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Aiming at the shortcomings of the analytic hierarchy process in the

comprehensive evaluation of wind power system operation status with

strong subjectivity in determining weights, this thesis proposes an analytic

hierarchy process (AHP) based on particle swarm optimization (PSO) and

constructs an analytic hierarchy process combined with a particle swarm

optimization algorithm (PSO + AHP) model to optimize the weights. It

overcomes the disadvantage that once given the judgment matrix in the

AHP method, the weight values and consistency cannot be improved. In this

article, the comparison chart of the consistency indexes calculated according

to this method shows that the one-time indexes of Ca as well as C1 − C7 are

reduced to different degrees, so a weight value with a relatively high degree of

consistency can be obtained by thismethod. Second, for the situation that there

are several judgment indexes in the sub-project layer that deviate seriously at

the same time, introduce the degradation index, and apply the fuzzy

comprehensive judgment method to establish the model of wind power

system operation status assessment. Finally, based on the actual monitoring

data of a wind farm over a period of time, its operational status was evaluated

using the proposed PSO-AHP model based on FCE, and a score that can

indicate the operational status can be obtained by calculation. In this article, the

evaluation score of a wind farm is 0.556, indicating that the staff needs to carry

outmaintenance at this time. The comparative analysis shows that compared to

the traditional AHP-FCE evaluationmethod, the assessment results proposed in

this article are relatively good and have practical value and significance for

improving the real-time reliability of grid-connected operation of wind turbines,

optimizing the maintenance strategy of wind turbines, and reducing the cost of

wind power generation.
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1 Introduction

To solve the problem of energy shortage, the exploration and

use of renewable energy have become extremely important. The

main renewable energy sources that are expected to achieve

large-scale use are wind, solar, nuclear energy, etc. Among

them, wind energy resources have many advantages; they are

clean, pollution-free, inexhaustible, and renewable. Wind energy

resources are abundant all over the world. It can be seen that the

market prospect of wind power generation is extremely

promising; wind power generation technology is also

constantly improving. With the large-scale development of the

wind power industry and the progress of wind power technology,

wind energy has gradually become an energy type that mankind

can rely on in the future. Therefore, timely, comprehensive, and

accurate monitoring and evaluation of the operational status of

wind power systems, and effective avoidance of faults and chain

failures, are of great practical significance for optimizing the

maintenance strategy of wind farms and achieving safe and

efficient grid connection of large-scale wind power generation

(Zhang et al., 2019).

At present, wind farms still take the traditional way of after-

the-fact maintenance and planned preventive maintenance, often

failing to understand the operating status and reliability of the

system in a comprehensive and timely manner. At present, there is

a lack of data and experience on unit operation in China, and there

is no excessive accumulation and analysis of reliability test data for

the time being. Although the remote monitoring system of wind

farms can collect operational data on wind turbines, it lacks

effective evaluation algorithms and cannot assess the

comprehensive status of the turbines in a timely manner (Yang

et al, 2020). Therefore, it is of great academic value and application

prospect to find a method to evaluate the operating condition of

wind turbines based on online monitoring information without

relying too much on the test data of the turbines. At present,

knowledge-based expert systems, intelligent methods based on

neural networks, probabilistic statistical methods, and fuzzy

comprehensive evaluation have been gradually applied to the

condition assessment of thermal power units and large power

transformers (Bo et al., 2016). Xiong et al. (2007) evaluated the

operating condition of power transformers using the grey

hierarchy method, and Zhu et al. (2019) evaluated the typical

faults of coupled torsional vibration in thermal power units by

calculating. In recent years, these algorithms have also been

gradually applied to the assessment of wind power; Li et al.

