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Yunhe Sun, Dongsheng Yang*, Xiaoting Gao and Jia Qin
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Ensuring the control of power systems is crucial for their safe operation. This paper
analyses the robust controllability of complex power systems from the structural sighta
structural point of view. Stressing the dominant role of generators in the control of
power systems, we propose three kinds of controllable networks by generator nodes.
Additionally, the satisfied conditions and the relevant proof of zero forcing set in the
controllable networks by generator nodes and extra nodes are given. Besides, tThe
satisfied conditions and the relevant proofs of the largest set of removable edges that have
no -effect on the strong structural controllability in three kinds of controllable networks
by generator nodes are also proposed. Finally, the robustness of strong structural
controllability of IEEE 39 bus system and IEEE 14 bus system have been analyzed. The
zero-forcing set and the largest set of removable edges of IEEE 39 bus system and IEEE
14 bus system are provided.

Keywords: strong structural controllability, robustness, power system, generator control, network modeling

1 INTRODUCTION

With the development of economy and society, the scale of power systems grows
rapidlyZhang et al. (2019), ensuring the safe and stable power transmission has thus become a
hot research issue Kiaei et al. (2021). There is a growing demand for power systems with high
robustness, that is, they can withstand large disturbances, such as transmission line damage,
accidental loss of large generators, or heavy load loss Mahmud et al. (2017). Many researches
on the control of power systems at the device level have been proposed, such as braking resistor
Rubaai et al. (2005), fast valving of turbinesHassan et al. (1999), utilizing reactor and capacitor units
Taylor and Leuven (1996), flexible ac transmission system devices Haque (2004), power system
stabilizers Chung et al. (2002), and energy storage systems Kiaei et al. (2021). In addition, as the
power system as is a special complex network, complex network theory is also an important tool
to study its controllability Chu and lu (2017). The controllability analysis of power systems has
the question that capturing the time-dependent interactions between the components, which is
difficult. Fortunately, the controllability study is based on the complex network theory regardless of
the coupling strength between the components.

In complex networks, structural controllability (weak structural controllability) and strong
structural controllability are two basic directions of network controllability analysis. The week
structural controllability was first proposed by Lin (1974), that means almost all networks of
the identical topology have the same controllability. Nevertheless, the dependencies between
system parameters in actual networks leads to networks being uncontrollable, although it
is weekly structurally controllable. Thus, the notion of strong structural controllability was
proposed by Mayeda and Yamada (1979). The network is strong structurally controllable if all
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admissible numerical realizations of its coupling matrix and
control input matrix are controllable. Bowden et al. (2012)
extended the strong structural controllability to multiple entry
systems. Whereafter, the strong structural controllability were
further investigated by constrained matchings Chapman and
Mesbahi (2013) and cycle families Jarczyk et al. (2011).

Group (2008) was first proposed the concept of zero-
forcing set (ZFS) to investigate the minimum rank problem
for symmetric patterned matrices, which is connected with a
particular coloring of nodes in a graph.Then, zero forcing set was
extended to directed graphs by Barioli et al. (2009). Furthermore,
Monshizadeh et al. (2014) has shown the correspondence
between zero-forcing sets and the strong structural controllability
by the view of a network-centric point. Subsequently, ZFS was
widely used in the analysis of strong structural controllability
of undirected networks Mousavi and Mesbahi (2018), networks
with missing connection information, Jia et al. (2021) and other
networks.

When complex network theory is applied to a power system,
the accuracy of analysis will be affected by oversimplification
of the influence of electrical characteristics Hines et al. (2010),
but too much consideration of electrical characteristics will
greatly increase the computational complexity. Therefore,
the reasonable combination of structural characteristics
and electrical characteristics is still an unsolved problem.
Li et al. (2015) investigated the weak structural controllability
of power systems. The minimum input theorem was used to find
the drive node set that makes the network weakly structurally
controllable in an unweighted directed model. However, the
absent of electrical characteristics makes the research results
deviate from the actual situation. Yang et al. (2020) established a
directed network model that can reflect the intrinsic direction of
the power system for weak structural controllability analysis.
The edge weighs were considered in the search method of
maximum weak controllable scope. Nevertheless, this work
didn’t did not consider the different functions of different nodes
in control. In particular, the special status of generator nodes
is was ignored. In the modern power industry, the control
of generators can realize active power control and frequency
response, voltage/reactive power control, and ride-through for
both voltage and frequency Hatziargyriou et al. (2021). Thus,
generator nodes play a dominant role in the control of power
systems.

