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Natural gas (NG) has been widely recognized as a cleaner fuel compared to other fossil
fuels. Reserves of NG are typically located in remote areas, and their conditions and
compositions vary geographically. The NG from such areas is transported in the form of
liquefied natural gas (LNG). Liquefying NG is highly complex. Generally, the process is
designed to be carried out under fixed natural gas (NG) conditions; hence, it may not
perform well under variable NG conditions. Considering this issue, the use of an artificial
intelligence approach, rather than the conventional optimization one, was investigated to
make the LNG process feasible under variable NG conditions. This study is the first in this
research area to train an artificial neural network (ANN) using the particle swarm
optimization (PSO) algorithm as a learning method. The developed PSO-ANN model
was used to predict the decision variables of a single mixed refrigerant (SMR) LNG process
for its feasible design under varying NG conditions. The correctness of the predicted set of
decision variables (NG conditions) was verified by inputting them into Aspen HYSYS. The
output of the SMR-LNG process was the overall power at a constrained minimum internal
temperature approach (MITA) value, i.e., 1.0 ≤ MITA ≤3.0. The prediction results of the
PSO-ANN model were compared with those of the classical ANN backpropagation
learning method. The success rate of the proposed PSO-ANN model was 80%.
Furthermore, the proposed model can make the LNG process feasible for a diverse
range of temperature and pressure values. A feasible process with a better MITA value can
also be achieved by tuning the model parameters.

Keywords: artificial neural network, natural Gas, single mixed refrigerant, particle swarm optimization, aspen
HYSYS

1 INTRODUCTION

Most natural gas (NG) reserves are located at remote and offshore sites. Generally, pipeline networks
and/or cargo ships are used to transport NG to onshore sites and, consequently, into the trade
market. For small distances (<2000 km), NG is transported in the gaseous form through pipeline
networks. For long-distance transportation, liquefied NG (LNG) is preferred over gaseous NG
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mainly because of safety and economic factors (Qyyum et al.,
2018a). Many offshore NG reserves have already been fully
developed; their NG reserves are stored in the liquefied state
to satisfy the global clean energy demand (Mohammad et al.,
2021). Hence, new untapped NG reserves are entering the main
trade loop also through the liquefaction approach (Xie et al.,
2022). Figure 1 shows the growth trend of the LNG trade volume
from 2005 to 2019 (Shell LNG outlook, 2019).

However, liquefaction of NG is an energy-intensive and
cryogenic-sensitive process. The high operating costs (40–60%
(Qyyum et al., 2018c)) have a significant share in the total
annualized costs (TAC) of LNG plants. The operating costs of
LNG processes depend on many important design parameters,
including pretreatment methods for raw NG feed (for LNG
plant), NG composition, plant site ambient conditions,
liquefaction technology (e.g., N2-expander, SMR, DMR,
C3MR, MFC, etc.), and plant capacity (Khan et al., 2017;
Qyyum et al., 2018c; He et al., 2018; Lee et al., 2018; Zhang
et al., 2020). It has been found (Park et al., 2016) that the overall
performance of LNG plants can be affected by variation in
ambient temperature. Moreover, environmental relative
humidity affects the performance of LNG plants that use air
as a cooling medium, particularly in multistage
compression units.

As LNG plants are initially designed at fixed values of design
parameters by assuming a steady-state environment, there are
abundant literature reports (Lee et al., 2002; Aspelund et al., 2010;
Mokarizadeh Haghighi Shirazi and Mowla, 2010; Park et al.,
2015; Xiong et al., 2016; Ali et al., 2018; He et al., 2019; Primabudi
et al., 2019) on the analysis and performance improvement of
LNG processes at fixed design parameters. Such parameters
comprise primarily NG feed composition, pressure, and
temperature. However, real-life LNG plants face many
uncertainties in their design parameters that cannot be
overlooked (Luu Trung Duong et al., 2018). Any uncertainty
in the design parameters of LNG plants can affect the overall
performance of the liquefaction process, which ultimately leads to
an increase in the TAC. Although many possible uncertainties

can be found in LNG processes, NG feed conditions (temperature
and pressure) and composition are more likely to be prominent
because of their reserve-to-reserve and ambient-to-ambient
variations. Therefore, it is impossible to design a universal and
robust LNG process to handle all types of NG feed under ambient
conditions, and modifications in the process should be addressed
depending on such variations, but the processes can be improved
and/or maintained at their optimal execution by embedding the
impacts of these uncertainties in the design parameters.