(2010) used the object element method to evaluate the

operating condition of wind turbines, and many scholars have

evaluated the individual components of the units by using various

intelligent algorithms. However, all these evaluation methods need

a large amount of data support to be implemented, so it becomes

extremely necessary to seek an evaluation method that does not

rely too much on data. Since AHP-FCE does not need to rely too

much on the analysis of experimental data, it is widely used in

evaluation work in other fields, and the literature (Zhou, 2020; Li

et al., 2021; Wenyan et al., 2021) applied the AHP-FCE method to

the evaluation of commercial concrete production process,

agricultural product supply chain, and Pimpernel germplasm

resources, respectively. So, we can apply this method to the

operation state evaluation and fault diagnosis of wind systems

in complex operating environments and complex working

conditions. However, the weights determined using a single

hierarchical analysis method can be subject to a certain degree

of chance; therefore, there is a need to find a method to optimize

the weights determined by the hierarchical analysis method. In Hu

et al. (2012), the AHP ranking weights were optimally calculated

by a simulated annealing algorithm, and the literature (Xiao et al.,

2022; Liu et al., 2013) optimizes the AHP by means of a particle

swarm optimization algorithm and applies this method to the

evaluation of LNG tankers as well as distributed power networks,

respectively. Zhang et al. (2018) optimize the weights by

combining the particle swarm algorithm with rough set theory

and apply this method to the evaluation of irrigation water use.

Therefore, to address the shortcomings in weight determination,

this article proposes an improved AHP-FCE method to evaluate

wind power systems (Shi and Zheng, 2012; Zhou, 2020; Li et al.,

2021; Wenyan et al., 2021).

According to the online monitoring information of wind

turbines, by analyzing the physical quantities of wind turbines

and external environment control system, this article applies

AHP to construct a framework of project layers and sub-project

layers with important characteristics reflecting the operating status

of the unit and uses traditional AHP to calculate the weights. At the

same time, aiming at the disadvantage of determining the weight in

the comprehensive evaluation of AHP, based on the PSO, this article

constructs the PSO + AHP model (Liu et al., 2013; Zhang et al.,

2018) and uses this model to solve the optimized weight (Xiao et al.,

2022); by comparison, we found that the optimizedmodel calculates

a relatively high weighted one-time indicator. Second, aiming at the

serious deviation of multiple evaluation indexes in the sub-project

level at the same time, the introduction of the deterioration index to

establish an evaluation and improvement method and model of the

online operation state of the wind power system. Then, through the

actual monitoring information of a wind farm for a while, apply the

operation state evaluationmodel proposed in this article to calculate

and evaluate. Finally, a summary of the work done and the

shortcomings of this article is given.

2 Evaluation model of wind power
system operation state

2.1 Selection of operation status
evaluation indicators

Because the online monitoring data of wind power systems

can reflect the operation state of the system in real-time, this
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article, therefore, looks at both the performance of the unit and

the external factors that affect the operating condition of the

system, established a hierarchical wind power system operating

condition assessment index system (Xiong et al., 2007; Li et al.,

2010). In order to make a fair and objective evaluation of the

operation status of wind power systems, it is particularly urgent

to establish a set of scientific and reasonable evaluation index

systems that can fully reflect the characteristics of the operation

status of wind power systems. Therefore, the selection of

evaluation indicators should follow the principles of

comprehensiveness, operability, systematicness, and

objectivity. Therefore, considering the characteristics of the

wind power system, seven first-class indexes, including

generator system, gearbox system, environmental factors, grid

connection factors, control system, spindle system, and main

control system, with a total of 29 second-class indexes, are

selected to build the operation state evaluation index system

of the wind power system (Xiao et al., 2014; Huang et al., 2015;

Min, 2017; Li, 2019; Zhang, 2019; Bianhui, 2020; Wang and Shi,

2021).

2.2 Fuzzy comprehensive evaluation (FCE)
model with improved hierarchical analysis
(PSO + AHP)

The fuzzy evaluation model based on the improved analytic

hierarchy process is an effective combination of the improved

analytic hierarchy process and the fuzzy comprehensive

evaluation method. It is a multi-criteria and multi-level

decision analysis method combining qualitative and

quantitative analysis.