Based on the above research gaps, the main contributions of
this paper are as follows:

1. Considering the dominant role of generators in the control
of power systems, precisely controllable networks by
generator nodes, redundantly controllable networks by
generator nodes, and controllable networks by generator
nodes, and extra nodes are defined.

2. The satisfied conditions and the relevant proof of zero-
forcing set in the controllable networks by generator nodes
and extra nodes are given.

3. The satisfied conditions and the relevant proofs of the
largest set of removable edges in three kinds of controllable
networks by generator nodes are given.

The remains of this paper are organized as follows: Section 2
introduces the network modeling method of power systems.
Section 3 analyzses the strong structural controllability of power
systems. Section 4 analyzses the robustness of controllable
networks by generator nodes. Section 5 concludes the paper with
discussions.

2 NETWORK MODELLING OF POWER
SYSTEMS

In this paper, the power system is abstracted as a digraph.
Network modeling is the critical prerequisite of structural
controllability analysis. The accuracy of structural controllability
analysis is closely related to the described natures of power
systems in a network model. We assume that the construction
structure of power systems and the configuration of generators
and loads are known correctly.

2.1 Basic Model Topology Principles
The dynamic characteristics of power systems are so tanglesome
entangled that a generic dynamical equation that describes
them all is out of the question. Prosperously, the controllability
of nonlinear system and its linearized dynamics is are often
structurally similar. The power system is described as a digraph
D(V,E)with nodes and edges, V = {v1,…,vN} is the node set, and
theE = {(vi,vj),vi,vj ∈ V} is the edge set,N is the scale of networks.
According to Ohm’s law, a power system with scale N can be
writed written as linear equations, as follows:

[[[

[

U1
U2
⋮
UN

]]]

]

=
[[[

[

Z11 Z12 ⋯ Z1N
Z21 Z22 ⋯ Z2N
⋮ ⋮ ⋱ ⋮
ZN1 ZN2 ⋯ ZNN

]]]

]

[[[

[

I1
I2
⋮
IN

]]]

]

(1)

where Zij is the impedance of transmission lines. If there is a
transmission line from node vi to node vj, then Zij = Zji ≠ 0 or else
Zij = Zji = 0.Ui is the voltage of bus, and Ii is the injection current
of bus.

The basic topology of the network model is constructed based
on the transmission line architecture of power systems. Topology
principles in this paper are described as follows.

• The buses of power plants, substations, and loads are
abstracted to nodes.Thenode set is classified into generator
node set VG, transmission node set VT, and load node set
VL.
• Thehigh voltage transmission lines are abstracted as edges,

only the lines whose voltage above 110 KV are considered.
• Parallel transmission lines on the same tower and

neglecting shunt capacitor lines are merged to prevent
multiple edges in the basic topology model and generate a
simple topology model.
• The influences of the relay protection devices and the

stability control devices in power systems are not under
consideration.
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2.2 Definition of Edge Direction
The direction of power flowing was defined as the direction of
edges in the network model in some literatures Liu et al. (2018);
Dey et al. (2016). However, the direction of power flowing is
time-variant, which and only describes the direction of edges in
power systems at a certain time. The network model proposed
in this paper wants to have an edge direction which can express
the intrinsic properties of power systems. Therefore, the author’s
previous definition of edge direction in a network model of
a power system Yang et al. (2020) is used again in this paper,
where the direction of an edge is determined by its electrical
betweenness.

In graph theory, the betweenness of edges is an important
global geometric quantity that reflects the influence of edges in
the whole network Freeman (1978). Betweenness of an edge is
defined as the portion of the number of shortest paths between
all nodes pairs that pass through the edges divided by the number
of shortest paths between all node pairs. However, the power
is transmitted in complex power systems in accordance with
electrical characteristics. The power from node vi to node vj
flows through every edges in complex power systems. Thus,
betweenness in graph theory is unfit for evaluating edges in power
systems.

Electrical betweenness of edges is an evaluation index
Wang et al. (2011) that, which is related to the network structure
and the configuration of generators and loads.

If there is a unit current supplied from the generator node vi
to the load node vj(Ii = 1, Ij = −1), the voltage of node vk can be
writed as

Uk = Zki −Zkj, (2)

The electrical betweenness of edge (vm,vn) is the sum of the
currents flowing through the edge for all node pairs of generator
and load that have unit current transmitted in complex power
systems. Then, the electrical betweenness of edge (vm,vn) is
depicted as follows.

