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The key problem to be solved in the process of wind turbine (WT) operation and
maintenance is to obtain the wind turbine performance accurately. The power curve is
an important indicator to evaluate the performance of wind turbines. How to model and
obtain the power curve of wind turbines has always been one of the hot topics in research.
This paper proposes a novel idea to get the actual power curve of wind turbines. Firstly, the
basic data preprocessing algorithm is designed to process the zero value and null value in
the original supervisory control and data acquisition (SCADA) data. The moving average
filtering (MAF) method is employed to deal with the wind speed, the purpose of which is to
consider the comprehensive result of wind on the wind turbine power in a certain period.
According to the momentum theory of the ideal wind turbine and combined with the
characteristics of the anemometer installation position, the deviation between the
measured wind speed and the actual wind speed is approximately corrected. Here,
the influence of dynamic changes in air density is also considered. Then, the Gaussian
fitting algorithm is used to fit the wind-power curve. The characteristics of the power curve
before and after wind speed correction are compared and analyzed. At the same time, the
influence of the parameter uncertainty on the reliability of the power curve is considered
and investigated. Finally, the characteristics of the power curves of four wind turbines are
compared and analyzed. The research results show that among these power curves, WT3
and WT4 are the closest, WT2 is the next, and WT1 has the farthest deviation from the
others. The research work provides a valuable basis for on-site performance evaluation,
overhaul, and maintenance of wind turbines.
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INTRODUCTION

The serious impact of environmental degradation has increased global interest in wind energy. In
recent years, the wind power industry has developed rapidly (Dai et al., 2018a; Dawn et al., 2019).
According to the wind power statistics revealed by the World Wind Energy Association (WWEA),
the worldwide wind capacity has reached 744 gigawatts. In 2020, 93 gigawatts of new wind turbines
were added, setting a new record. With batches of wind turbines in service, their operating efficiency
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(usually referred to as “power coefficient”) has become the focus
because this is directly related to the economic benefits of wind
farm operation (Dai et al., 2016a; Dhunny et al., 2020; Sun et al.,
2020; Bakir et al., 2021). However, due to the influence of many
factors, the actual power characteristic of wind turbines operating
in wind farms is often inconsistent with the designed power
characteristic. So, modeling and obtaining the power curve of
wind turbines has always been one of the hot topics in research
(Rogers et al., 2020).

The power curve of wind turbines indicates the generated
power versus wind speed (Ciulla et al., 2019). It is widely used
for monitoring and evaluating wind turbine performance
(Pandit et al., 2020; Astolfi et al., 2021a). The abundant
SCADA data of wind farms provide a good database for
wind power curve research. The different techniques used
for wind turbine power curve (WTPC) modeling can be
divided into parametric techniques and non-parametric
techniques (Lydia et al., 2014). The power generation of
wind turbines will vary with external environmental
conditions. To investigate the influence of external
conditions on wind speed and wind turbine power, Kim
et al. analyze three atmospheric factors: atmospheric
stability, turbulence intensity (TI), and wind shear (Kim
et al., 2021). Various factors such as the age of the wind
turbine, installation location, air density, and wind direction
will cause inhomogeneity among the observation data, which
usually affects the accuracy of the fitted power curve. To
overcome this problem, the hybrid estimation method by
Mehrjoo et al. is presented, which is based on weighted
balanced loss functions (Mehrjoo et al., 2021). Saint-
Drenan et al. develop an open-source model that can
generate the power curve of any turbine to suit the specific
conditions of any site (Saint-Drenan et al., 2020). Marčiukaitis
et al. present a nonlinear regression model (three-parameter
exponential model) for modeling power curve with
application to the wind turbine of Seirijai wind farm (in
Lithuania) (Marčiukaitis et al., 2017). To get highly
accurate non-parametric power curve models,
Karamichailidou et al. employ artificial neural network
(ANN) belonging to the radial basis function architecture
and train it using non-symmetric fuzzy means (NSFM)
(Karamichailidou et al., 2021). Virgolino et al. introduce a
semi-parametric method that combines Gaussian process
(GP) regression, standard logistic functions (SLF), and
probabilistic kernel-based machine learning models
(Virgolino et al., 2020). Manobel et al. present a method
based on GP data pre-filtering and ANN modeling of the
power curve, where the prior filtering by GP modeling can
improve the network performance (Manobel et al., 2018).
Mehrjoo et al. propose two non-parametric techniques, which
are based on the tilt method and the monotonic spline
regression, to construct the WTPC that maintains
monotonicity (Mehrjoo et al., 2020). Seo et al. construct a
nonlinear parametric power curve model using the logistic
function, and four parameters in the logistic function are
obtained explicitly by the maximum likelihood estimation
(MLE) method (Seo et al., 2019). The results provided by the

logistic functions are useful due to the continuity and
adaptability. However, there are many types of logic
functions, and how to choose is a question worth studying.
From this scenario, the well-known logistic functions are
employed and tested for modeling WTPC by Villanueva
et al. (Villanueva and Feijóo, 2018). Yesilbudak et al.
present a robust hybrid method for the power curve
modeling of wind turbines, where Mahalanobis distance
measure and the chi-square cumulative distribution are
used for the power curve filtering (Yesilbudak, 2018).
Usually, the SCADA-collected data are those averaged
(typically with an averaging time of 10 min). Gonzalez
et al. investigate the use of high-frequency SCADA data for
wind turbine performance monitoring and propose a new
framework based on multivariate non-parametric models
(Gonzalez et al., 2017; Gonzalez et al., 2019).

