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As an important function of the advanced driver assistance system (ADAS), the reversing
assistant (RA) achieves trajectory retracing by applying accurate position estimation
and tracking control. To overcome the problem of the modeling complexity in dead
reckoning for the reversing assistant function, the heading angular rate is compensated
by using the extreme learning machine (ELM) to improve the positioning accuracy.
In addition, considering the time delay of the steering system, a tracking controller
with a feed-forward of the recorded steering angle and a self-tuning PID feedback
controller is designed based on the preview-and-following scheme. Vehicle experiments
under various reversing scenarios prove that the proposed positioning method and
tracking control scheme are effective, the overall lateral error is less than 10 cm, and
the heading angle error is less than 1°, which meets the requirements of performance
indicators.

Keywords: reversing assistant, extreme learning machine, dead reckoning, tracking control, self-tuning PID

1 INTRODUCTION

In order to improve driving safety and comfort, a fully autonomous reversing assistant (RA) function
is developed and designed by automotive engineers. The merit of the RA function can make the
vehicle automatically reverse back to the starting position of the original route with a maximum
support of 50 m, and therefore, it is quite helpful for unskilled drivers, especially under some
complicated driving scenarios such as narrow roads.

The core techniques of the RA function include vehicle position estimation and trajectory
tracking control. Currently, commonly used vehicle positioning technologies include dead
reckoning (Skog and Handel, 2009; Alvarez et al., 2012; Wang et al., 2014), inertial navigation
(Woodman, 2007; Leppäkoski et al., 2013), satellite positioning (Leppäkoski et al., 2013;
Jiménez et al., 2014; Li et al., 2022), visual positioning (Woodman, 2007; Beauregard, 2009), and
lidar-based positioning (Shin et al., 2010; Hess et al., 2016). Each method has its own advantages
and shortage and can be selected according to the specific application scenario. Among them,
dead reckoning is favored because of its advantages such as no external sensor, low cost,
fast sampling frequency, and high short-time positioning accuracy. However, its long-distance
positioning deviation is large due to the accumulation of systematic and non-systematic errors.
To overcome the aforementioned problems, the mainstream approach is to use multi-source
and multi-sensor information fusion technology to integrate other positioning information and
dead reckoning information, to achieve the overall positioning accuracy (Alvarez et al., 2012;
Wang et al., 2014; Zhang et al., 2015; Jian et al., 2020). In addition, there are also attempts to improve
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positioning accuracy by compensating and optimizing the
angle information in dead reckoning (Tian et al., 2014;
Chen et al., 2016; Ho et al., 2016). For tracking control,
geometric relation-based control methods (Coulter, 1992;
Thrun et al., 2006; Li et al., 2021a; Le et al., 2021), model-based
control methods (Guo and Fancher, 1983; Ziegler et al., 2014;
Bayuwindra et al., 2016), and preview-and-following
theory-based control methods (Guo and Guan, 1993;
Falcone et al., 2007; Marino et al., 2011; Shen et al., 2020) are
commonly used at present.

Recently, machine learning techniques have attained much
attention in many research fields, such as data-driven modeling
(Ourmazd, 2020;Cui et al., 2021), prediction (Huang et al., 2006;
Liu et al., 2019; Zhou et al., 2021), control (Kang and Gao,
2020; Zhou et al., 2021; Wu et al., 2022), and fault diagnosis (He
and Kusiak, 2017; Li et al., 2021b). Machine learning allows a
controller to improve its performance by learning from previous
events, in the same way humans learn from experiences.
Due to the system complexity of the ADAS, the traditional
designs based on the mechanism analysis become more difficult,
and then the machine learning techniques have been well
studied and gradually adopted (Moujahid et al., 2018). As an
efficient learning algorithm with lower computational burden,
an extreme learning machine (ELM) has gained much attention
in ADAS. The ELM is mainly designed for training single
hidden layer feed-forward neural networks, and its hidden nodes
are randomly initiated, and then determined without time-
consuming iteratively tuning (Huang et al., 2006, 2015).