Be (m,n) = ∑
Vi∈VG ,Vj∈VL

√WiWjImn (i, j) (3)

Wi is the capacity of generator node vi, and Wj is the maximal
demand of load node vj. Imn(i, j) is the generated current in the
edge (vm,vn) when an unit current is supplied from the generator
node vi to the load node vj. √WiWj is the weight coefficient of
Imn(i, j).

Assuming that the admittance of edge (vm,vn) is ymn, Imn(i, j)
can be obtained

Imn (i, j) = ymn (Um −Un)
= ymn [(Zmi −Zmj) − (Zni −Znj)] ,

(4)

where ymn is admittance.
The electrical betweenness matrix of edges is isomorphic

with the impedance matrix, which is an antisymmetric matrix

with Be(m,n) = −Be(m,n)T . The electrical betweenness matrix is
rewrited as:

Be (m,n) =
{
{
{

Be (m,n) Be (m,n) > 0

0 Be (m,n) < 0
(5)

The edge direction in the networkmodel: If Be(m,n) > 0, there
is an edge from node vm to node vn in the network model.

3 STRONG STRUCTURAL
CONTROLLABITY OF POWER SYSTEMS

3.1 Weak Structural Controllability and
Strong Structural Controllabity
Consider the linear-time-invariant system:

̇x (t) = Ax (t) +Bu (t) (6)

where x = (x1,…,xN)T is the node states vector; N is the scale
of the system; A = [aij] ∈ RN×N is the coupling matrix between
nodes; aij describes the strength of coupling between nodes; u =
(u1,u2,…,um)T describes the states ofm controllers; andB ∈ RN×m

is the control input matrix.
A system is controllable if it can be moves from its initial

state x0 to any desired final state within a limited time. Due
to many models of physical and technical systems are being
structured, dynamics of nonlinear-time-invariant system is often
linear-time-invariant.

Then, let A = [aij] ∈ {0,∗}N×N denotes the structure pattern of
A, and B ∈ {0,∗}N×m represents the structure pattern of B; the
element in matrix A or B is equal to zero if the corresponding
element in matrix A or B is equal to zero, and the other value
otherwise.

Based on the network model of power systems in section 2,
the structure pattern of a power system coupling matrix can be
experessed as:

aij =
{
{
{

∗ Be (m,n) > 0

0 Be (m,n) = 0
(7)

The system (A,B) is weak structurally controllable, which
means that the admissible numerical realization (A,B) is existed
in A ∈ A and B ∈ B. The weak structural controllability is such a
generic property that almost all systems of the same structure
have identical controllability properties. However, the physical
dependencies between system parameters in actual systems leads
to systems being uncontrollable although it is weekly structurally
controllable.Thus, the concept of strong structural controllability
was introduced. In this paper, the strong structural controllability
of power systems is mainly considered.

The system (A,B) is strong structurally controllable if the
admissible numerical realization (A,B) is controllable for all A ∈
A and B ∈ B.

Theorem 1 Trentelman et al. (2012): A class of systems defined
by the structure matrices A and B is said to be strong structural
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controllable if rank(A− λIB) = n for all admissible numerical
realizations A ∈ A, B ∈ B, and all eigenvalue λi, i = 1,…,n of A.

Graph theory is also the main direction of analyzing strong
structural controllability. Concepts mentioned in this paper
are introduced in the following passage, strong structurally
controllable is reduced to controllable.

Out-neighbor: If (vm,vn) ∈ E, then node vn is the out-neighbor
of node vm. In Figure 1A, v4 is the out-neighbor of v2.

Color change rule: There are white nodes and black nodes in
a directed graph D(V,E). If a black node vm ∈ V has only out-
neighbor vn ∈ V, it forces vn to be black. In Figures 1A,B, v1 force
v3 to be black and v2 force v4 to be black.

Forcing process: The color change process that repeaterepeats
the color change rule until no more color changes is called a
forcing process. Figures 1A–D is a forcing process. In the first
step, v1 forces v3 to be black and v2 forces v4 to be black. In the
second step, v3 forces v5 to be black. In the final step, v5 forces v6
to be black.

Drive node set: let VD ⊂ V is the set of initially black nodes
in V, then VD is drive node set. In Figure 1A, drive node set is
VD = {v1,v2}.

Controllable node set: The set of final black nodes after the
forcing process is called the controllable node setVC(VD) of drive
node set VD. In Figure 1, controllable node set of VD = {v1,v2} is
VC(VD) = {v1,v2,v3,v4,v5,v6}.