However, the previous research mainly focused on the power
curve algorithm itself, that is, how to improve the algorithm to
improve the accuracy and reliability further, and the analysis of
the impact caused by the physical properties of the data itself is
insufficient. The knowledge gaps that need to be supplemented
are mainly manifested in the following aspects, which are also the
main contributions of this article.

• How to obtain the data needed for reliable power curve
modeling from SCADA data. In SCADA data, the wind
speed is provided by the anemometer installed on the
nacelle, which is not the actual incoming wind speed
(Dai et al., 2016b; Dai et al., 2019). Because the wind is
blowing first on the wind rotor and then on the
anemometer, some of the wind energy has already
been absorbed by the wind rotor, the wind speed
measured by the anemometer is smaller than the
actual incoming wind speed. If the wind speed data in
SCADA is used directly to obtain the power curve, the
deviation must be significant (Figure 1). So, different
from previous studies, this article first corrects the wind
speed in SCADA and then performs power curve
modeling.

• How to obtain the real mapping characteristics between
wind speed and power. The wind speed recorded in the
SCADA data is the instantaneous wind speed (once a
second). Due to the inertia of the wind turbine, the
output power cannot respond to the fast wind speed
but is the result of a comprehensive response to the wind
speed for a period. In other words, violent fluctuation in
wind speed is common. However, the violent fluctuation
of wind speed does not cause the violent fluctuation of
generator power in a short period. The primary reason is
that the wind rotor is a large inertial system. Therefore,
the key question is how to find the true mapping
relationship between the two. For this purpose, the
moving average filtering (MAF) method will be
employed to deal with the wind speed in the following
sections. Then, a reasonable filter window that meets the
characteristics of wind speed and power mapping will be
further found.
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• How to identify the reliability of the modeled power
curve. Power curve modeling involves the processing of
some parameters. If there is uncertainty (deviation) in
the parameter value, it will affect the accuracy of power
curve modeling. For example, the air temperature is used
for the power curve modeling, which is recorded in the
SCADA system. However, for mountain wind farms,
significant differences in distance and altitude can
cause temperature data bias. In another scenario, the
effect of the sensor’s error should also be considered.
Specifically, the two direct parameters for power curve
modeling are wind speed and power, both in the SCADA

system. The reliability of wind speed data and power data
in the SCADA system should be judged. In this way, the
actual power curve can be obtained better.

WIND AND POWER FROM RAW SCADA
DATA

In the SCADA system of the investigated wind turbines, many
operation parameters, such as wind speed, the rotational speed of
the wind rotor, generator side power of the converter, and grid
side power of the converter, are recorded. The investigated wind

FIGURE 1 | Wind turbine and its power curve.

FIGURE 2 | Wind and power from raw SCADA data. (A) Wind speed /(m/s). (B) Wind speed /(m/s). (C) Wind speed /(m/s). (D) Time 400s/div.
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turbines are 2 MW direct-driven type. For this type of wind
turbines, the generator side power of the converter is the output
power of the generator. If the loss of mechanical energy into
electrical energy is ignored, the power output of the generator can
also be approximately regarded as the mechanical energy output
of the wind rotor. Therefore, the scatterplot between wind speed
and generator power can be obtained by using wind speed data
and generator power data, which is shown in Figures 2A–C.
Here, about 57 h of SCADA data are used. Although the sampling
interval is 1 s, a point is extracted every 10 s to reduce the size of
the scatterplots. It should be pointed out that the wind speed data
is measured by the anemometer mounted on the top of the
nacelle. This means that the wind is blowing first on the wind
rotor and then on the anemometer. As a result, the wind speed
measured by the anemometer is smaller than the actual incoming
wind speed because some of the wind energy has already been
absorbed by the wind rotor. In addition, yaw misalignment tends
to degrade wind turbine power production (Gao and Hong,
2021). Here, these SCADA data can be divided into three
types according to the magnitude of the yaw angle: less than
5°, more than 5° but less than 10°, and more than 10°.