LNG processes with respect to the quantification uncertainty,
sensitivity analysis, and robust optimization have been studied
extensively. For instance, Cao et al. (2016) used Aspen Plus and a
genetic algorithm (GA) to investigate the robustness of MR
compositions for the single mixed refrigerant (SMR) process.
They reduced the degrees of freedom in the variables to ensure the
robustness of the MR and found strong robustness of the MR
composition with 40% sustained energy efficiency, even though
the ratio of the MR was restrained. Mortazavi et al. (2016)
proposed a robust refrigerant mixture for the C3MR process
by varying the NG feed compositions. They used Aspen HYSYS
(v7.1) to simulate the C3MR process and then connected it to
MATLAB (version 2010a) to demonstrate the gradient-assisted
robust optimization. They found a robust MR under a 50%
variation in the mass fractions of nitrogen, ethane, propane,
i-butane, and n-butane. Wu et al. (2021) optimized the small-
scale SMR LNG process and found that the energy consumption
could be reduced by 29.8%. Furthermore, Ali et al. (2019) used a
generalized polynomial chaos (GPC)-based surrogate modeling
strategy to evaluate the reliability of GA- and particle swarm
optimization (PSO)-optimized SMR processes under uncertain
MR compositions with a 3% standard deviation from the mean of
optimal values. They investigated six output objectives, that is, the
liquid fraction of the LNG product, LNG temperature, MR liquid
fraction at the inlet of the LNG heat exchanger, duty of the LNG
exchanger, minimum internal temperature approach (MITA)
inside the LNG cryogenic exchanger, and overall compression
power. Most recently, (Qyyum et al., 2019) studied the impact of
operational variables on the MITA inside warm MR heat
exchangers, MITA inside cold MR heat exchangers, and the
overall compression power of the DMR process. They
presented an uncertainty quantification followed by a global
sensitivity analysis at a fixed NG feed composition and
conditions for the DMR liquefaction process. Moreover, they
performed global sensitivity analysis by developing a surrogate
model and then used a multiplicative dimension reduction
method. To study the impacts of uncertain variables (warm
MR composition, cold MR composition, suction and discharge
pressures of warm MR, and cold MR loop) on MITA and the
overall energy consumption, they used the well-known Monte
Carlo and quasi-Monte Carlo approaches.

Based on the existing literature, several research groups have
investigated and optimized LNG processes under constant NG
composition and conditions. Uncertainty quantification and
sensitivity analysis of the DMR process, which was performed
at fixed NG composition and conditions, have been performed.
Attempts have beenmade to find a robust MR composition under
varying NG compositions, rather than NG conditions, using

FIGURE 1 | LNG trade volume trend from 2005 to 2019 (Shell LNG
outlook, 2019).
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conventional robust optimization techniques. Notably,
simultaneous changes in the NG composition and conditions
are not mandatory and are not dependent on each other.
Sometimes, the NG composition remains constant for a long
time, but the NG conditions can vary and vice-versa. However,
any changes in either the conditions or composition can result in
the LNG plant violating the second law of thermodynamics, such
as a negative MITA value inside an LNG cryogenic exchanger
and/or an uneconomical cryogenic heat transfer operation with a
MITA value of <1.0°C. Generally, LNG plants with a MITA value
of 1.0–3.0°C are considered cost-effective and feasible (Hasan
et al., 2009; Qadeer et al., 2018). Therefore, for any uncertain NG
feed composition and/or condition, it is necessary to maintain the
LNG process within the MITA value of 1.0–3.0°C.

This is the first study that enables the LNGprocesses to be carried
out under uncertain NG pressure and temperature conditions using
an artificial intelligence approach rather than the conventional
optimization approaches. The krill-herd-based optimized SMR-
LNG process presented by Qadeer et al. (2018) was adopted for
the proposed study. The modified coordinate descent (MCD)
algorithm was used to extract the training data on the SMR-LNG
process under varying NG pressures and temperatures. Any
algorithm can be used for data generation; however, the MCD
algorithm was used because of its robustness and accuracy for SMR
processes, as shown in this study. Similarly, PSO is a well-proven
optimization algorithm; therefore, we used PSO for the artificial
neural network (ANN) parameter optimization. However, any
optimization algorithms can be used with an ANN to improve
the results in the future. A back-propagation (BP)-based ANN
prediction model was used. This BP-learned ANN was then
trained in a cascaded manner on the SMR-LNG process training
data obtained through the MCD approach. To evaluate the
performance of the ANN model, uncertain NG conditions were
introduced in the HYSYS-simulated SMR-LNG process by
MATLAB (version 2019a). For any uncertain NG temperature
and/or pressure within specified ranges, the ANN model quickly
estimated the decision variables to make the LNG process, and the
decision variables of the SMR-LNG process were estimated. This
estimated set of decision variables was fed to the Aspen HYSYS
simulator to make the SMR-LNG process feasible. The
appropriateness of the predicted set of decision variables was
verified by inputting them into the Aspen HYSYS simulator. The
output of the SMR-LNG process was the overall power at a
constrained MITA value, i.e., 1.0 ≤ MITA ≤3.0. The prediction
results of the PSO-ANN model were compared with those of the
classical ANN BP learning method.

2 METHODS

The method adopted in this study is illustrated in Figure 2. First,
the SMR-LNG process was simulated using Aspen HYSYS® v10.
After the simulation, data were extracted by establishing a link
between Aspen HYSYS® and MATLAB. The extracted data were
then normalized for the robustness of the training algorithm. In
the normalized database, the training and testing datasets
consisted of 80 and 20% of the original data, respectively. The

PSO-ANN model was developed and implemented by adopting
a cascade training procedure for the datasets. After
implementation, the performance of the developed model was
evaluated using 15 test datasets.

2.1 Single Mixed Refrigerant–Liquefied
Natural Gas Process: Simulation and
Description
Among the LNG processes, the SMR process (also known as the
poly-refrigerant integrated cycle operation (PRICO) process) is
the simplest and most well-suited for small-scale and offshore
applications, owing to its compactness, easy operability, and
simple design (Qyyum et al., 2018b). Additionally, the SMR
process requires less capital investment than other processes
(Qyyum et al., 2018c). This process consists of a compression
unit equipped with interstage coolers, a main cryogenic
exchanger, and an expansion valve. A detailed description of
the SMR-LNG process is presented in Section 2.2.