According to the principle, the construction steps of the fuzzy

comprehensive evaluation method model based on the improved

analytic hierarchy process are shown in Figure 1:

2.2.1 Construction of hierarchical evaluation
index system

American operational research scientist SATTY in the 1970s

introduced the analytic hierarchy process. To establish the

hierarchical structure model, first, through in-depth analysis

of practical problems, decomposing the individual factors in

question into levels according to different attributes, the

factors in the same layer belong to the upper layer or have an

impact on the upper layer, and the middle layer can have one or

more layers. Then, using an appropriate scale, we compare

quantitatively the importance of each factor, construct the

evaluation index, and use the judgment matrix to calculate the

weight of each index, so as to obtain the weight vector and sort

the evaluation criteria.

In this article, we take the operation state evaluation of the

wind power system as the target layer of the index system, take

the main reasons affecting the operation state (generator system,

gearbox system, environmental factors, grid connection factors,

control system, spindle system, and main control system) as the

criterion layer, and take the single influencing factors contained

in the criterion layer as the index layer. Therefore, the target layer

is represented as:

A � {B1, B2, B3, B4, B5, B6, B7}. (2.1)

Eq. 2.1 represents each factor of the criterion layer.

Taking B1 as an example, express the factors of the criterion

layer as follows through the index layer:

B1 � {C1, C2, C3, C4, C5}. (2.2)

In Eq. 2.2, C1 − C5 are the factors of the index layer.

2.2.2 Applying analytic hierarchy process to
determine index weight

According to the scaling theory of the “9-division” method

shown in Table 1, constructing the judgment matrix J (Hu et al.,

2012) for the indicator and criterion layers:

J � (aij)n×n. (2.3)

In Eq. 2.3, aij is the importance scale of factor i compared

with factor j, aij � 1/aji, and aii � 1. Among the formulas,

i � 1, 2, ..., n; j � 1, 2, ..., n.

The specific steps are:

(1) Normalize the column vector of the judgment matrix:

�ωi � aij∑n
j�1aij

. (2.4)

(2) Calculate the arithmetic mean of the row vector of �ωi:

ωi � ∑n
i�1aij
n

. (2.5)

Get ω � (ω1,ω2, ...ωn)T, which is the relative weight of each

factor.

(3) Calculate the maximum eigenvalue λmax of the judgment

matrix:

λmax � ∑n
i�1

(Jω)i
nωi

. (2.6)

(4) Calculate the consistency index of the judgment matrix:

CI � λmax − n

n − 1
, (2.7)

CR � CI

RI
. (2.8)

In the formula, λmax is the maximum characteristic root; n is

the order of the judgment matrix; RI is the average random

consistency index, which can be found in Table 2.
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This article selects the SCADA monitoring data of a wind

farm in Inner Mongolia and uses the aforementioned method to

obtain the weight distribution of each index shown in Figure 2, as

shown in Table 3.

It can be seen from Table 3 that the one-time index of the

single analytic hierarchy process is less than 0.1, meeting the

consistency requirements. However, the single use of the analytic

hierarchy process to determine the weight has strong subjectivity.

Therefore, this article proposes to use a particle swarm

optimization algorithm to optimize the weight determined by

the analytic hierarchy process.

2.3 Optimization of AHP weight based
on PSO

The analytic hierarchy process has strong subjectivity in

determining the weight, but due to the limited understanding

level of people and the inconsistency of opinions among evaluation

experts, the judgment matrix usually does not have satisfactory

consistency. Moreover, when the weight is determined by the

analytic hierarchy process, once the judgment matrix is

determined, the consistency of the judgment matrix and the

weight value are also determined, the two cannot be improved.

Therefore, to improve these problems, this article applies particle

swarm optimization (PSO) (Jin et al., 2019) to the analytic

hierarchy process, constructs a PSO + AHP (Liu et al., 2013;

Zhang et al., 2018) model, and optimizes the weight calculated by

the analytic hierarchy process to make the result of a

comprehensive evaluation more scientific and reliable.