In Figure 2A, the corresponding yaw angle γ is less than 5° and
there are 7,074 sets of data. In Figure 2B, the corresponding yaw
angle γ is more than 5° but less than 10°, and there are 5,832 sets of
data. In Figure 2C, the corresponding yaw angle γ is more than
10°, and there are 7,649 sets of data. By looking at the SCADA
data, it can be found that the yaw angle is scattered in different
angle ranges. This is determined by the various characteristics of
natural wind direction and the yaw control strategy of the wind
turbine. It also means that this distribution may be different in
different periods or different wind turbines, with certain
randomness. It is also not difficult to find that the variation of
yaw angle may affect the wind-power characteristics by
comparing the distribution characteristic of the scatterplots in
the three subfigures. In addition, the distribution of some points is
far away from their concentrated distribution area. For example,
in Figure 2A, near a wind speed of 4 m/s, there are scattered
points with a power of more than 2000 kW. This is not the
normal performance of a wind turbine. There are two possible
reasons for this phenomenon: there may be interference signals
during data collecting, and the other is that there may be
instantaneous fluctuations in wind speed. Violent fluctuation
in wind speed is common. However, the violent fluctuation of
wind speed does not cause the violent fluctuation of generator
power. The primary reason is that the wind energy is absorbed by
the wind rotor, a large inertial system. In other words, the
instantaneous fluctuation of the wind does not cause the
instantaneous fluctuation of the rotational speed of the wind
rotor. Figure 2D shows the time history curves of wind speed and
generator power over a period. The data sampling interval used
here is 1 s. It can be seen from this subfigure that the change
frequency of wind speed is greater than the change frequency of
generator power. The changing trend of wind speed and the
changing trend of generator power are not identical. Due to the
inherent property of wind rotor inertia, it can be considered that
the influence of wind speed on generator power has a certain lag
effect, and the influence of wind speed on generator power is the

result of the comprehensive impact of wind in a period. Under the
condition of continuous wind speed, the generator power
occasionally appears zero values, which is an error in the
collection process and should be eliminated. Another thing to
note is that both the wind speed and the generator power are
measured by sensors; thus, the reliability of the data should be
confirmed. In other words, the system error of the sensor should
be eliminated as far as possible. The reason for proposing this
issue is that the sensors may not be calibrated regularly. For
example, an anemometer may not be calibrated during several
years of operation.

Overall, the following points should be attentional for the
investigation of the power curve of wind turbines.

• Compensation for the deviation between the wind speed
measured by the anemometer and the actual incoming wind
speed should be considered.

• The effect of wind direction (yaw angle) change on actual
power performance should be considered.

• The lag effect between wind speed change and generator
power change should be considered.

• The error data in the data collection process should be
eliminated.

• The effect of wind speed on generator power should be
regarded as the comprehensive result of wind in a certain
period.

• The system error of the sensors related to wind and
generator power should be eliminated.

WIND SPEED DATA CORRECTION

Since the effect of wind speed on generator power is the
comprehensive result of wind in a certain period, it is more
reasonable to model the power curve using the average of the
wind speed rather than its instantaneous value. At the same
time, the lag effect between wind speed variation and
generator power variation is also considered. Based on
these considerations, the moving average filtering (MAF)
method is employed to deal with the wind speed. This
method sequentially stores the data of n sampling points as
a queue. When new data is collected, the first data in the queue
is discarded and the arithmetic mean of the data is calculated.
The discrete expression of the filter can be written as

y(n) � 1
N + 1

∑N
k�0

x(n − k) (1)

where, y(n) is the output of the filter, x(n) is the input of the filter,
and N is the window length of the MAF filter.

Another thing to note is that null values and zero values
may occur during the sensor test. If a null value appears, it is
filled with zero. If a zero value appears between two normally
collected data, it can be repaired by averaging the two adjacent
data shown as Eq. 2. Also, this processing should be done
before filtering. If multiple zeros occur consecutively, the data
should be rejected.
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x(n) � 0, if x(n) is null
x(n) � x(n − 1) + x(n + 1)

2
, if x(n) � 0, x(n − 1)> 0&x(n + 1)> 0

x(n) � 0, if x(n + 1) � 0, x(n + 2) � 0, · · ·
(2)

When using MAF filters, the critical problem is to determine
the window length of the filter. Here, the basic idea to find the
appropriate filter window length is to compare wind speed
change trends and power change trends. Therefore, the filtered
wind speed curve and the time-history power curve are given as
shown in Figure 3.

In Figure 3A, the raw wind speed and the filtered wind speed
are presented in a period. The window length N is set to be 10.
The wind speed fluctuation is reduced after filtering. At the same
time, the filtered wind speed curve has a slight time delay
compared with the raw wind speed curve. Figures 3B–D show
the wind speed curves for different filter window lengths and the
corresponding time-history power curves. The longer the filter
window is, the smoother the filtered wind speed curve is. Judging
from the consistency of wind speed trend and power trend, it is
not that the longer the filter window, the better. In contrast, a
filter with a window length of 10 is better. Moreover, it should be
noted that the value of the filter window length is only an
approximate value because of the complexity of wind conditions.