2.2 Process Description
The flow diagram of a typical SMR-LNG process is shown in
Figure 3. The NG stream (NG) at 32°C and 50 bar enters CHX-1
and leaves as a 100% saturated liquid at –149.3°C. The stream 1
leaving CHX-1 is passed through JTV-1 for isenthalpic expansion
to 1.209 bar. This expansion process produces LNG at –158.5°C

FIGURE 2 | Research methodology of the proposed study.
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with a 92% liquefaction rate, which then enters the phase
separator (V-1) to separate LNG and ends flash gases (EFG).
This liquefaction process is supported by the SMR cycle. The SMR
cycle, comprisingC1, C2, C3, andN2, is compressed to 69.45 bar in a
series of compressors and interstage coolers. The function of the
interstage coolers is to maintain the MR temperature at 40°C at the
compressor inlet. After compression, condensation of the high-
pressure MR occurred in the after-cooler (C-4) and CHX-1. This
high-pressure condensed MR enters JTV-2 for isenthalpic
expansion to 1.65 bar and then re-enters CHX-1 to deliver its
cold energy for the condensation of both the NG and MR streams.
The outlet SMR stream 15 leaves CHX-1 at 37°C and is recycled to
complete the refrigeration loop.

2.3 Process Simulation
The SMR-LNG process was simulated using the process
simulation software application Aspen HYSYS® v 10. In Aspen
HYSYS, the Peng–Robinson model (Peng and Robinson, 1976)
was selected as an equation-of-state model to calculate the
thermodynamic properties, whereas the Lee–Kesler (Kesler and
Lee, 1975) model was adopted for enthalpy calculations of the

refrigerant and LNG streams. The following assumptions were
made for the SMR-LNG process simulation:

1) The heat loss to the surroundings is zero.
2) Water is used as a cooling medium in the interstage and after-

coolers.
3) The outlet temperature of the process stream after the

interstage and after the coolers was maintained at 40°C.
4) The efficiencies of the compressors are kept at 75%.
5) The pressure drops across CHX-1 on the hot and cold sides

are 1.0 and 0.1 bar, respectively.

The design parameters and constraints of the process simulation,
listed inTable 1, were obtained fromQadeer et al. (2018). The stream
conditions for the simulated SMR-LNG process are listed in Table 2.

3 DATA COLLECTION

This study aimed to develop a particle swarm-assisted artificial
neural network (PSO-ANN) model for the prediction of the

FIGURE 3 | Schematic representation of the process flow diagram of the SMR-LNG process.
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design parameters of the SMR-LNG process for its feasible
operation under given NG conditions. A comprehensive
database of 1,000 data samples in terms of input decision
variables and the overall output power with constraint (1.0 ≤
MITA ≤3.0) was collected using the Aspen HYSYS® v10 process
simulator. The simulator was linked to the Visual Studio
platform, and the database was extracted using the modified
coordinate descent (MCD) method, as shown in Figure 4.

Figure 4 shows that for a specific set of feed conditions, the
decision variables of the SMR-LNG process vary in such a way that
a feasible SMR-LNG process is obtained, i.e., the MITA value lies
between 1.0 and 3.0. The MCD is terminated, and the values of
decision variables, corresponding energies, and MITA values are
saved in the database. This process was repeated by setting new
iterations of MCD and adjusting a new set of feed conditions.
Table 2 lists the feed conditions and other simulation assumptions
that were used to build the data mining environment. Table 3
represents the upper and lower bounds of each decision variable
within which the database was generated.

To establish the nature of the relationship among all feed
conditions, decision variables, overall power, and MITA
values within the collected database of the SMR-LNG
process, the coefficient of determination (R2) was
calculated, as given in Table 4. The coefficient of
determination indicates that the percentage of the total
variation in the dependent variable can be explained by
the linear relationship between the dependent and
independent variables. For example, 98.7% of the total
variation in the overall power can be explained linearly
with respect to C1, whereas the remaining 1.3% remains
unexplained. Table 4 shows the moderate relationships
among different variables, except for a few (in bold). This
makes the feasibility of the SMR-LNG process a very complex
problem for the user-defined set of feed conditions.

4 DATA NORMALIZATION

For the robust operation of any training algorithm, it is necessary
that all the input and output parameters of a database are
normalized in the same range (−1 to 1) (Yagiz and Gokceoglu,
2010; Armaghani et al., 2014; Amiri et al., 2016; Jahed Armaghani
et al., 2016; Ghasemi, 2017). Thus, the database prepared in the
previous section was normalized using Eq. 1:

Vnormalized � 2(V − Vmin)
(Vmax − Vmin) − 1, (1)

where Vmin and Vmax represent the minimum and maximum
values of the corresponding parameter, respectively, and
Vnormalized represents the scaled value of the parameter.
Furthermore, a normalized database was divided into training
and testing datasets. The training and testing datasets comprised
80 and 20% of the original data, respectively. Training and testing
datasets were used to develop and evaluate the ANN model.