Based on the aforementioned analysis, in view of the
requirement of low cost and high precision of RA positioning
scheme, a dead reckoning method with a redundant design
based on vehicle signals such as wheel speed and front-wheel
angle is proposed; at the same time, in order to compensate the
accumulated errors caused by the internal and external errors of
the system, the ELM is introduced to correct the heading angle
and improve the overall positioning accuracy. In terms of tracking
control, considering the characteristics of the RA function and
engineering needs, the preview-and-following control scheme
is used to realize tracking, namely, using the current vehicle
position and vehicle motion to calculate the vehicle position
at a certain amount of preview time, and the target tracking
point of the desired trajectory is determined based on the vehicle
position at the preview point, which can deal with time delay
greatly; on the basis of the preview, the following controller is
designed by using a feed-forward plus self-tuning PID feedback
control algorithm. Finally, functional verification is carried out
in different scenarios. Experimental results demonstrate that
the positioning and control method designed in this study is
effective, and the key performance indexes such as lateral error
and heading angle error meet the design requirements.

2 DEAD RECKONING AND
COMPENSATION

Dead reckoning calculates the location and the heading of the
vehicle’s center of gravity (CG) based on vehicle signals such as
four-wheel speeds and steering wheel angle. Also a confidence

evaluation method of the CG position was designed to avoid the
increase in positioning error due to the slip of individual wheels.
At the same time, considering the unpredictable disturbance such
as the change of wheel diameter caused by load and the uneven
ground, the accurate position estimation model is difficult to
be established. Then, an extreme learning machine is adopted
to compensate for the model error to improve the positioning
accuracy.

2.1 Dead Reckoning Based on Yaw Angle
The schematic diagram of the vehicle coordinates is illustrated
in Figure 1. The CG of the vehicle starting time is taken as the
origin of coordinates. At low speed, the sideslip angle of the CG
is ignored; the yaw rate of the body is calculated according to the
Ackerman steering relation and the average yaw rate of the four
wheels:

R = L
2
( 1
tan δfr
+ 1
tan δfl
), (1)

[[[

[

ωfl
ωfr
ωrr
ωrl

]]]

]

=

[[[[[[[[[[[[[[[[[

[

vfldt

sign(R+ W
2
)
√(R+ W2 )

2
+ L2

vfrdt

sign(R− W
2
)
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2
+ L2

vrrdt

sign(R− W
2
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vrldt
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2
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]]]]]]]]]]]]]]]]]

]

, (2)

FIGURE 1 | Diagram of the vehicle coordinates.

Frontiers in Energy Research | www.frontiersin.org 2 May 2022 | Volume 10 | Article 914026

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Di et al. RA Design Based on ELM

ω = 1
4
(ωfl +ωfr +ωrr +ωrl) , (3)

where L and W denote the wheel base and the wheel track,
respectively; δ denotes the steering angle of the wheel, R and v
are the turning radius and the wheel speed, respectively; ω with
and without subscripts are the yaw rate of the specified wheel and
the vehicle body, respectively; dt is the sampling time; and the
subscripts of the notations such as fl, fr,rl,andrr throughout the
article denote the front-left, front-right, rear-left, and rear-right
wheels, respectively.

Based on the CG position at the last moment, the initial
position of the four wheels was calculated:

[xN (i− 1)yN (i− 1)
] = [xCG (i− 1)yCG (i− 1)

] + [ cos ψ (i− 1) sin ψ (i− 1)
−sin ψ (i− 1) cos ψ (i− 1)][

k1W
2
k2L
], (4)

where (x,y) denote the coordinate positions and ψ is the yaw
angle, the subscript N = 1,2,3,and 4 represents the front-left,
front-right, rear-right, and rear-left wheel, respectively; and

{{{
{{{
{

k1 = −1, k2 = 1, if N = 1
k1 = 1, k2 = 1, if N = 2
k1 = 1, k2 = −1, if N = 3
k1 = −1, k2 = −1, if N = 4.