On the other hand, the wind speed measured by the
anemometer mounted on the top of the nacelle is not the
actual wind speed. How to correct the wind speed has been an
issue of great concern. For example, Malgaroli et al. propose a
nacelle wind speed correction for evaluating wind turbine
performance by estimating the wind speed entering the wind
rotor (Astolfi et al., 2021b; Carullo et al., 2021). In this paper, the
nacelle wind speed compensation is mainly based on the
aerodynamic and energy flow characteristics of the wind
turbines (Dai et al., 2016b). It should be noted here that the
anemometers installed on the nacelle are considered in a normal

working state. In particular, the anemometers are generally no
longer calibrated regularly after service. Two issues require special
consideration in the future. One is the deviation caused by the
aging of the sensor itself, and the other is the deviation caused by
the sensor failure.

According to the momentum theory, the power of a wind
turbine to capture wind energy can be expressed as

P � 1
2
ρSvd(v21 − v22) (3)

where, v1 is the upstream wind speed of the wind rotor; vd is the
wind speed passing through the wind rotor; v2 is the downstream
wind speed of the wind rotor; ρ is the density of air; S is the area
swept by the wind rotor.

The relationship between v1, vd, and v2 can be written as
(Hansen, 2008; Dai et al., 2016b)

v2 � 2vd − v1 (4)
Substituting Eq. 4 into Eq. 3, there are

P � 2ρSv2d(v1 − vd) (5)
Subsequently, Eq. 5 can be transformed into (Dai et al., 2016b)

v1 � P

2ρSv2d
+ vd (6)

Since the anemometer is installed near the wind rotor, the
wind speed measured by the anemometer can be considered as
the speed flowing through the wind rotor, that is, vd. From Eq. 6,
the deviation between the measured wind speed and the actual
incoming wind speed is P/2ρSv2d. Using Eq. 6, the wind speed can
be further corrected.

In Eq. 6, air density ρ is not a constant value, will change with
ambient temperature, air pressure, and relative humidity.
Furthermore, as the altitude changes, so does the atmospheric

FIGURE 3 | Power and the filtered wind speed. (A) Time t/(100s/div). (B) Time t/(100s/div). (C) Time t/(100s/div). (D) Time t/(100s/div).

Frontiers in Energy Research | www.frontiersin.org July 2022 | Volume 10 | Article 9163555

Dai et al. Power Curve of Wind Turbines

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


pressure. Here, the air density is calculated using the method
shown in the “omni calculator” (https://www.omnicalculator.
com). The calculation expression from the website is

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ρ � P0e

−gM(h−h0)
R·Tk − PV

Rd · TK
+ PV

Rv · TK

PV � 6.1078 × 10
7.5TC

TC + 237.3 · RH
(7)

where, TC is the measured temperature (degrees Celsius); TK is
the air temperature (Kelvins); RH is the relative humidity; PV is
the water vapor pressure (Pa); Rd is the gas constant for dry air
(287.058 J/(kg·K)); Rv is the gas constant for water vapor
(461.495 J/(kg·K)); P₀ is the pressure at the sea level; g is the
gravitational acceleration; M is the molar mass of air (M =
0.0289,644 kg/mol); h is the altitude; R is the universal gas
constant (R = 8.31432 N m/(mol·K)).

According to the above calculation method, the corrected
wind speed can be calculated, that is, the wind speed filtering
is carried out according to Eq. 1, and then the wind speed
deviation is corrected according to Eq. 6. In Figures 4A–D,
four wind speed correction curves under different wind speed
conditions are given. Overall, the corrected wind speed curves
have a delay in time, smoother curves, and an increase in
numerical value compared with the raw wind speed curves.

POWER CURVE MODEL

According to the wind power theory, the power of a wind turbine
is related to the inflow wind speed, rotational speed of the wind
rotor, pitch angle, yaw angle, and so on. Usually, when the wind

turbine is studied, the power is written as a function of wind speed
and power coefficient as shown in Eq. 8. Wind speed, wind
direction, the rotational speed of the wind rotor, pitch angle and
air density are all variables during wind turbine operation (Dai
et al., 2018b).

P � 1
2
ρπR2CP(v,ω, β, γ)v3 (8)

where, R is the radius of the wind rotor; CP is the power
coefficient; ω is the rotational speed of the wind rotor; β is the
pitch angle; γ is the yaw angle.

When a wind turbine is in regular operation, the structure
parameters and control parameters have been set. The
performance of the wind turbine is mainly the ability to
capture wind energy, which is reflected in the relationship
between power and wind speed. In other words, from the
user’s point of view, the relationship between power and wind
speed is their concern, which is also an important index for the
on-site assessment of wind turbines. From this scenario, it is
rather vital to obtain the actual wind-power curve. All the
dynamic variations of the rotational speed of the wind rotor,
pitch angle, and yaw angle are considered internal factors. This
means that the power curve modeling is simplified to the form of
Eq. 9.