4.1 Selection of Model Parameters
In the PSO-ANN model, several parameters were associated with
both the ANN and PSO algorithms. ANN parameters that
comprise ANN architecture include the number of hidden
layers, neurons, training rule, training algorithm, and network
type. The PSO parameters are swarm size (N), velocity
coefficients (c1 and c2), and inertial weight (w). To obtain the
optimum PSO-ANN model, the design parameters of both the
PSO and ANN algorithms must be optimized.

4.1.1 Classification of Variables in the Single Mixed
Refrigerant–Liquefied Natural Gas Process
First, the optimum ANN architecture was obtained by
calculating the design parameters. For this purpose, the

TABLE 2 | Process stream conditions of the SMR-LNG process.

Stream no. Temperature Pressure Mass flow

°C bar kg/h

NG 32 50 1
1 −149.3 49 1
2 −158.5 1.20 1
EFG −158.5 1.20 0.074
LNG −158.5 1.20 0.925
4 36.9 1.55 3.313
5 93.7 4.01 3.313
6 40 4.01 3.313
7 97.7 10.37 3.313
8 40 10.37 3.313
9 99.7 26.84 3.313
10 40 26.84 3.313
11 105.5 69.45 3.313
12 40 69.45 3.313
13 −149.3 68.45 3.313
14 −152.3 1.65 3.313
15 36.9 1.55 3.313

TABLE 1 | Design parameters and constraints of the SMR-LNG process.

Design parameter Value

Feed condition

Flow rate (kg/h) 1.0
Temperature (°C) 32
Pressure (bar) 50

Feed composition (mole %)

Methane 91.33
Ethane 5.36
Propane 2.14
n-Butane 0.47
i-Butane 0.46
n-Pentane 0.01
i-Pentane 0.01
Nitrogen 0.22

Design constraint

MITA (°C) 1.0 ≤ MITA≤3.0
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variables of the SMR-LNG process are first classified into
independent and dependent variables. In our problem
regarding feasible designs of the SMR-LNG process under
varying feed conditions, 10 variables in the SMR-LNG
process were considered. Table 5 presents the classification
of these variables into independent and dependent variables.

4.1.2 Cascaded Training Procedure
In the SMR-LNG process, there are two feed conditions and six
decision variables. These eight variables are fed into the SMR-

LNG process to make it feasible. SMR-LNG is a very complex
process, and it is difficult to determine any relationship between
one variable and the others. One method is to predict each
decision variable explicitly by training the model based on the
feed conditions only. However, this may lead to incorrect results,
owing to the existence of a nonlinear relationship among all
decision variables. In this study, a cascaded training procedure is
adopted. In this procedure, one decision variable is predicted
based on the feed conditions, and then, the next decision variable
is predicted based on the feed conditions and the already
predicted variable.

One way to train the model is to explicitly predict every
decision variable based on feed conditions. However, this may
not make the SMR-LNG process feasible, owing to the existence
of some relations among the six decision variables. Thus, in this
cascaded ANN architecture, the number of nodes in the input
layer varied from two to seven, whereas the number of neurons in
the output layer remained constant. As the decision variable
would be randomly predicted first, there are 480 possible
permutations/settings for the two feed conditions and the six
decision variables. One permutation of the variables, set as

FIGURE 4 | Aspen HYSYS–Visual Studio-based data mining environment.

TABLE 3 | Decision variables of the SMR process with their upper and lower
bounds.

Decision variable Lower bound Upper bound

High pressure, P11 (bar) 35.0 70.0
Low pressure, P14 (bar) 1.1 4.0
Flow rate of nitrogen, mN2 (kg/h) 0.1 0.65
Flow rate of methane, mC1 (kg/h) 0.25 0.85
Flow rate of ethane, mC2 (kg/h) 0.45 1.15
Flow rate of propane, mC3 (kg/h) 2.0 3.5
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independent and dependent in the cascaded training procedure,
is given in Table 6. In this study, the permutation of the variables
given in Table 6 is performed. However, all permutations can be
exploited to achieve the desired results.

4.1.3 Optimum Design Parameters of the Artificial
Neural Network Architecture
Regardless of the permutation of variables, it is necessary to
determine the design parameters of the cascaded ANN
architecture. From all ANN parameters, the selection of the
network type, training rule, and training algorithm are
rigorously discussed in the literature (Hush 1989;
Kanellopoulos and Wilkinson, 1997). Previous studies
(Meulenkamp and Grima, 1999; Ornek et al., 2012; Ceryan
et al., 2013) have found that among other training rules, the
Levenberg–Marquardt (LM) algorithm is efficient in solving
engineering problems. Furthermore, it has been proven that an
ANN with one hidden layer is sufficient for solving all types of
problems. In addition, the architecture of an ANN with only
one hidden layer decreases the complexity of the
model, resulting in a decrease in overfitting. The
backpropagation training algorithm (which was later
replaced with the PSO algorithm), along with the feed-
forward network, was found to be a more efficient setup by
many researchers (Hornik et al., 1989; Basheer, 2000; Hecht-
Nielsen, 2018). The number of nodes in the hidden layer (Hn)
has a significant impact on the estimation performance
(Sonmez et al., 2006) (Güllü and Geology, 2007). Thus,
several equations were proposed, as listed in Table 7, to
calculate the value of Hn.