(5)

Furthermore, the four-wheel positions at the current time can
be calculated on the basis of no slip assumption, that is,

[x1 (i)y1 (i)
] = [x1 (i− 1)y1 (i− 1)

] + [sin (ψ (i− 1) + δfl)cos (ψ (i− 1) + δfl)
]vfldt, (6a)

[x2 (i)y2 (i)
] = [x2 (i− 1)y2 (i− 1)

] + [sin (ψ (i− 1) + δfr)cos (ψ (i− 1) + δfr)
]vfrdt, (6b)

[x3 (i)y3 (i)
] = [x3 (i− 1)y3 (i− 1)

] + [sin ψ (i− 1)cos ψ (i− 1)]vrrdt, (6c)

[x4 (i)y4 (i)
] = [x4 (i− 1)y4 (i− 1)

] + [sin ψ (i− 1)cos ψ (i− 1)]vrldt, (6d)

ψ (i) = ψ (i− 1) +ωdt. (6e)

The four virtual vehicle CG positions (xCG,N,yCG,N) are
calculated according to the four-wheel positions with the
geometric relationship and the body direction:

[xCG,N (i)yCG,N (i)
] = [xN (i)yN (i)

] + [ cos ψ (i) sin ψ (i)
−sin ψ (i) cos ψ (i)][

k1W
2
k2L
], (7)

where k1 and k2 are defined in Equation 5. Finally, the CG
position can be obtained by the following relations:

[

[

xCG (i)
yCG (i)
ψCG (i)
]

]
=
[[[

[

1
4 ∑

4
N=1 xCG,N (i)

1
4 ∑

4
N=1 yCG,N (i)
ψ (i)

]]]

]

. (8)

FIGURE 2 | General structure of the ELM.

At the same time, the redundant design is considered to avoid
large slips of the individual wheel or large positioning deviations
caused by the low tire pressure and the signal disturbance. The
evaluation index dC,N is defined as follows:

dC,N = √(xN − xCG)
2 + (yN − yCG)

2, N = 1,2,3,4, (9)

and take the front-left wheel (i.e., N = 1), for example (same with
other wheels), if dC,1 > (dC,2 + dC,3 + dC,4)/3, then this value will be
regarded as poor confidence and it will be removed.The final CG
positionwith redundant designwill use the following calculation:

{
{
{

xCG =
1
3 (x2 + x3 + x4)

yCG =
1
3 (y2 + y3 + y4) .

(10)

2.2 Compensation Scheme Design-Based
on ELM
For long-distance dead reckoning, the estimation of the heading
angle determines the overall positioning accuracy. In some actual
testing scenarios, it is found that due to the mechanical structure
of the steering system gap, left and right asymmetry, positioning
angle changes, and other factors, the left and right front wheel
angle mapping from the steering wheel angle has errors, which
leads to inaccurate heading angular rate and indirectly leads to
the large cumulative errors in position estimation. Considering
the internal parameters of the system affecting the accuracy of
heading angular rate cannot be obtained and the compensation
model is difficult to be established, an extreme learning machine
(ELM) based estimation algorithm is introduced in this study to
improve the estimation accuracy of the heading angular rate.The
general structure of the ELM can be found in Figure 2.

ELM is also referred to as generalized single-hidden layer feed-
forward neural networks (FNN) where the hidden layer need not
be neuron alike (Huang et al., 2015). Compared to conventional
FNN learningmethods, ELM adoptsMoore–Penrose generalized
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inverse to set its weights instead of the gradient-based
backpropagation strategy. Essentially, the learning process can
be implemented without iteratively tuning hidden nodes, and it
achieves better generalization performance by minimizing both
the training error and the norm of output weights. Therefore,
ELM has higher efficiency and generalization ability than other
learning methods. Typically, the output function of the ELM is
defined as follows:

y = fnh (x) =
nh

∑
j=1

wjhj (x) = h (x)w, (11)

where w = [w1,…,wnh]
T denotes the output weight vector

between the hidden layer of nh nodes and the m output nodes,
h(x) = [h1(x),…,hnh(x)] is the feature mapping function. In this
study, the training dataset is selected with x = [vrl vrr θ ̇θ]T ,
where input states include rear-left and rear-right wheel speed,
steering wheel angle, and their difference, respectively; the output
y is the error between the calculated yaw rate and the measured
yaw rate based on the high-precision inertial navigation. The
optimal weightsw* between the hidden layer and the output layer
are calculated by solving the following cost:

min
w∈Rnh×m

1
2
∥ w ∥2 +C

2
∥Hw−T ∥2, (12)

whereH denotes the hidden layer output matrix, T is the training
goal matrix, and C is regularization coefficient; the solution is as
follows:

w∗ = (HTH + I
C
)
−1
HTT , (13)

where I is an identity matrix of nh dimension. Thus, the final
ELM-based output for the heading angular rate is

ŷ = fnh (x) = h (x)w
∗. (14)

The final vehicle yaw rate estimation is the combination of the
calculated yaw rate and the heading angular rate calculation error
output by ELM.