P � f(v) (9)
However, only a scatterplot of wind and power can be

obtained using SCADA data without an exact expression. A
better description would be to get a relational expression and
use a curve to describe it. Therefore, the key to solving this
problem is to construct an effective nonlinear regression
equation. Here, Gaussian fitting was used to process the

FIGURE 4 | Corrected wind speed and raw wind speed. (A) Time t/(100s/div). (B) Time t/(100s/div). (C) Time t/(100s/div). (D) Time t/(100s/div).
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data through the comparison of various fitting forms,
including Exponential fitting, Fourier fitting, Polynomial
fitting, Power fitting, Sum of sin functions, etc. The
expression of Gaussian fitting can be written as (Li et al.,
2018; Xu et al., 2019)

P � f(v) � ∑n
i�1
αi · e

−[(v−βi)
δi
]2

(10)

where, v is wind speed; P is the power of the wind turbine; αi, βi
and δi are the coefficients; n is the number of peaks to fit.

When using the Gaussian fitting method, the coefficient n
in Eq. 10 is set to be 8, the nonlinear least square fitting
method is employed, and the algorithm is “trust region”. The
method has been integrated into the curve fitting toolbox of
MATLAB. In the specific settings, the minimum change in
coefficients for finite difference Jacobians is 1 × 10−8, the
maximum change in coefficients for finite difference Jacobians
is 0.1, the maximum number of function (model) evaluations
allowed is 600, the maximum number of fit iterations allowed
is 400, the termination tolerance used on stopping conditions
involving the function (model) value is 1 × 10−6, the
termination tolerance used on stopping conditions
involving the coefficients is 1 × 10−6. Also, the “center and
scale” method is selected to use. When using this method, the
abscissa of the data points to be fitted is changed by Eq. 11 in
MATLAB, that is

v′ � v −mean(v)
std(v) (11)

Then, Eq. 10 can be rewritten as

P � f(v −mean(v)
std(v) ) � ∑n

i�1
αi · e

−⎡⎣(x′−βi)
δi

⎤⎦2
(12)

Figure 5 shows the power curve based on Gaussian fitting in
three different scenarios. Figure 5A shows the wind-power
scatters and the fitting curve using the raw wind speed data.
Here, the selected wind speed ranges from 3 m/s to 13 m/s, and 0
values are excluded. The wind speed interval of 0.1 m/s is used to
draw the fitting curve. Although the scatterplot covers a wide
range, the trend of the fitting curve is consistent with the design
law. It also illustrates that the curve fitting method is suitable.
Figure 5B shows the wind-power scatters and the fitting curve
using the corrected wind speed data in which all the yaw angles
are contained. The range of wind-power scatterplot is
significantly reduced after the wind speed correction. This
shows that the wind speed correction is reasonable. It is also
interesting to note that the upper contour of the wind-power
scatterplot is relatively regular. In contrast, the lower contour of
the wind-power scatterplot is still irregular.

Figure 5C shows the wind-power scatters and the fitting curve
using the corrected wind speed data in which only yaw angles of
less than 5° are included. For ease of comparison, the wind-power
fitting curves for the three scenarios are put together in
Figure 5D. Curve 1 denotes the wind-power fitting curve of
scenario Ⅰ (Figure 5A), curve 2 denotes the wind-power fitting
curve of scenario Ⅱ (Figure 5B), and curve 3 denotes the wind-
power fitting curve of scenarioⅢ (Figure 5C). Table 1 shows the
fitting coefficients and goodness of the power curve. In different
scenarios, the fitting coefficient is different. For scenario Ⅰ, x is
normalized by mean 6.258 and std 2.071; for scenario Ⅱ, x is

FIGURE 5 | Power curve based on Gaussian fitting (WT1). (A) Wind speed /(m/s). (B) Wind speed /(m/s). (C) Wind speed /(m/s). (D) Time 400s/div.
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normalized by mean 7.319 and std 2.367; for scenario Ⅲ, x is
normalized by mean 7.487and std 2.384. In Figure 5D, curve 2
and curve 3 are basically coincident, and both are separated from
curve 1. This shows that a wider yaw angle does not significantly

affect wind-power fitting. This is because there are positive and
negative yaw angles, and the effects of positive and negative yaw
angles on the wind-power curve cancel each other out. In curve 1,
the critical wind speed at which the wind turbine reaches the rated

TABLE 1 | Fitting coefficients and goodness of the power curve (WT1).

Coefficients (with 95%
Confidence Bounds)

Power Curve Using
Raw SCADA Data

Power Curve Using
Corrected SCADA Data

(including all Yaw
Angles)

Power Curve Using
Corrected SCADA Data
(including Yaw Angles

of less than 5°)

