+/m−. Since the general hypothetical training set is the overall
unbiased sampling of authentic samples, the observation

probability represents the true probability. Therefore, as long

as the prediction of the classifier is higher than the observation

probability, as in y/(1 − y)>m+/m−, the result should be

deemed as a positive sample.

Based on the aforementioned details, there are three

methods to solve class-imbalance (Shu et al., 2019): the

first method is to directly carry out under-sampling for the

negative samples in the training set, as in removing some

negative samples to make sure the number of positive samples

and the number of negative samples are close. The second

method is to implement oversampling for the positive samples

in the training set, as in adding some positive samples to make

sure the number of positive samples and the number of

negative samples are close. The third method, also referred

to as “threshold movement,” is to directly implement learning

based on the primary training set, but it is necessary to embed

m−y/(m+ − ym+) in the decision-making process when using

the trained classifier for prediction.

In comparison, the under-sampling method is prone to

losing negative samples and some important information. At

the same time, threshold movement should be based on the

premise that “the training set is the overall unbiased sampling of

true samples,” which is usually false. In other words, it is often

unable to effectively infer the real probability based on the

training set observation probability in real practice. Therefore,

this section will focus on the up-sampling method to resolve

class-imbalance.

3.2 Feature dimension reduction

Among the feature dimensionality reduction methods, the

mainstream and mature option is the principal component

analysis method (PCA). The idea central to the PCA method is

the reduction of dimensionality. In the analysis process,

multiple variables are transformed into a small number of

comprehensive variables (principal components). The

transformed principal components are not related to each

other and are in the form of a linear combination of original

variables. Therefore, a great deal of information can be

displayed in the form of a linear combination and without

repetitions. The PCA algorithm principle and pseudo code are

shown in Table 1.

In combination with the principal component analysis

method, the dimensionality reduction engineering

construction of grounding fault features in Section 1.2 is

carried out. There is an independent and unrelated

eigenvalue distribution in the new space after construction.

After considering the principle of the “90%” value space,

Figure 3 depicts the selection of the top 10 eigenvalues, and

the cumulative ratio of features accounts for 91.37%.

Therefore, the initial structure with 1,536-dimension load

feature engineering can be optimized and reduced to

12 dimensions, and the space compression rate can reach

as high as 99.21%.

3.3 AdaBoost classification model

Since for every set of feature vectors, its classification result

is provided; obviously, this issue belongs to the supervised

learning field. In machine learning, logistic regression,

TABLE 1 PCA algorithm principle and pseudo-code.

Input: Sample set
D � {x1, x2,/, xm}

Dimensional index of
low-dimensional space dindex

Process:

1: Neutralize all grounding fault feature samples: xi ← xi − 1
m∑m

i�1xi

2: Calculate the covariance matrix of the sample XXT

3: Conduct eigenvalue decomposition for the covariance matrix XXT

4: Take w1 ,w2 ,/,wdindex eigenvector corresponding to dindex the largest eigenvalue

Output: Projection matrix W � {w1 ,w2 ,/,wdindex}

The bold term of {xm, ym} represents them
th feacture vector and its fault label. The SVM

is the abbreviation of supporting vector machine.
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support vector machine, K-neighbor proximity, and decision

tree, as well as integration-based learners, such as AdaBoost,

XGBoost, and LightGBM, are typical technologies used (Wu

and Hiroshi, 2014; Dahlan, 2018; Pan et al., 2020). Compared

with a single classifier (also known as a “weak learner”),

integrated learning combined with multiple learners can

often obtain significantly better generalization performance

than a single learner. As demonstrated by many practical

applications, however, AdaBoost presents better convergence

performance, consumes less time, and occupies lower memory

resources. As such, this section will mainly focus on extending

this algorithm to the online model in identifying single-phase

earth faults.

Bagging and boosting methods focus on sample sampling

and parallel learning, and error sample relearning and

reinforcement of the base learner, respectively. It is obvious

that the latter has more advantages. In view of this, based on

optimization of the fault feature set by dimensionality reduction

of the PCA method, this section will build a single-phase

grounding fault classification model combined with Boosting’s

AdaBoost method. Of which, the base learner of the AdaBoost

method primarily utilizes SVM in order to enhance the

robustness of the classification effect of the model.

Furthermore, the pseudo-code of the principle of

constructing the grounding fault classification model

combined with the AdaBoost method is shown in Figure 2.