According to this table, the upper bound of Hn is 2Ni + 1,
where Ni is the number of input nodes, and No is the number of
output nodes. Based on this table, the number of nodes in the
hidden layer may vary from 1 to 15 for the SMR-LNG process
(because the maximum number of input variables may reach 7).
To calculate the appropriate number of nodes in the hidden layer,
a number of ANN architectures was designed using the
parameters given in Table 8. The performances were evaluated
using the coefficient of determination (R2) and root mean square
error (RMSE) for both the training and test datasets. A greater R2
and a lower RMSE value led to a good prediction. The optimum

number of hidden nodes found for permutation of the cascaded
ANN architecture, given in Table 6, is summarized in Table 9.
The numbers of nodes in the hidden layer were found as 5, 7, 9,
10, 13, and 15 for the prediction of N2, C1, C2, C3, P14, and P11,
respectively. If the same procedure is adapted for other
permutations of cascaded ANN architectures, the value of Hn

will be different. Thus, it is not possible to determine the exact
value of Hn. Therefore, all sizes of the hidden layer, from 2 to 15,
were exploited in this study.

4.1.4 Determination of the Particle Swarm
Optimization Parameters
As mentioned earlier, the PSO algorithm was integrated with an
ANN for the prediction of the decision variables for the feasible
design of the SMR-LNG process under varying values of
temperature and pressure (feed conditions). PSO accomplishes
the task of minimizing the fitness/objective function by selecting
the optimum values of the weights and biases. The objective
function f that is considered to be optimized through PSO is the
root mean square error (RMSE) of the ANN, which is given as
follows:

f � RMSE �
�����������∑n

i�1(Oi − Ii)2
TI

√
, (2)

where Oi is the output calculated by the network of the ith
input variable set in the training data, and Ii is the actual output of
the ith input variable set in the training data. TI denotes the total
number of instances in the training dataset. The optimum values
of the parameters, that is, weights and biases for which the fitness
function f gives the minimum value, are calculated. An ANN
model is said to be robust if it yields a lower fitness function value
for the training data.

There are four parameters that are associated with the PSO
algorithm: velocity coefficients (c1 and c2), inertia weight (w),
number of particles in the swarm (swarm size N), and number
of iterations. The inertia weight is normally a random number
between 0 and 1. Previous research has shown that the PSO
parameters can be obtained by conducting sensitivity analyses.
Mohamad et al. (2015) and Momeni et al. (2015) presented 12
combinations of c1 and c2 in the range of 0.8–3.2, such that the sum
of c1 and c2 is 4. Alam et al. (2015) found the optimum range of

TABLE 4 | Summary of SMR-LNG process parameters in terms of R.2.

Decision
variable

T P N2 C1 C2 C3 P14 P11 Overall
power

MITA

T 1 0.000426 0.001074 0.009132 2.03E-06 1.47E-05 0.006454 0.002855 0.004006 0.000191
P 1 0.001594 0.000236 0.000301 0.018804 0.024508 0.008414 0.000411 1.75E-05
N2 1 0.5957 0.767961 0.358484 0.500875 0.022049 0.597211 0.000153
C1 1 0.546348 0.661908 0.084279 0.00929 0.987432 0.000161
C2 1 0.352047 0.238054 0.025003 0.512823 1.99E-05
C3 1 0.089162 0.152893 0.713134 0.000234
P14 1 0.001637 0.120015 0.000173
P11 1 0.003893 0.000126
Overall power 1 0.000203
MITA 1

The bold value represnt the strong relationship between overall power and C1.
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velocity coefficients: c1 lies between 1 and 2.5, and c2 lies between 2
and 3. Furthermore, Hajihassani et al. (2014) and Momeni et al.
(2015) suggested that the velocity coefficient values of c1 = c2 =
2 and inertia weight = 0.25 give optimum results. Thus, after the
conclusion made on the previously reported research, the velocity
coefficient of 2 and the inertia weight of 0.25 were used for all
evaluations of the PSO-ANN model used in this study. The swarm
size has a significant impact on the prediction performance of the
PSO-ANN model, but there is no specific method to determine the
swarm size, except for the well-known trial and error method. For
the given cascaded training procedure, two permutations were
selected from 480 permutations. For the first permutation, the
RMSE values were selected for various numbers of particles in a
swarm, and for the second permutation, the R2 value selected for
various numbers of particles in a swarm are calculated, as shown in
Figures 4, 5, respectively. From Figure 5, it is evident that while

predicting N2, C1, C2, and C3, the minimum RMSE value is
obtained at a swarm size of 10. Similarly, the swarm size was
found to be 15 when predicting P14 and P11. Thus, unusual
results were obtained, as shown in Figure 6. Swarm sizes of 15
(for the predictions of C1, C2, and C3) and 25 (for the predictions of
N2, P14, and P11) were obtained. This implies that changing the
permutation of variables leads to a change in the swarm size. Thus,
determining the optimum swarm size for the proposed PSO-ANN
model is not easy. However, as shown in Figures 5, 6, satisfactory
predictions can be achieved for swarm sizes of less than 30. Thus, to
prevent the model from being overburdened, all swarms with sizes
smaller than 30 are exploited in the proposed study.

4.2 Optimum Particle Swarm
Optimization–Artificial Neural Network
Architecture
After data collection and normalization, data division, and
calculation of the optimum parameters of both the ANN and
PSO algorithms, the optimum PSO-based ANN model is
achieved. A summary of all the parameters of the optimum
PSO-ANN model is presented in Table 10.