α1 27.41 214.9 (40.69, 389.1) 11.28 (2.124, 20.45)
β1 1.648 1.201 (1.126, 1.276) 0.9859 (0.9808, 0.991)
δ1 0.1773 0.4794 (0.3294, 0.6294) 0.00787 (0.00027, 0.01547)
α2 2,570 17.18 (9.408, 24.96) 430.3 (254.5, 606.2)
β2 1.681 0.5873 (0.565, 0.6096) 1.366 (1.185, 1.548)
δ2 0.7932 0.1352 (0.0883, 0.1821) 0.6663 (0.5569, 0.7758)
α3 0 −11.41 (−68.77, 45.96) 61.57 (−254.8, 377.9)
β3 −8.822 2.026 (1.7, 2.351) 1.841 (1.69, 1.992)
δ3 0.005298 0.2248 (−0.2693, 0.7189) 0.2534 (−0.07993, 0.5868)
α4 −549.5(−1.672e4, 1.562e4) 32.94 (15.48, 50.39) 865.2 (673, 1,057)
β4 1.646(0.843, 2.45) 1.184 (1.17, 1.198) 2.464 (2.191, 2.737)
δ4 0.5395 (−1.427, 2.506) 0.1526 (0.1111, 0.1942) 0.557 (−0.07272, 1.187)
α5 −2,198 (−1.028e6, 1.023e6) 5.622e4 (−2.523e8, 2.524e8) 8.968 (3.792, 14.14)
β5 1.733 (−19.11, 22.57) 10.1 (−8,082, 8,102) 0.9242 (0.9107, 0.9378)
δ5 0.8921 (−28.43, 30.22) 3.461 (−2,135, 2,142) 0.03104 (0.0094, 0.053)
α6 −6.961 (−243.8, 229.8) −14.44 (−29.38, 0.5091) 67.42 (53.08, 81.76)
β6 1.358 (−0.32, 3.036) 0.8275 (0.825, 0.83) 1.122 (1.115, 1.129)
δ6 0.2503 (−2.741, 3.242) 0.00302 (−0.00051, 0.0065) 0.1483 (0.1295, 0.1671)
α7 1723 (−6,686, 1.013e4) 165.5 (−1.38e4, 1.413e4) −24.9 (-42.53, −7.267)
β7 3.523 (−4.671, 11.72) 0.3597 (−13.39, 14.11) 0.8373 (0.8359, 0.8388)
δ7 1.557 (−34.62, 37.74) 1.393 (−11.7, 14.48) 0.00245 (0.00053, 0.0044)
α8 1891 (−7,117, 1.09e4) 1860 (−7.483e4, 7.855e4) 1,685 (1,587, 1783)
β8 1.383 (−2.771, 5.537) 1.883 (−16.19, 19.96) 1.39 (1.306, 1.473)
δ8 1.686 (0.5422, 2.829) 1.826 (−16.85, 20.5) 1.719 (1.685, 1.754)
SSE 1.395e10 2.524e9 3.294e8
R-square 0.9022 0.983 0.9936
Adjusted R-square 0.9022 0.983 0.9936
RMSE 228.2 95.72 59.49

e in the table is the base of the exponential function with a value of 10.

TABLE 2 | Wind speed and the corresponding power based on fitting curve (WT1).

Wind Speed (m/s) Power Curve Using
Raw SCADA Data

Power Curve Using
Corrected SCADA Data

(including all Yaw
Angles)

Power Curve Using
Corrected SCADA Data
(including Yaw Angles

of less than 5°)

Power (kW) Power (kW) Power (kW)

3 87 45 45
4 220 108 108
5 469 227 228
6 843 424 428
7 1,288 704 715
8 1765 1,057 1,079
9 2052 1,506 1,519
10 2,119 2001 2024
11 2,140 2,131 2,145
12 2,138 2,130 2,139
13 2,153 2,133 2,126
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output power is less than that in curve 2 (curve 3). What needs
explanation is that taking into account the actual operating
characteristics of wind turbines, in Figure 5C, data with
power coefficients greater than 0.593 and less than 0.15 are
excluded.

Table 2 gives wind speed and the corresponding power based
on the fitting curve. In curve 1, when the wind speed is 9 m/s, the
power of the generator is 2052 kW. Further, it can be found by
calculating the curve fitting expression that when the wind speed
is 8.7 m/s, the power of the wind turbine reaches 2000 kW. In
curve 2, the wind speed is about 10 m/s which corresponds to the
power of 2000 kW. Likewise, the wind speed is about 10 m/s
which corresponds to the power of 2000 kW in curve 3.
According to the wind turbine manufacturer, the designed
rated wind speed is about 10.5 m/s. From this information, it
is obvious that curve 2 and curve 3 fit better. This further shows
that the wind speed correction is effective.

What needs to be further explained is that the fitted critical
wind speed is 10 m/s, which is different from the 10.5 m/s
designed by the manufacturer. There are several reasons to
consider. The design value of a wind turbine is calculated
based on a specific service condition, while the actual service
conditions are variable, such as wind speed fluctuations,
temperature changes, humidity changes, and so on. Because of
the complexity of wind turbines, the physical model must be
simplified in design, which leads to the difference between the
physical model and the actual model. Because of the limitation of
the level of the manufacturer, there are some differences between
the manufactured turbine and the designed turbine. From the
operating results, the constant power output of the wind turbine
is not just 2000 kW, but more than 2000 kW. Generally, the wind-
power curve after the wind speed correction is more in line with
the actual situation. This is applicable to the performance
evaluation of wind turbines in wind farms.