3.4 The flowchart of the proposed
identification model

Combined with Sections 2–3, the proposed single-phase earth

fault identification model based on AdaBoost is detailed in Figure 4.

As seen from Figure 4, it mainly includes five key steps: data

preprocessing, construct feature, feature engineering, build

AdaBoost-based identification model, and optimize

hyperparameter. Particularly, data preprocessing used for

extracting zero-sequence voltage and zero-sequence current is first

conducted. Second, Step B constructs fault features via current

mainstream algorithms in addition to the proposed angle-

conversion model. Next, feature engineering is explored according

to PCA-based algorithm to select the best andmost sensitive features.

Subsequently, a custom-designed single-phase earth ground fault

identificationmodel is put forward, where anAdaBoost-basedmodel

is conducted as an example and numerically compared in detail.

4 Numerical studies

In order to verify the effectiveness of the method proposed in

this article, a single-phase grounding fault feature set is constructed

by combining the two dimensions of true waveform and

simulation modeling. Of these, the distribution network model

based on PSCAD, as shown in Figure A1, and the selected

Mianyang true test waveform are established. The single-phase

grounding fault with variable parameters such as arc suppression

coil grounding system and ungrounded system under different

load levels, fault initial phase angle, and transitional resistance,

along with normal operation tests of the system, such as non-

synchronization closing, magnetizing inrush current, and non-

synchronization load commissioning and decommissioning, has

been taken into consideration.

The result is that the number of single-phase grounding fault

samples and anti-interference samples is, respectively, 108 and

27, equating to a ratio of nearly 6:1. In combination with up-

FIGURE 3
Distribution of eigenvalues of single-phase grounding faults
after dimensionality reduction using the PCA method.

FIGURE 4
AdaBoost-based single-phase earth ground fault
identification model.
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FIGURE A1
Single-phase grounding fault simulation system of a distribution network based on PSCAD.

FIGURE 5
3U0 amplitude change curve when a single-phase grounding fault occurs in arc suppression coil grounded and ungrounded systems.
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sampling technology, the ratio of the number of fault samples

and non-fault samples will be adjusted to 1:1, and the total

number of samples will be 216. In addition, the initial fault

feature dimension is 1,536 dimensions. After dimensionality

reduction by the PCA method in Section 2.2, the dimension

of the eigenvector will be adjusted to 12 dimensions, with a

compression rate as high as 99.21%.

4.1 Statistical analysis of single-phase
grounding fault features

In combination with Section 1.2, the M �
[Uamp

p ,ΔUamp
p ,Utheta

p , Iamp
p ,ΔIamp

p , Ithetap ] of single-phase

grounding fault feature engineering can be constructed directly,

but there is a lack of the boost method to learn the process

mechanism between feature engineering and target. In this

regard, the following will take 3U0 of zero-sequence voltage

amplitude and 3I0 of zero-sequence current amplitude of single-

phase grounding fault under systems of arc suppression coils being

grounded and ungrounded as examples to provide their distribution

statistical curves, as shown in Figures 5, 6, respectively.

It can be seen from Figures 5, 6 that no matter whether the

system is grounded or not, there are obvious demarcations for the

zero-sequence voltage and zero-sequence current of the system,

which correspond to before and after the fault. In addition, after

demarcation, 3U0 and 3I0 show a trend of gradual increase and

deterioration. The two features clearly illustrate the necessity and

importance of adopting 3U0 and 3I0 to build feature engineering for
grounding faults, and they can provide favorable learning features

for the AdaBoost method, thus guiding it to build a reasonable

single-phase grounding fault classification learning model.

4.2 AdaBoost accuracy rate of the
AdaBoost grounding fault classification
model

For the simulation test and true waveform fault set, after

adopting the single-phase grounding fault classification model

FIGURE 6
3I0 amplitude change curve when a single-phase grounding fault occurs in arc suppression coil grounded and ungrounded systems.

TABLE 2 Pseudo-code of the ground fault classification learning
model based on AdaBoost proposed by Shu et al. (2019).