5 PARTICLE SWARM-ASSISTED
ARTIFICIAL NEURAL NETWORK

An ANN consists of very complex interconnections of processing
units called neurons. An ANN possesses three types of layers: one
input layer, one output layer, and some hidden layers. Neurons are
placed in the hidden and output layers, whereas the input layers

TABLE 5 | Summary of SMR-LNG process variables.

Variable Variable type Description

Feed condition
Temperature Independent Inputs, set by user
Pressure
Decision variable
N2 Dependent Intermediate outputs calculated from the PSO-ANN model
C1
C2
C3
P14
P11
Overall power Dependent Final output calculated based on intermediate outputs
MITA Constraint MITA must be within 1.0–3.0

TABLE 6 | Arrangement of input and output variables of cascaded ANN
architecture.

Step Variable type

Independent variable Dependent variable

1 T and P N2
2 T, P, and N2 C1
3 T, P, N2, and C1 C2
4 T, P, N2, C1, and C2 C3
5 T, P, N2, C1, C2, and C3 P14
6 T, P, N2, C1, C2, C3, and P14 P11

TABLE 7 | Equations from the literature for the determination of Hn.

Equations for
calculating Hn

Reference

Hn ≤2 × Ni + 1 Hecht-Nielsen, (2018)

Hn � (Ni+No )
2

Ripley, (1993)

Hn � (2+Ni .No+0.5No) × (N2
o+Ni)−3

No+Ni

Paola, (1994)

Hn � (2Ni )
3

Wang, (1994)

Hn � �������
Ni × No

√
Academic, (1993)

Hn � 2Ni (Kaastra and Boyd, 1996; Kanellopoulos and
Wilkinson, 1997)

TABLE 8 | ANN parameters set for calculating the number of nodes in the hidden
layer (Hn).

Serial no. Parameter Description

1 Network type Feed-forward
2 Training algorithm Back-propagation
3 Training rule Levenberg–Marquardt (LM)
4 Number of iterations (epochs) 100
5 Training data 80% of the database
6 Test data 20% of the database
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TABLE 9 | Optimum value of Hn calculated for the cascaded ANN model given in Table 6.

Step Variables No. of
nodes in
the hidden

layer

Training Testing

Input Output R2 RMSE R2 RMSE

1 T and P N2 5 0.299475207 0.462,161 0.317592 0.452997
2 T, P, and N2 C1 7 0.885814071 0.31945 0.886035 0.317403
3 T, P, N2, and C1 C2 9 0.918158673 0.272916 0.90852 0.281464
4 T, P, N2, C1, and C2 C3 10 0.869706414 0.336625 0.864537 0.343583
5 T, P, N2, C1, C2, and C3 P14 13 0.935700723 0.246324 0.915295 0.283364
6 T, P, N2, C1, C2, C3, and P14 P11 15 0.93136643 0.254453 0.919631 0.275898

TABLE 10 | Optimum PSO-ANN parameters for the design of the model.

ANN Parameter

Sr. No. Parameter Description

1 No. of input nodes Varying from 2 to 7 in the cascaded training procedure
2 No. of output nodes 1
3 No. of hidden layers 1
4 No. of neurons in the hidden layer (Hn) 2–15
5 Training rule Levenberg–Marquardt (LM)
6 Training algorithm PSO
7 Network type Feed-forward (FF)

PSO parameters

8 Swarm size (SS) 1–30
9 Velocity coefficients c1 = c2 = 2
10 Inertia weight (w) 0.25
11 No. of iterations (In) 100 1,000 (with a gap of 50)

FIGURE 5 | Calculation of optimum swarm sizes with respect to RMSE.
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FIGURE 6 | Calculation of optimum swarm sizes with respect to R2.

FIGURE 7 | Basic artificial neural network architecture.
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consist of nodes that are equal to the number of independent
variables. All nodes and neurons in the three types of layers are
connected to each other. Each connection is associatedwith a weight,
and each layer is associated with a bias. The values of these weights
and biases are adjusted by the values of the input variables and their
corresponding output variables to attain the minimum value of the
error function. The basic ANN model is illustrated in Figure 7.

This model accepts n independent variables/features i1, i2 ... in and
produces two outputs/dependent variables O1 and O2. [W1], [W2],
and [W3] are the weight vectors, and b1, b2, and b3 are the biases
associated with the connections and layers, respectively. For the
simplest 1-1-1 neural network, if the number of independent
variables is i = 1, 2, . . . n and the number of neurons in the
hidden layer is j = 1, 2, . . . ,k, then Wij represents the weights of
the connections between the ith input variable to the jth neuron in the
hidden layers, and bj represents the bias coupledwith the jth neuron in
the hidden layer;Wj represents the weights of the connection between
the jth neuron in the hidden layer and the single output layer’s neuron;

b1 represents the bias coupled with the single neuron in the output
layer. A total of k× (n+ 2) + 1 parameters (weight plus bias) were used
in the network (Rukhaiyar et al., 2018). After completing the structure
of the ANN model, the training procedure was initiated on the
training dataset, which consisted of known values of the input
variables with their corresponding output values. The training
dataset of the ANN network was used to find the optimal values
of the weights and biases. Typically, backpropagation (BP), gradient
descent, andLevenberg–Marquardt (LM) optimization algorithms are
used to attain optimum values of weights and biases (Shahin et al.,
2002). The training of one neuron using the BP method is shown in
Figure 6 (enlarged part), where the weighted sum is calculated at the
node. This weighted sum is then operated using an activation function
to obtain the predicted output. Some common activation functions
are listed in Table 11 (Karlik and Olgac, 2010).