According to the relative importance of each index, we can

construct the judgment matrix J � {aij}n×n, in which the

formula, i, j � 1, 2, . . . , n,where aij indicates the importance

of the indicator ui relative to the indicator uj. Let ωk be the

weight of each index. According to the definition of the

judgment matrix, there is ωi/ωj � aij in theory, and at this

time, the judgment matrix J has complete consistency. Then,

there:

∑n
k�1

(ωi/ωk)ωk � nωi. (2.9)

Namely:

∑n
i�1

∣∣∣∣∣∣∣∣∣∑
n

k�1
(aikωk) − nωi

∣∣∣∣∣∣∣∣∣ � 0. (2.10)

As can be seen from Eq. 2.10, the smaller the value at the left

end of the formula, the higher the consistency of the judgment

matrix. If Eq. 2.10 is established, the judgment matrix has

complete consistency. Therefore, the weight value

determination and consistency test of each index can be

reduced to the following optimization problems:

minCIF(n) � ∑n
i�1

∣∣∣∣∣∣∣∣∣∑
n

k�1
(aikωk) − nωi

∣∣∣∣∣∣∣∣∣/n. (2.11)

In the formula, CIF(n) is the consistency index function; ωk

is the optimization variable.

Among them, the constraints are

∑n
i�1
ωk � 1. (2.12)

TABLE 1 @9-division” table.

aij Comparison of degree
of influence

Relative importance

1 ai and aj are equal ui and uj have the same influence on the element index of the upper layer

3 ai is slightly larger than aj ui has a slightly greater influence on the element index of the upper layer than uj

5 ai is bigger than aj ui has a greater influence on the index elements of the upper layer than uj

7 ai is much larger than aj ui has a much greater influence on the index elements of the upper layer than uj

9 ai is so much larger than aj ui completely overtakes uj to influence the index of elements in the upper layer

2/4/6/8 Between two levels It is a compromise between two adjacent values

Bottom ai smaller than aj aij � 1/aji is the reciprocal of the relative importance of uj and ui

TABLE 2 Random consistency index of 12 order judgment matrix.

Matrix
order

1 2 3 4 5 6 7 8 9 10 11 12

RI 0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54

When CR≤ 0.1, the consistency of the judgment matrix is acceptable; when CR> 0.1, the judgment matrix shall be properly modified.
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FIGURE 1
Operation status evaluation process of wind power system based on PSO + AHP and FCE.

FIGURE 2
Operation status evaluation index system of the wind power system.
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When the function CIF(n) reaches the optimal value in the

global range and the optimal value is less than 0.1, it is considered

that the constructed judgment matrix J has satisfactory

consistency, and the corresponding optimal solution is the

subjective weight to be obtained. When the global minimum

value is 0, the judgment matrix J has complete consistency.

According to the constraint condition ∑n
i�1ωk � 1, the global

minimum is unique.

For the aforementioned PSO + AHP model, in this article,

we use the Python tool to solve and optimize the weights by

constructing the fitness function, using the particle swarm

optimization algorithm. The specific process is shown in

Figure 3.

Bring the judgment matrix constructed by the hierarchical

analysis into the model as an input layer, so as to optimize the

deficiency of calculating weight by a single analytic hierarchy

process. In the model, the population size is 40, the number of

iterations is 200, and the penalty degree of the penalty item is

10,000. The calculation results are shown in Table 4.

By comparing the calculation results in Tables 3 and 4, the

comparison diagram of consistency indicators shown in Figure 4

can be obtained.

It can be seen from the figure that the consistency index

function values of these judgment matrices are less than 0.1.

Among them, C3 and C5 have full consistency, but compared

with the single AHP method, the results show that the PSO

algorithm directly solves the judgment matrix by multiple

particle iteration, which significantly reduces the consistency

index of the PSO + AHP method, and the calculation effect is

better than the single AHP method, which greatly improves the

accuracy of calculation results.

The change curve of characteristic particle guidance ability in

the iteration process of the PSO + AHP algorithm is shown in

Figure 5.