Input: grounding fault
feature sample set
D � {{x1, y1}, {x2, y2},/, {xm, ym}}

Base
learning algorithm I � SVM

Number of training rounds
T

Process:

1: D1(t) � 1/m. Neutralize all samples: xi ← xi − 1
m∑m

i�1xi

2: f or t � 1, 2,/,T do

3: ht � I(D,Dt )
4: t � Px~Dt(ht(x) ≠ f (x))
5: if t > 0.5 then break

6: αt � 1
2 ln (1−tt

)
7: Dt+1(x) � Dt(x)

Zt
× { exp(−αt ), if ht(x) � f (x)

exp(αt ), if ht(x) ≠ f (x) � Dt(x) exp (−αt f (x)ht(x))
Zt

8: end for

Output: H(x) � sign(∑T
t�1αtht(x))
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constructed using AdaBoost algorithm in Table 2, the confusion

matrix (Shu et al., 2019) of fault and non-fault samples,

including the training set and test set, can be obtained, as

shown in Table 3.

In Table 3, indicators TPR, TFR, FPR, and FFR represent

the true-positive rate, true-false rate, false-positive rate, and

false rate, respectively (Shu et al., 2019). According to the

confusion matrix in Table 3, there are 101 correct

predictions of fault cases, up to 93.52% of the total, while

the prediction accuracy of non-fault examples is 100%, with

all predictions divided correctly. After analyzing the seven

waveforms being incorrectly divided for fault examples, the

errors are all attributed to one type of reason, namely, the

grounding fault of ultra-high resistance Rd. Data from a real

test in Mianyang is taken as an example: single-phase

grounding fault under the mixed medium of branches and

leaves on the cement ground through 50 cm conductor; line

voltages Uab, Ubc , U0 , Ia, Ib, Ic , and I0 of corresponding line are
shown in Figure 7.

According to Figure 6, when the system is in normal

operation, the voltage imbalance is nearly 3%. As far as the

zero-sequence voltage change curve is concerned, the fault

belongs to a long-term gradual fault, and the change of zero-

sequence voltage is also a process of gradual deterioration and

increase. At the first fault moment, the transitional resistance

reaches as high as 27k, and 3U0 and 3I0 change slightly. Most

algorithms are likely to include this into the category of zero-

sequence voltage fluctuation caused by non-synchronization

load of system commissioning and decommissioning.

However, in the second fault after 612 ms, the sudden

trend changing of zero-sequence voltage and the obvious

characteristics of opposite polarity of 3U0 and 3I0 can

obviously be judged as a single-phase grounding fault for

most algorithms. In terms of the latter, the single-phase

grounding fault classification model based on AdaBoost

constructed in this article can also study and judge the

grounding fault.

In addition, after further analyzing the waveform, it is

found that the reasons for the poor effect of most algorithms

also relate to two aspects. The first aspect is the

algorithm level. Looking at the waveform, even 100 ms after

the fault has occurred, in combination with the obvious

opposite direction characteristics of zero-sequence voltage

and zero-sequence current, the head half-wave method and

TABLE 3 AdaBoost confusion matrix.

Predicted fault sample Predicted non-fault sample

Actual fault samples 101/TPR 7/TFR

Actual non-fault samples 0/FPR 108/FFR

FIGURE 7
Single-phase grounding fault under the mixed medium of branches and leaves on the cement ground through a 50-cm conductor.
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steady-state method can still identify the fault. For the

parameter method, the zero voltage change trend is not

obvious in the middle of the fault, which can easily lead to

the failure of the parameter method. The second aspect is the

response speed. From the perspective of fault form, this is a

long-time gradual fault, and the interval between the salient

features of the two faults is 618 ms. If the fault can be

identified only in the second salient feature, it is likely that

the hidden danger of mountain fire will occur due to the

burning of dry leaves caused by the previous fault, and the best

rescue opportunity will be missed.

4.3 Performance of the AdaBoost single-
phase grounding fault classificationmodel

In order to help build the algorithm and give full play to its

practical application, the performance of the proposed AdaBoost

single-phase grounding fault classification model will be verified

from the dimensions of the learning curve and ROC curve. In

order to understand the intuitive evaluation of the performance

of the classification model from the perspective of the two types

of curves, the definitions of the two types of curves will be

described first.

4.3.1 Learning curve
The learning curve is the score change curve of sizes and

models of different training sets on the training set and

verification set, that is, the number of samples is taken as

the abscissa, and the scores on the training and cross-validation sets

(such as accuracy) are taken as the ordinate. A learning curve can

help us judge the current state of the model: overfitting/high

variance or underfitting/high-bias. Figure 8 shows the learning

curve for measuring the degree of overfitting or underfitting of

the model. The high variance emphasizes that the generalization

ability of the model is not ideal when applied to the test set, while the

high-bias characterization model lacks the deep mining of feature

engineering.