Zero forcing set (ZFS): If VC(VD) = V, then VD is a zero-
forcing set (ZFS). In Figure 1, drive node set VD = {v1,v2} is a
zero-forcing set.

Theorem 2 Monshizadeh et al. (2014): A network system with
dynamics 6) is strong structural controllable if and only ifVD ⊂ V
is a zero-forcing set of the structure described digraph D(V,E) of
system 6).

3.2 Drive Node set in Power Systems
3.2.1 Controllable Networks by Generator Nodes
The energy flow along the transmission line of a power system
changes in real time. The system coupling matrixs of power
systems have innumerable numerical implementationswith the

FIGURE 1 | A forcing process based on color change rule in a digraph with
six nodes and seven edges. (A) A graph with drive node set VD = {v1,v2}; (B)
v1 force v3 to be black and v2 force v4 to be black; (C) v3 force v5 to be black;
(D) v5 force v6 to be black.

same zero-nonzero pattern. Therefore, the power system with
the driver nodes’ configuration that realizes the weak structure
control of the system is possible uncontrollable at a time. Power
system is the most important social infrastructure network. It is
very important to keep it under control for the safe and stable
operation of power systems. Thus, the configuration of drive
nodes with strong structural controllability is more in line with
the control requirements of a power system.

Power systems areis a complex network with special physical
characteristics. As shown in the previous network modeling,
different nodes have different properties. Therefore, the strong
structural controllability analysis of power systems should fully
consider the differences between nodes.

In the modern power industry, synchronous generators
are widely used in wind power generation, hydroelectric
power generation, diesel power generation, and nuclear power
generation. Synchronous generators play a dominant role in
power systems. Synchronous generators convert part of the
mechanical energy into sinusoidal AC electrical energy, while
the other part is stored as kinetic energy in the huge rotating
mass of the rotor. When the power system is disturbed, the
rotor absorbs or releases energy to maintain the internal energy
balance of the system.With the development of the power system,
it has progressively become more dependent on fast response
power electronic devices. The converter interfaces generation
technologies can provide numerous services, such as active power
control and frequency response, voltage/reactive power control,
and ride-through for both voltage and frequency. In a nutshell,
the generator node must be a drive node in the digraph of power
systems. Then, we have VG ⊂ VD in the strong structural control
of power systems.

Due to the special status of generator nodes in power system
control, there are three different situations of strong structural
controllability of a power network, which are defined as follows.

Definition 1 (precisely controllable networks by generator
nodes) A structure described digraph of power systems is a
precisely controllable network by generator nodes if the following
conditions hold:

• The generator node set in the power system happens to be
a zero-forcing set (VC(VG) = V).
• All proper subsets of generator nodes are not zero-forcing

sets (VC(VD) ⫋ V for all VD ⫋ VG).

As despicted in Figure 2A digraph of power system with the
generator node set VG = {v4,v5}. Let VD = VG, then Vc(VD) = V.
Furthermore, ifVD = {v4},VC(VD) = {v3,v4} ⫋ V, and ifVD = {v5},
VC(VD) = {v2,v5} ⫋ V. Thus, the power system in Figure 2A is the
a precisely controllable networks by generator nodes.

Definition 2 (redundantly controllable networks by generator
nodes) A structure described digraph of power systems is a
redundantly controllable network by generator nodes if there is at
least one zero-forcing set is in the proper subset of the generator
node set in the power system (∃ZFS ⫋ VG).

As despicted in Figures 2A,B digraph of power system
with the generator node set VG = {v4,v5}. Let VD = {v5}, then
VC(VD) = V. Thus, the power system in Figure 2B is the
redundantly controllable networks by generator nodes.
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FIGURE 2 | Three kind of controllable networks by generator nodes. (A) Precisely controllable networks by generator nodes; (B) Redundantly controllable networks
by generator nodes; (C) Controllable networks by generator nodes and extra nodes.

Definition 3 (controllable networks by generator nodes and
extra nodes) A structure described digraph of power systems is
a controllable networks by generator nodes and extra nodes if the
controllable node set of generator node set is the proper subset of
node set (VC(VG) ⫋ V).

The extra nodes belong to the transmission node set VT or the
load node set VL. In actual power systems, the substation realizes
system control through load station transfer and load cutting
strategies. Load nodes achieve system control through demand
response.