2.3 Real Vehicle Validation for Dead
Reckoning
In order to verify the effectiveness of the ELM-based
compensation strategy, vehicle experiments have been carried
out under different conditions including straight line, S-shaped,
and right-angle bending. The on-board measurement based
on a high-precision global position system (GPS) is used for
the baseline benchmark, and the positioning effects with and
without ELM compensation have been evaluated, as shown in
Figures 3–5.

It is obvious from Figures 3–5 that the error accumulation of
the dead reckoning is small and the compensation effect is not
obvious in the initial short distance.However, as the distance goes
far, the dead reckoning without compensation deviates from the
GPS measured value, the cumulative error gradually increases,
and the positioning accuracy decreases. Even the error becomes
more obvious when encountering a large corner. Moreover,

FIGURE 3 | Comparison result of the dead reckoning test under straight line
conditions.

FIGURE 4 | Comparison result of the dead reckoning test under S-shaped
condition.

FIGURE 5 | Comparison result of the dead reckoning test under right-angle
bending condition.
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the dead reckoning with ELM compensation can always be
stable near the measured value with a small error. Although
the error increases after a large corner, it can quickly return
to the true value after the corner, which improves stability and
reliability.

3 REVERSING ASSISTANT CONTROLLER
DESIGN

RA can record the vehicle’s forward track point when the
recording condition is satisfied. If the RA function is activated,
the system controls the vehicle to follow the recorded track
automatically and completes the reverse drive.

3.1 Preview Point Determination
The existence of time delay and external disturbance in the
steering systemwill lead to lag effects in vehicle reversing tracking
control, especially when requiring a large turning angle, and
therefore leads to the large following error.The preview strategy is
used in this study to solve this problem and, based on the vehicle’s
current position and state, to calculate its position after a certain
previewing time.

As shown in Figure 6, the current position of the
vehicle is PntV (x,y,φ), its position at the preview point is
PntVp (xp,yp,φp), and if |ω| < 0.001rad, then the vehicle is
identified to be driving in a straight line:

xp = x − vtp sin ψ, (15a)

yp = y − vtp cos ψ, (15b)

FIGURE 6 | Position calculation diagram at preview point.

ψp = ψ. (15c)

On the contrary, if |ω| ≥ 0.001rad, vehicle position at the
preview point is

xp = x + v (sin(ψ +ωtp) − sin ψ)/ω, (16a)

yp = y − v (cos(ψ +ωtp) − cos ψ)/ω, (16b)

ψp = ψ +ωtp, (16c)

where tp is preview time.

3.2 Target Track Point Selection
The closest tracking point to the vehicle preview point, denoted
by PntN, is determined via the recorded forward tracking point
sequence and vehicle preview position. According to the relative
position relationship between the vehicle preview point and the
closest point, the front point PntF and the rear point PntR can
be determined, and then the target tracking point PntM is finally
obtained. The decision procedure of the target tracking point is
illustrated in Figure 7.

3.3 Calculation of Lateral and Heading
Deviation
Once the target tracking point is determined, the lateral error Δy
and heading angle error Δψ of the target tracking point and the
vehicle preview point can be calculated. As shown in Figure 8,
denote the coordinate of the target point PntM as (xr ,yr ,φr) and
the vehicle preview point PntVp as (xv,yv,φv), there exists the
following relations:

{Δy = (yr − yv)cosψr − (xr − xv) sinψv
Δψ = ψr −ψv,

(17)

where the heading angle error is normalized to [−π,π].

3.4 RA Controller Design
The implementation of the RA function mainly depends on
the accuracy of the tracking control by adjusting the steering
angle.The recorded steering anglewhendriving forward, denoted
as swe, is used as a reference steering wheel angle at the
corresponding position, which provides the feed-forward control
input. In addition, considering the external interference and
other factors, a parameter adaptive PID feedback control scheme
is designed for correction and compensation. The feed-forward
and the feedback control variables are given as follows:

{
{
{

uff = swe

ufb = (
kpdΔy
cosΔψ +

kpψΔψ
cosΔψ)+ ki ∫Δydt + kdΔy

(18)

where the continuous smooth self-tuning of the proportion
parameter is determined by the heading angle error, namely,
when the heading angle error is small, the following effect is
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FIGURE 7 | Calculation process of the target tracking point.