As can be seen from Figure 5, the particle swarm algorithm can

obtain better consistent results with fewer iterations, indicating

that the PSO + AHP model performs a fast adaptive globalized

optimal search in the interval of ranking weights (0,1) with stable

computational results and can optimize the weights well.

2.4 Fuzzy evaluation and score

Chinese scholar Wang Peizhuang first proposed the fuzzy

comprehensive evaluation method (Liao et al., 2008). A fuzzy

comprehensive evaluation method can collect and quantify

people’s uncertain thinking in the process of looking at things

and make a correct evaluation of the qualitative concept of things

through mathematical calculation. The mathematical modeling

process of the fuzzy comprehensive evaluation method is simple.

In the process of practical application, it shows its good

evaluation performance for the multi-factor complex system.

It is a method that cannot be replaced by other mathematical

models. The modeling process usually includes the following

specific steps:

(1) Set up the evaluation set of the index set in AHP:

V � {1, 0.67, 0.33, 0}. (2.13)

(2) Determine the membership of each index.

Calculation of deterioration degree:

The characteristic state parameters in each subsystem have

their own physical significance and normal range and need to be

normalized in order to allow for comprehensive comparative

analysis. For this reason, the analysis method of relative

deterioration is used, i.e., the actual operating condition is

TABLE 3 Calculation results of index weight and consistency index at all levels of the AHP model.

Index Weight Consistency
indicators

Index Weight Consistency
indicators

Index Weight Consistency
indicators

B1 0.139 0.001 C21 0.167 0.0006 C51 0.714 0

B2 0.139 0.001 C22 0.167 0.0006 C52 0.143 0

B3 0.045 0.001 C23 0.5 0.0006 C53 0.143 0

B4 0.045 0.001 C24 0.167 0.0006 C61 0.279 0.022

B5 0.076 0.001 C31 0.2 0 C62 0.392 0.022

B6 0.139 0.001 C32 0.2 0 C63 0.165 0.022

B7 0.417 0.001 C33 0.6 0 C64 0.165 0.022

C11 0.249 0.079 C41 0.088 0.008 C71 0.243 0.0018

C12 0.249 0.079 C42 0.088 0.008 C72 0.394 0.0018

C13 0.126 0.079 C43 0.154 0.008 C73 0.124 0.0018

C14 0.134 0.079 C44 0.257 0.008 C74 0.124 0.0018

C15 0.216 0.079 C45 0.421 0.008 C75 0.124 0.0018
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FIGURE 3
Python flow chart of PSO + AHP calculation optimization weight.

TABLE 4 Calculation results of index weight and consistency index at all levels of the PSO + AHP model.

Index Weight Consistency
indicators

Index Weight Consistency
indicators

Index Weight Consistency
indicators

B1 0.14 0.0006 C21 0.17 0.0002 C51 0.714 0

B2 0.14 0.0006 C22 0.17 0.0002 C52 0.143 0

B3 0.044 0.0006 C23 0.4 0.0002 C53 0.143 0

B4 0.044 0.0006 C24 0.17 0.0002 C61 0.28 0.015

B5 0.075 0.0006 C31 0.2 0 C62 0.39 0.015

B6 0.14 0.0006 C32 0.2 0 C63 0.165 0.015

B7 0.415 0.0006 C33 0.6 0 C64 0.165 0.015

C11 0.25 0.061 C41 0.09 0.004 C71 0.245 0.0009

C12 0.25 0.061 C42 0.09 0.004 C72 0.395 0.0009

C13 0.125 0.061 C43 0.15 0.004 C73 0.123 0.0009

C14 0.135 0.061 C44 0.26 0.004 C74 0.123 0.0009

C15 0.217 0.061 C45 0.418 0.004 C75 0.123 0.0009
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good or bad according to the values of each parameter. The value

is converted to a specific value between the interval [0, 1], where

0 represents the best and 1 the worst, and the size of the value

taken corresponds to the degree of deterioration of the assessed

index.