As despicted in Figures 2A,C digraph of power system
with the generator node set VG = {v4,v5}. Let VD = VG, then
VC(VD) = {v1,v2,v4,v5} ⫋ V. Furthermore, when VD = VG ∪ {v4},
VC(VD) = {v1,v2,v3,v4,v5} = V. Thus, the power system in
Figure 2C is the controllable networks by generator nodes and
extra nodes.

3.2.2 Zero-Forcing Set of Controllable Networks by
Generator Nodes and Extra Nodes
In this section, we focus on the zero-forcing set of controllable
networks by generator nodes and extra nodes. Because this
kind of networks cannot achieve strong structural controllability
through generator nodes alone, we will investigate the conditions
satisfied to satisfy of extra nodes in their zero-forcing set.

Then, we will introduce some of the concepts used in the
follows.

A path is a special kind of graph consists consisting of disjoint
edges and nodes.

Distribution of integers on a path: let p = (Vp,Ep) is be a
directed path with scale Np. Let α ≥ Np is be an integer. Let
Dp denotes the distribution of integers from 1 to α among Np
nodes of p in a way, and every node is endowed at least one
number. Besides, for i = 1,…,α− 1, two integers i and i+ 1 are
either assigned to one node, or i is given to a node and i+ 1 is
given to its out-neighbor. Thus, every node v ∈ Vp is given a set
of successive integers, denoted by dα(v). For every 1 ≤ β ≤ α, let
vα(β,p) is be the node v ∈ Vp and β ∈ dα(v). Let vα(1,p) be the
start node of p. Furthermore, let dmax

α (v) =max {β ∶ β ∈ dα(v)} and
dmin
α (v) =min {β ∶ β ∈ dα(v)}.
For two path p1 and p2 with integer distribution Dp1 and Dp2.

For v ∈ p1 and u ∈ p2, we define dα(v) = dα(u) if dα(v) ∩ dα(u) ≠ ∅;
dα(v) > dα(u) if dmin

α (v) > dmax
α (u); dα(v) ≥ dα(u) if either

dα(v) > dα(u) or dα(v) = dα(u); dα(v) < dα(u) otherwise.
For a distinct directed path set p = {p1,…,pm}, where pi =
(Vpi ,Epi) is a path of size Npi , i = 1,2,…,m. For α ≥max (Npi), let
D∑α = {Dp1,…,Dpm} be the set of distribution of integers from 1 to
α in P. Besides, the start nodes of p are the union of start nodes
of pi, Vα(β,P) = ∪

m
i=1vα(β,pi).
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An efficient set of distribution ED∑α is a set of distribution with
α = 1−m+∑mi=1Npi , where m is the number of paths. For every
1 ≤ j < α, the distributions Dpi , i = 1,…,m have exactly one node
in ∪mi=1Vpi such that dmax

α (v) = j.
The distribution algorithm that gives every node a successive

set of integers of a digraph with a zero-forcing set is depicted
in Figure 3. As shown in Figure 4, a digraph D(V,E) is forced
by drive nodes VD = {v4,v5}. After the forcing process, the
distribution of integers on two paths p1 = {Vp1,Ep1}, p2 = {Vp2,Ep2}
are depicted in Figure 4. According to the above definition,
the set of distribution D∑α = {Dp1,Dp2} is an efficient set of
distribution. Furthermore, all edges (u,v) ∈ E −Ep1 −Ep2 all have
dα(u) ≥ dα(v).

Definition 4 (precisely controllable subnetworks by generator
nodes Dg(Vg,Eg)) In controllable networks by generator nodes
and extra nodes DV,E, let generator nodes be black nodes and
other nodes be white. After the forcing process, the final black

nodes are denoted in Vg. The edge set Eg is defined, such
that Eg = {(vm,vn)(vm,vn) ∈ E and vm,vn ∈ Vg}. Then, the precisely
controllable subnetworks by generator nodes is consist of node
set Vg and edge set Eg, and VG is a ZFS of Dg.

Theorem 3: The precisely controllable subnetworks by
generator nodes Dg(Vg,Eg) is consist of a set of paths P =
{p1,…,pNG

} (pi = {Vpi ,Epi}) with start node set VG, which has
an efficient set of distribution ED∑α . Besides, the edges (u,v) ∈
Eg −∪

NG
i=1Epi all have dα(u) ≥ dα(v). Where NG is the number of

generator nodes in VG.
Proof : VG with |VG| = NG is a zero-forcing set of Dg. P =
{p1,…,pNG

} is the set of paths with the maximum forcing
chain of VG with the set of distribution of successive integers
D∑α = {Dp1,…,DpNG

}, which are obtained from the distribution
algorithm in Figure 3. Furthermore, α = 1−NG +∑

NG
i=1Npi , Npi is

the number of nodes in pi.