FIGURE 8 | Calculation of lateral and heading deviation.

great, and the proportion coefficient becomes smaller to reduce
overshoot and oscillation; on the contrary, when the following
effect is poor and the heading angle error becomes larger,
the proportion parameter becomes larger accordingly, which
improves the response speed and rapidly follows the desired
trajectory.

4 VEHICLE TEST AND VALIDATION

The effectiveness of dead reckoning and the RA control method
is verified in this section. The real vehicle tests were carried out
in some typical conditions including straight line, S-shaped, and
right-angle bending, based on an SUV model. The experimental
results are shown in Figures 9–13.

The straight line RA test result is illustrated in Figure 9. In
this straight line test, when the vehicle moves about 38 m and
around 36 s, the RA state changes from1 to 2 and the RA function
is activated, and the vehicle starts reversing at a fixed speed of
3 km/h. In the whole process, the wheel angle control quantity is
smooth, the forward and reverse tracks coincide, with the lateral
error being less than 0.2 cm and the heading angle error being less
than 0.2°. Although a few sample periods have a jump, it is due
to the temporary jump of each value including the target track
point and vehicle preview point, and because of the mechanical
filtering effect on the high-frequency signal, there is no sudden
change in the intuitive perception.

As shown in Figure 10, in the S-shaped RA scenario,
the forward S-shaped trajectory and the reverse trajectory
coincide, and the control quantity is smooth without jitter.
Although the deviation becomes larger when reversing due
to the failure of the optimal preview time, the lateral error
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FIGURE 9 | RA in straight line condition.

FIGURE 10 | RA in S-shaped condition.

is always less than 3 cm, and the heading angle error is less
than 1°.

As shown in Figure 11, in the right-angle bending RA
scenario, although the error increases at the turning point, the
forward trajectory coincides with the reverse trajectory, and the

control quantity is smoothwithout jitter, the lateral error is always
less than 2 cm, and the heading angle error is less than 0.5°.

As shown in Figure 12, there is a high degree of convergence
between the forward trajectory and the reverse trajectory. In the
tracking process, due to the external impact when crossing the
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FIGURE 11 | RA in right-angle bending condition.

FIGURE 12 | RA in a speed bump.

speed belt, the steering wheel angle oscillates temporarily after
the impact on the steering system due to the driver’s hands off,
which leads to the jitter of the point given by the dead reckoning,
but it converges quickly. In the process of being hit by the speed
bump, the lateral error and heading angle error are kept to a small
level.

As shown in Figure 13, after a right-angle bending, the vehicle
enters about 8% slope consisting of both longitudinal and lateral
slopes. In the whole process, the forward trajectory and reverse

trajectory have a high degree of overlap. On the ramp, the lateral
error is less than 2 cm, and the heading angle error is less than 1°.
The left and right wheel bearing are different due to the existence
of the lateral slope, which leads to a small vibration in the steering
wheel and a certain degree of the dead reckoning jitter; error has
also been accumulated, directly leading to larger error when it
enters the flat road and turns right-angle bending, but the lateral
error and the heading angle error are always controlled in a small
level.
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FIGURE 13 | RA in a slope.

5 CONCLUSION

In this study, the dead reckoning method with redundant design
is proposed, which makes full use of the information of four
wheels and eliminates the influence of slip of the wheels on
positioning. At the same time, in view of themodeling complexity
for position estimation, an ELM is introduced to estimate the
heading angular rate and compensate for the dead reckoning.
As for tracking control, a feed-forward and feedback PID
controller with preview is designed. The proposed positioning
and tracking control methods are proved effective, and the design
satisfies the requirements of performance indexes via a variety
of scenario tests. In addition, considering the mechanical wear
and aging with the long-term use of the vehicle system, the ELM-
based compensation method may face performance degradation
problems; therefore, the future work will focus on the online
update of the compensation model to improve the reliability of
the RA function.
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