RELIABILITY ASSESSMENT OF POWER
CURVE

Power curve modeling involves the processing of some
parameters. If there is uncertainty (deviation) in the parameter
value, it will affect the accuracy of power curve modeling. For
example, the historical air relative humidity is used for the power
curve modeling, which is not recorded directly in the SCADA
system and can only be extracted by consulting the data from
other websites or database and is the humidity data in the larger
region, which is bound to have some differences with the real
humidity data. Although the temperature is directly recorded in
SCADA data, it is only the temperature data recorded near the
wind tower in wind farms. For mountain wind farms, significant
differences in distance and altitude can also cause temperature
data bias. In Eq. 4, the parameter vd denotes the wind speed in the
wind rotor plane. However, the actual wind speed used is the
measured result by the anemometer on the nacelle. Therefore, the
deviation between the measured wind speed and the
theoretical wind speed will also affect the accuracy of the
power curve.

It should be noted that none of the above deviations are due to
errors of the sensor itself. In other words, even if the sensors are
very accurate, these deviations still exist. In another scenario, the
effect of the sensor’s error should also be considered. Specifically,
the two direct parameters for power curve modeling are wind
speed and power, both in the SCADA system. The reliability of
wind speed data and power data in the SCADA system should be
judged. In this way, the actual power curve can be obtained better.

· Uncertainty effect of air humidity, air temperature, air
density, and wind speed

From Eq. 7, the deviation of relative humidity will affect the
calculation of air density and then affect the calculation of wind
speed in Eq. 6. If the air humidity has a δp% deviation, the effect
on the air density can be written as

ρ̂

ρ
� ⎡⎢⎢⎢⎢⎢⎢⎣P0e

−gM(h−h0)
R·Tk − P̂V

Rd · TK
+ P̂V

Rv · TK

⎤⎥⎥⎥⎥⎥⎥⎦/ρ (13)

where, ρ is the actual air density; ρ̂ is the air density with some
deviation PV � 6.1078 × 10

7.5TC
TC + 237.3 · RH(1 + δp%).

If the air temperature has a deviation ΔT, the effect on the air
density can be written as

ρ̂

ρ
� ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣P0e

−gM(h−h0)
R·(Tk+ΔT) − P̂V

Rd · (TK + ΔT) + P̂V

Rv · (TK + ΔT)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦/ρ (14)

where, P̂V � 6.1078 × 10
7.5(TC+ΔT)
TC+237.3+ΔT · RH.

From Eq. 7, if the air density has a deviation Δρ, the effect on
the wind speed calculation can be written as

v̂1
v1

� [ P

2(ρ + Δρ)Sv2d + vd]/v1 (15)

If the measured wind speed vd has a deviation Δvd with the
actual wind speed in the wind rotor plane, the effect on the wind
speed calculation can be written as

v̂1
v1

� [ P

2ρS(vd + Δvd)2 + (vd + Δvd)]/v1 (16)

Figure 6 shows the calculation results of the uncertainty
effect of environmental parameters. In Figure 6A, the basic
value of relative humidity is set to 0.8, and then given a
deviation from -20 to 20%, the air density changes under
different temperature conditions are shown. The higher the
temperature is, the more significant the effect on air density is.
Overall, deviations in relative humidity have little effect on air
density. For example, at a temperature of 20°, a 20% deviation
in humidity has only an effect of 0.15%. In Figure 6B, the
temperature deviation is set in the range of -3°C to +3°C, and
the fitting curves of air density change under three temperature
base values are given. The three fitting curves basically
coincide. Furthermore, the higher the temperature is, the
lower the air density is. The numerical results show that the
air density changes by 1.1% when the temperature deviation is
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3°C. In Figure 6C, the basic air density value is 1.2 kg/m3, the
turbine power is set to be 2000 kW, and the given deviation
ranges from -0.15 kg/m3 to 0.15 kg/m3. When the measured
wind speed vd is different, the effect of air density deviation on
the corrected wind speed is slightly different. The smaller the
measured wind speed vd, the larger the corresponding effect.
When vd is 10 m/s and the air density deviation is 0.15 kg/m3,
the effect on the corrected wind speed is 1.15%. In Figure 6D,

the given deviation of the measured wind speed ranges from
-0.5 m/s to 0.5 m/s. Relatively, the deviation of the measured
wind speed significantly influences the calculation result of the
corrected wind speed. For instance, when the measured wind
speed vd is 10 m/s, the maximum effect on the corrected wind
speed is 3.5%.

· Reliability assessment of wind speed and power data

FIGURE 6 | Uncertainty effect of air humidity, air temperature, air density, and wind speed. (A) Air humidity deviation p%. (B) Air temperature deviation T /C. (C) Air
density deviation /(kg/m3). (D) Measured wind speed deviation v d /(m/s).