Biased small assessment metrics:

For the evaluation indexes of temperature type such as

gearbox oil temperature and gearbox main bearing

temperature, the smaller the parameter, the better the system

operation status of the system, and this type of evaluation index

belongs to the smaller the better type, and its deterioration degree

is calculated as follows:

g(x) �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 x< xmin,
x − xmin

xmax − xmin
, xmin <x<xmax,

1 x>xmax.

(2.14)

x is the parameter value of the evaluation index; xmin and xmax are the

threshold of the critical interval of the evaluation index parameters.

Intermediate assessment metrics:

For the evaluation indexes such as speed, frequency, active power,

etc., the parameters are too small or too large to characterize the poor

system operation of the system, and the formula for calculating the

degradation degree of such evaluation indexes is as follows:

g(x) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 x<xmin,
x − xmin

xa − xmin
, xmin < x< xa,

0 xa < x< xb,
x − xb

xmax − xb
, xb <x<xmax,

1 x> xmax.

(2.15)

xa and xb is the boundary value of the reasonable interval of

the evaluation index parameters.

Biased large assessment metrics:

For other types of evaluation metrics, the larger the parameter,

the better the system operation status of the system, and the

formula for calculating large evaluation metrics is as follows:

g(x) �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 x<xmin,
xmax − x

xmax − xmin
, xmin <x<xmax,

0 x>xmax.

(2.16)

According to the above formula, the degree of degradation is

calculation in the Table 5:

Obtain the membership matrix according to the degree of

degradation.

According to the degradation degree of each factor, the degree of

affiliation corresponding to each evaluation level can be obtained.

The selection of the affiliation function should reasonably cover the

whole degradation degree taking value interval; this article takes

the trapezoidal distribution affiliation function as an example to

describe the fuzzy relationship of each state space, and the affiliation

function of each evaluation level is shown below.

The membership function of each evaluation grade is as

follows:

TABLE 5 Calculation results of deterioration degree.

Degree of degradation Calculation results

g1 ( 0.49 0.33 0.4 0.36 0 )
g2 ( 0.42 0.33 0.36 0.34 )
g3 ( 0 0 0.38 )
g4 ( 0 0 0 0 0 )
g5 ( 0.35 0.33 0.42 )
g6 ( 0 0.32 0.39 0.33 )
g7 ( 0 0 0.45 0.4 0.38 )

FIGURE 4
Comparison of consistency indexes of AHP and PSO + AHP.

FIGURE 5
Variation of characteristic particle guidance ability during
algorithm iteration.
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rg �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 g< 0.2,

0.3 − g

0.1
, 0.2≤ g≤ 0.3,

0 g> 0.3,

(2.17)

rg �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 g< 0.2,

g − 0.2
0.1

, 0.2< g≤ 0.3,

0.4 − g

0.1
, 0.3< g< 0.4,

0 g≥ 0.4,

(2.18)

rg �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 g< 0.3,

g − 0.3
0.1

, 0.3< g≤ 0.4,

0.5 − g

0.1
, 0.4< g< 0.5,

0 g≥ 0.5,

(2.19)

rg �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 g≤ 0.4,

g − 0.4
0.1

, 0.4< g< 0.5,

1 g≥ 0.5.

(2.20)

According to the degree of degradation obtained above, the

evaluation membership matrix of the detection items of the wind

power system can be obtained by bringing the membership

degree calculation formula in Eqs 2.17–2.20, which are,

respectively:

RB1 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0.1 0.9
0 0.7 0.3 0
0 0 1 0
0 0.4 0.6 0
1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (2.21)

RB2 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0.8 0.2
0 0.7 0.3 0
0 0.4 0.6 0
0 0.4 0.6 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (2.22)

RB3 � ⎡⎢⎢⎢⎢⎢⎣ 1 0 0 0
1 0 0 0
0 0.2 0.8 0

⎤⎥⎥⎥⎥⎥⎦, (2.23)

RB4 � ⎡⎢⎢⎢⎢⎢⎣ 0 0.5 0.5 0
0 0.7 0.3 0
0 0 0.8 0.2

⎤⎥⎥⎥⎥⎥⎦, (2.24)