The predicted output and the actual output (as given in the
training dataset) are compared, the cost function is calculated,
and weights and biases are updated. This procedure is repeated

TABLE 11 | Activation functions for the artificial neural network.

Activation function Equation 1-D graph

Unit step
∅(z) �

⎧⎪⎨⎪⎩ −1, if z <0
0.5, if z � 0
1, if z >0

Signum
∅(z) �

⎧⎪⎨⎪⎩ −1, if z < 0
0, if z � 0
1, if z > 0

Linear ∅(z) � z

Piece-wise linear

∅(z) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if z ≥
1
2

z + 1
2
, if − 1

2
< z < 1

2

0, if z ≤ − 1
2
>

Logistic (sigmoid) ∅(z) � 1
1+e−z

Hyperbolic tangent ∅(z) � ez−e−z
ez+e−z
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FIGURE 8 | Framework of the proposed PSO-ANN model for the SMR process.

FIGURE 9 | Demonstrative example of cascaded training and the prediction procedure of the PSO-ANN model.

Frontiers in Energy Research | www.frontiersin.org July 2022 | Volume 10 | Article 91765612

Ahmad et al. PSO-ANN–Assisted LNG Process

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


until a minimized cost function is achieved. The same procedure
was repeated for all neurons. Once the network is optimized, it is
tested using unseen data. Because of its dependence on the
selection of the initial point, the BP algorithm and other
conventional methods become very susceptible to initial
weights. Furthermore, these methods have fewer learning
capabilities and are trapped at the local minimum point
(Shahin et al., 2002). These limitations can be overcome by
finding the optimal value using metaheuristic algorithms such
as particle swarm optimization (PSO), ant colony optimization
(ACO), genetic algorithm (GA), and differential evolution
algorithm. Inspired by the social and cooperative behavior of bird
flocks, PSO has been proven to be the most robust optimization
technique. The prediction performance of the ANN improves when
coupled with PSO (Panigrahi et al., 2011; Raja and Rajagopalan,
2014; Talal, 2014). In this study, a PSO-based ANN model was

implemented to estimate the feasible values of all operating
parameters of the SMR-LNG process at user-defined values of the
feed conditions.

5.1 Particle Swarm Optimization–Artificial
Neural Network Model Implementation
In the proposed study, the BP technique was replaced by the PSO
algorithm to optimize the weights and biases for the optimum
training of the ANN architecture. Optimum training of the ANN
through PSO was performed in MATLAB (version R2019b). The
implementation of the PSO-ANN model for the SMR-LNG
process is described in the flowchart in Figure 8. All six
decision variables of the SMR-LNG process were predicted
using the user-defined test values of temperature (T) and
pressure (P). A demonstrative example of the proposed PSO-

TABLE 12 | PSO-ANN performance: estimated decision variables and their corresponding MITA and overall power values against user-defined test data.

User-defined
test data

Predicted decision variable MITA value (°C) Overall Power (kWh/kg

T (°C) P (bar) N2 C1 C2 C3 P14 P11

19 38 0.02048578 1.49507212 0.03381756 3.298491 1.22979568 67.5807344 3.5588 0.6623
27.5 19.8 0.03266053 1.8887693 0.21542165 5.0840659 1.57348844 42.2900062 −1.759 0.7702
36 32 0.03115662 1.62549479 0.15341542 4.3759496 1.09061408 46.9675875 1.5644 0.7612
13.6 38.4 0.01303582 1.44215758 0.06404135 3.5683337 1.22992845 66.0482301 2.6071 0.66
33.6 41.7 0.04155798 1.40916479 0.02597274 3.468807 1.3559288 64.1196533 2.7446 0.6275
13 39 0.00412 1.57178 0.04263 2.98911 1.30351 79.8137 2.7995 0.6715
44 66 0.02329951 1.54599192 0.06773562 3.1280087 1.25915844 78.260649 2.7676 0.6852
31 45.3 0.04414045 1.08875089 0.11128686 3.0402521 1.163683 66.9231458 3.6852 0.5529
24 51 0.06269776 0.43716601 0.25469063 2.7109918 0.87624268 58.6262182 1.6294 0.3849
28.2 57.4 0.07745343 1.0617035 0.136462 3.1373916 1.38753536 64.3869831 2.7644 0.5267
52.2 65.8 0.10173463 1.93721716 0.0144012 4.92258 1.91223634 49.6858719 0.6239 0.7364
34.5 35.8 0.03701991 1.33615765 0.05267982 3.3366693 1.23275638 66.6224401 3.6161 0.6238
29.5 47.8 0.06911979 1.23502052 0.22370968 2.8150145 1.57109662 80.7771185 2.0089 0.567
33 55 0.04079048 1.4826545 0.05797398 3.3185904 1.29216085 61.7862094 −3.143 0.6484
17 64 0.04984919 1.4350508 0.34312981 2.2992148 1.4738297 102.115943 2.1584 0.6362

The bold values represent the failed cases.