FIGURE 7 | Generator side power and grid side power. (A) WT1; (B) WT2; (C) WT3; (D) WT4.
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In the SCADA data, the generator side power (Pgen) and the
grid side power (Pgrid) of the converter are recorded
simultaneously. It is believed that the two data will not
have synchronously deviated. Therefore, the reliability can
be judged by comparing the relationship between the two sets
of power data. Specifically, the generator side power is given
by the abscissa, and the grid side power is provided by the
ordinate. The linear fitting curve and equation are provided by
the scatter relationship between the two. In Figure 7, the
generator-side power and grid-side power of the four wind
turbines are shown. For the convenience of analysis, only the
data of the generator side power between 1,000 kW and
1900 kW is selected. The relationship scatters between the
two are very close and linearly related. In Table 3, the
generator side power and grid side power based on the
fitting equation are given, where the grid side power is
calculated using the fitting equation. For a given generator
side power, the calculated grid side power is different for
different wind turbines. Overall, the power data of WT1 and
WT2 are close to each other, while the power data of WT3 and
WT4 are close to each other. To quantify the differences
between different wind turbines, a relative difference
(max(Pgrid) −min(Pgrid))/Pgen is given in row 5 of
Table 2. Under different power conditions, the values are
basically the same, which shows that the relationship between
generator side power and grid side power is stable. Moreover,
the maximum grid side power always appears on WT2, and
the minimum grid side power always appears on WT4.

To analyze the power curve of wind turbines more
comprehensively, four wind turbines in a mountain wind farm
in south China are investigated. The specific topography of the
wind farm is shown in Figure 8. Their power curves are shown in
Figure 9. Since Figure 5 has given the power scatter of 1# wind
turbine (WT1), Figures 9A–C only show the power scatters of 2#
(WT2), 3# (WT3), and 4# (WT4). Figure 9D shows the power
fitting curves of 4 wind turbines. The power curves of the four
wind turbines do not entirely overlap, which seems to mean that
although they are of the same type, the actual operating
performance is always different. Of course, this difference
cannot be ruled out due to the uncertainty of the data used.
The benefit of obtaining these power curves is to provide a basis
for further analysis of the performance of wind turbines. WT3
and WT4 are the closest among these power curves, WT2 is the
next, and WT1 has the farthest deviation. In terms of the wind
speed required to reach the designed rated power (2000 kW),
WT1 is 10 m/s, WT2 is 10.9 m/s, WT3 is 11.4 m/s, and WT4 is
11.3 m/s. Since the design rated wind speed of the wind turbine is
10.5 m/s, WT1 is less than the rated wind speed, and the other
three wind turbines are all greater than the designed rated wind
speed. There may be several reasons for this phenomenon. 1) The
power curve of WT1 deviates significantly from the other three
wind turbines, which may be caused by the inaccurate
anemometer of WT1. 2) If the measurement results of the
anemometer are accurate, it is likely that the yaws of WT2,
WT3, and WT4 have a large deviation, resulting in the need
for greater wind speed to obtain the same power output. 3) If the

TABLE 3 | Generator side power and grid side power based on fitting equation (kW).

Pgen 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1700 1800 1900

Pgrid

WT1 971 1,067 1,162 1,258 1,354 1,449 1,545 1,641 1736 1832
WT2 977 1,073 1,169 1,264 1,361 1,457 1,553 1,649 1745 1841
WT3 960 1,053 1,147 1,240 1,334 1,427 1,521 1,615 1708 1802
WT4 954 1,048 1,141 1,235 1,328 1,422 1,515 1,609 1702 1796
max(Pgrid )−min(Pgrid )

Pgen
0.023 0.023 0.023 0.022 0.024 0.023 0.024 0.024 0.024 0.024

FIGURE 8 | Four wind turbines in a mountain wind farm.

Frontiers in Energy Research | www.frontiersin.org July 2022 | Volume 10 | Article 91635511

Dai et al. Power Curve of Wind Turbines

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


previous two assumptions do not exist, then it should be caused
by sensor deviation or the different performance characteristics of
different wind turbines.

CONCLUSION

In this paper, a novel idea is proposed to obtain the actual power
curve of wind turbines. A series of effective measures are taken to
deal with the zero and null values in the original SCADA data,
consider the comprehensive result of wind on the wind turbine
power and correct the deviation between the measured wind
speed and the real wind speed. The Gaussian fitting algorithm is
used to fit the wind power curve; the power curve characteristics
before and after the wind speed correction are compared and
analyzed. Also, the characteristics of the power curves of four
wind turbines are compared and analyzed. The results show that
among these power curves, WT3 and WT4 are the closest,
followed by WT2, and WT1 has the largest deviation from the
other three wind turbines. The wind speed required for different
turbines to reach the designed rated power is different from the
actual power curves. Specifically,WT1 is 10 m/s,WT2 is 10.9 m/s,
WT3 is 11.4 m/s, and WT4 is 11.3 m/s.

For the research topic of this paper, it is necessary to deepen it
in the future further. For example, the research object of this
paper is direct-drive wind turbines, and its algorithm can be
transplanted to doubly-fed wind turbines or other types of wind
turbines in the future. On the other hand, the power curve of wind
turbines may evolve with the increase of service time, so historical

SCADA data can be used to observe its historical evolution trend
further. More importantly, according to the characteristics of the
power curve and the actual service conditions in wind farms, the
operation strategy and maintenance strategy of wind turbines can
be further studied.
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