4.3.2 Receiver operating characteristic curve
The receiver operating characteristic curve (ROC curve in

short) is also known as the sensitivity curve. The reason for such

a name is that the points on the curve reflect the same

sensitivity. They are all responses to the same signal

stimulus, but the results have been obtained under several

different criteria. The general outline of the ROC curve is

shown in Figure 9.

In Figure 9, the receiver operating characteristic curve is a

coordinate diagram composed of false alarm probability as the

horizontal axis and hit probability as the vertical axis. The curve

drawn reflects the different results obtained by the subjects under

specific stimulus conditions due to different judgment criteria.

The ROC curve emphasizes the balance between TPR and FPR,

which can effectively avoid the influence of differentiation of

different judgment criteria.

FIGURE 8
Learning curve used for assessing model overfitting/
underfitting.

FIGURE 9
ROC curve to measure the pros and cons of model
classification performance.

FIGURE 10
Application of the AdaBoost ground fault classificationmodel
learning curve.

Frontiers in Energy Research frontiersin.org10

Xueneng et al. 10.3389/fenrg.2022.919041

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.919041


Combined with the classification characteristics of single-

phase grounding faults, the higher the proportion TPR of the

samples predicted to be positive and actually positive in Figure 8

in all positive samples, the lower the proportion FPR of the

samples predicted to be positive but actually negative in all

negative samples; or the higher the area of the blue closed

area constructed by points (FPR and TPR) (random guess: the

area of the closed graph is 0.5), the better the performance of the

fault classification model.

Furthermore, the learning curve and ROC curve based on the

AdaBoost single-phase grounding fault classification model are

given in Figures 10, 11, respectively.

It can be seen from Figure 10 that with the increase

of the number of training samples, the classification accuracy

of the training set and the verification set gradually trend

toward sameness, and the classification accuracy of the

verification set gradually increases. The generalization ability

of the characterization model applied to the unknown fault

set is strong, but the improvement of this ability comes at

the expense of a certain level of weakening of the training

effect of the training set. Therefore, the performance of

the classification model constructed by the machine

learning method represented by AdaBoost depends on the

compromise of training and verification effects, and it is also

the balance between high-bias and high variance of the

classification model.

With regard to Figure 10, it can be seen that under the premise

of cross validation of five copies for the training set, the AUC of

each corresponding ROC curve is 0.98, 0.89, 1.00, 0.89, and 0.92,

respectively, which are far higher than 0.5 of random guess, and the

overall average AUC /standard deviation of AUC is 0.93 and ±0.05.

A small standard deviation indicates that the training effect of the

model is relatively stable. Moreover, comparative studies between

the proposed and the other two methods are also conducted,

namely, logistic regression (LR) and K-neighbor (KN), as shown

in Table 4. As seen from Table 4, both the accuracy and AUC

indicators of the model constructed in this work are superior, which

fully demonstrates the validity and the high value in engineering

practice.

In general, the AdaBoost single-phase grounding fault

classification model established in this article can better adapt

to the differential selection of different judgment criteria under

specific stimulus conditions, the overall performance is more

stable, and the robust performance is better.

5 Conclusion

This article discusses the classification research of machine

learning algorithm jointly driven by both physical model

and fault data in single-phase earth ground fault identification

and constructs a single-phase grounding fault classification

model based on AdaBoost. For PSCAD simulation model

and fault and non-fault examples under the true waveform

test, the classification accuracy of the model is 93.52%.

Second, in conjunction with up-sampling technology, PCA

FIGURE 11
ROC curve of the AdaBoost ground fault classification model.

TABLE 4 Identification effects of six models based on machine
learning under PCA-based feature engineering.

Indicator LR KN AdaBoost

PCA Accuracy/% 88.58 83.74 93.52

AUC 0.92 0.87 0.93
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dimensionality reduction technology, learning curve, and ROC

curve, the construction of feature engineering, dimensionality

reduction optimization, and model performance evaluation are

achieved, respectively. Among them, after PCA dimensionality

reduction technology is adopted, feature engineering can be

transformed into the feature space represented by a 12-

dimension vector with a space compression rate as high as

99.21%. The training effect of the training set and verification

set in the learning curve tends to be 0.93 as a whole, and the

average AUC under cross verification also reaches nearly 0.93,

which mutually confirms the highly accurate training effect

of the proposed AdaBoost model and the identification

and generalization ability of grounding faults under strong

interference and bad working conditions.
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