TABLE 13 | BP-ANN performance: estimated decision variables and their corresponding MITA and overall power values against user-defined test data.

User-defined
test data

Decision variable MITA value (°C) Overall power (kWh/kg)

T (°C) P (bar) N2 C1 C2 C3 P14 P11

19 38 −0.30748 −0.71273 −0.76367504 5.96711 1.571337 26.74889 −44.6139 0.0428
27.5 19.8 0.010986 1.531374 −0.00849044 3.618365 1.199,564 66.23101 3.7919 0.6881
36 32 0.120043 1.553099 0.08779118 3.654192 0.738928 73.39658 10.6211 0.8418
13.6 38.4 −0.0043 1.949626 −0.00435454 3.704337 1.267493 65.80107 2.4588 0.7963
33.6 41.7 −0.42875 15.88232 0.53706632 9.085615 2.042907 14.10451 −8.8689 2.3211
13 39 0.003316 1.636333 0.005838 3.195477 1.265716 70.59852 −1.0471 0.6896
44 66 0.166319 0.489221 0.14651155 3.611392 1.488567 37.46367 −0.3474 0.3669
31 45.3 0.103712 0.827653 −0.20935889 2.876582 1.449274 57.21072 1.0737 1.0737
24 51 0.005326 1.759099 0.00501593 3.837608 1.19054 60.25586 3.066 3.066
28.2 57.4 −0.07131 1.644746 -0.102889 0.179883 1.433059 137.9715 −131.248 0.5402
52.2 65.8 −0.80063 20.83643 -0.01325665 5.963141 0.651554 223.385 14.2119 8.3537
34.5 35.8 −0.08866 2.998969 0.01046728 2.846057 1.978235 144.7141 −0.14 1.0299
29.5 47.8 0.004382 3.056911 0.84054702 6.698002 5.266573 95.52342 −6.1849 0.8737
33 55 0.092517 0.547984 0.2428646 2.469748 1.142149 68.80928 3.5654 0.3895
17 64 −0.12763 8.600469 -0.00988271 5.831083 1.501577 69.24479 3.4677 2.5584

The bold values represent the failed cases.
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ANN model to provide insight into the cascaded training and
prediction mechanism is shown in Figure 9. The user-defined
values of T and P were set as 20°C and 40 bar, respectively.

6 PERFORMANCE EVALUATION

For the performance evaluation, 15 test datasets of the feed
conditions were used. The PSO-ANN model was tested on
these datasets, and its estimation performance was compared
with that of the conventional BP-ANN model. For each set of
test data, the SMR-LNG process was in an infeasible state (MITA
<1). Thus, new values of all decision variables must be estimated
for the feasible operation of the SMR-LNGprocess.Table 12 shows
the prediction performance of the PSO-ANN model on the test
datasets. It was concluded that the PSO-ANN model made the
SMR-LNG process feasible for 12 out of 15 datasets by accurately
estimating the decision variables. The success rate of the PSO-ANN
model was 80%. Three cases of failure were observed. However,
this 20% failure may be rectified by adapting other permutations of
the variables in the cascaded training procedure. For a fair
comparison, the estimation of decision variables was also made
using the standard BP-ANN model (which does not use the PSO
optimizer), as given in Table 13. It was found that the BP-ANN
model predicted the decision variables accurately for only two out

of the 15 test datasets; hence, the success rate was 13.33%. In the
BP-ANN model, owing to its extrapolation behavior, the few
predicted flow rates were negative, which is impossible in a real
scenario.

Figure 10 shows the relationships between different trained
models and the output variables for the permutation of the
variables given in Table 6. The coefficient of correlation (R)
measures the degree of dependence between two quantities. Its
value varies from −1 to 1. A higher value of R indicates a stronger
relationship. Thus, it is clear from Figure 10 that the probability
of prediction correctness is higher for C1 and C3, lower for N2,
and medium for C2, P14, and P11. Furthermore, prediction
accuracy can be improved by employing any other
permutation in the cascaded training procedure.

7 CONCLUSION

NG sources are generally located in remote areas, from which NG is
extracted and transported to far-away markets in the form of LNG.
The composition and conditions of the extracted NG vary from
source to source. These varying conditions can adversely affect the
LNG production process, leading to infeasibility. To avoid this
problem, a PSO-ANN model is proposed in this study to predict
the process behavior in terms of the minimum internal temperature

FIGURE 10 | Regression relationship between the trained PSO-ANN model and the corresponding dependent variables.
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approach (MITA) value at varying decision variables, i.e., NG
composition and conditions. The PSO-ANN model showed an
80% success rate for predicting the feasibility of the process
through the correct estimation of the decision variables. It was
also found that the proposed model is suitable for predicting the
feasible set of decision variables, even for unusual sets of user-
defined test data. Furthermore, the 20% failure rate may be
converted to a success rate by training the model again on a
different set of model parameters.
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NOMENCLATURE

NG natural gas

LNG liquefied natural gas

PSO particle swarm optimization

ANN artificial neural network

SMR single mixed refrigerant

TAC total annualized costs

GA genetic algorithm

MITA minimum internal temperature approach

BP back-propagation

MCD modified coordinate descent

PRICO poly-refrigerant integrated cycle operation

LM Levenberg–Marquardt

RMSE root mean square error
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