RB5 � ⎡⎢⎢⎢⎢⎢⎣ 0 0.5 0.5 0
0 0.7 0.3 0
0 0 0.8 0.2

⎤⎥⎥⎥⎥⎥⎦, (2.25)

RB6 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0 0
0 0.8 0.2 0
0 0.1 0.9 0
0 0.7 0.3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (2.26)

RB7 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
1 0 0 0
0 0 0.5 0.5
0 0 1 0
0 0.2 0.8 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (2.27)

(3) Fuzzy synthesis

Considering that the final quantitative score should be

achieved, we can obtain the single score of each element index

by integrating the fuzzy evaluation matrix R and the evaluation

set matrix V:

Q � R · VT. (2.28)

Using the weight ω of each factor index obtained by PSO +

AHP to weight the single score Q of each element index, we can

obtain the quantitative evaluation model of the wind power

system operation state as follows:

C � ω · Q � ω · R · VT. (2.29)

According to the formula of the quantitative evaluation

model in (Eq 2.29),we can obtain Table 6:

The operation status of the wind power system is evaluated as

follows:

CA � ωA · [CB1, CB2, CB3, CB4, CB5, CB6, CB7]−1 · VT � 0.556.

(2.30)
It can be seen from the previous formula that the evaluation

score of the operation state of the wind power system is 0.556. If

the values {Excellent, Good, OK, Bad} are used, the overall

operational status of the wind power system is assessed as OK,

indicating that the operation state of the system has reached a

critical state. If it is not repaired in time, the system will fail. At this

time, the monitoring personnel shall take corresponding measures

to prevent further deterioration of the system state.

3 Conclusion

In order to evaluate the operation status of the wind power

system scientifically and reasonably, this article adopts an

evaluation method based on particle swarm optimization

hierarchical analysis and fuzzy comprehensive evaluation, the

main idea is to decompose the wind power system into multiple

subsystems, and then the SCADA monitoring index data

associated with the subsystems are simulated by Python tools

TABLE 6 Results of the quantitative evaluation model.

Quantitative evaluation model Calculation results

CB1 0.464

CB2 0.381

CB3 0.639

CB4 1.008

CB5 0.48

CB6 0.669

CB7 0.75
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to achieve comprehensive evaluation. The main research work of

this article is summarized as follows:

1. The wind power system operation status assessment system is

constructed by hierarchical analysis, which divides the wind power

system into seven parts: gearbox system, generator system,

environmental factors, grid connection factors, control system,

spindle system, and main control system, and links each

subsystem with the monitoring items of SCADA. Then, obtain

the judgment matrix for each subsystem by counting the

distribution of faults and consulting experts to obtain the

influence weight of each detection index on the operational status

of the wind power system and subsystems.

2. In order to improve the shortcomings of the single

hierarchical analysis method to determine the weights

subjectively and improve the accuracy of the calculation

results, in this article, we introduce the particle swarm

optimization algorithm to optimize the hierarchical analysis

method and establish the PSO + AHP model to calculate the

influence weight of each detection index on the operation status

of the wind power system and subsystems.

3. For the data obtained from monitoring items of different

magnitudes, the method of calculating the degradation degree is

used so that they are all in the range of (0,1) and achieve the

alignment of the data.

4. Using actual system failure data, evaluation of system

operation status through simulation with Python tools, and

through verification, the calculation results obtained from the

evaluation model established in this article match with the actual

operation state, indicating that this model can better reflect the real

operation state of the system. Therefore, the evaluation model

established in this article can be applied in remote monitoring of

wind power systems to provide a technical reference for further

realization of wind power system condition maintenance.

Due to the limited experimental conditions, the research

work in this thesis has shortcomings, which are mainly

manifested in the following aspects:

1. Online assessment. The method is used for real-time

online evaluation, thus allowing the owner to visualize the

operational status of the wind power system and its

subsystems.

2. Fault prediction. Use the operating status trend from the

evaluation as a reference for wind power system fault

prediction to effectively reduce system operation and

maintenance costs.
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