FIGURE 3 | The flowchart of distribution algorithm.
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FIGURE 4 | The schematic diagram of successive integers’ distribution process.

As described in the distribution algorithm, the nodes inVG are
given {1} in Step 1. Then, exactly one node in Dg is forced to be
black in other eachstep. Let vm be the last black node of pi in step
j− 1, then j− 1 ∈ dα(vm). If in step j, vm can force vm+1 to be black,
thendα(vm+1) = {j}. Otherwise,dα(vm) = dα(vm) ∪ {j}, and vm is still
the last black node of pi.Thus, for x = 1,…,α− 1, we have only one
node v ∈ Vg such that dmax

α (v) = x. Hence, the set of distribution
D∑α is efficient.

Suppose that the edges (u,v) ∈ Eg −∪
NG
i=1Epi all have

dα(u) ≥ dα(v) is not true. Then we have dmax
α (u) < dmin

α (v) for
(u,v) ∈ Eg −∪

NG
i=1Epi , v is a out-neighbor of u, and dmax

α (u) < α.
If two nodes u and v belong to different path pi and pj,

respectively. u is not the end node of pi, because dmax
α (u) < α.

According to the integer distribution algorithm in Figure 3, u
is the last black node of pi in Step dmax

α (u), and it will forces its
white out-neighbor in Step dmax

α (u) + 1. However, due to dmax
α (u) <

dmin
α (v), v is still a white node in Step dmax

α (u) + 1. Then, u has two
white out-neighbor nodes, and the color change rule cannot be
performed. Hence, there is a contradiction.

If twonodes,u and v, belong to a path pi, asmentioned above, v
is a white put-neighbor of u in Step dmax

α (u) + 1 in pi. u will forces
v be black in Step dmax

α (u) + 1 in pi. Thus, (u,v) ∈ Epi . However,
(u,v) ∈ Eg −∪

NG
i=1Epi . There is also a contradiction.

Based on Theorem 3, we can make the inference of the zero-
forcing set Z of controllable networks by generator nodes and
extra nodes, as shown in Lemma 1.

Lemma 1: The zero-forcing set Z of controllable networks by
generator nodes and extra nodes D(V,E) (|V| = N) is consists
of two parts, Z = VG ∪VEN. We have the precisely controllable
subnetworks by generator nodes Dg(Vg,Eg). All nodes in set
V−Vg can forma set of pathsP′ = {p1,…,pNEN

}with start node set
VEN, where NEN is the number of nodes in VEN. The set of paths
P∑ = P ∪ P′ = {p1,…,pNG

} ∪ {p1,…,pNEN
} also has an efficient set

of distribution ED∑α . The edge (u,v) ∈ Eg −∪
NG+NEN
i=1 Epi all have

dα(u) ≥ dα(v). Where α = 1− (NG +NEN) +∑
NG+NEN
i=1 Npi . Npi is the

number of nodes in pi.
Remark 1: According to Theorem 3, we can infer that for

every digraph with a zero-forcing set, all nodes in the digraph
can consist of a forcing path set with the start nodes in
the zero-forcing set, and the forcing path set has an efficient
distribution. Moreover, except for the forcing path set, any
edge (u,v) in the digraph satisfies dα(u) ≥ dα(v). The controllable

networks by generator nodes and extra nodes is a digraph with
the zero-forcing set VG ∪VEN. Thus, all nodes in the digraph
can consist of a forcing path set with the start nodes in
VG ∪VEN, and all the other edges (u,v) in the network satisfies
dα(u) ≥ dα(v).

4 ROBUSTNESS OF CONTROLLABLE
NETWORKS BY GENERATOR NODES

Transmission lines in a power system can be damaged and
disconnected from the system due to factors such as natural
disasters or a perceived deliberate attack. Damage to a
transmission line causes edges to be removed from its network
model.The structural change of a networkmodel also leads to the
change of strong structural controllability of networks.Therefore,
this paper analyzes the robustness of three kinds of controllable
networks by generator nodes.

Definition 5 (The largest set of removable edges) The largest
set of removable edges Er is the subset of E in the controllable
networks by generator nodes D(V,E) with zero-forcing set Z.
Remove If any subsets of Er are removed, the strong structural
controllability of D(V,E) from Z remains. We define NR = |Er|
as the robustness evaluation parameters of strong structural
controllability.

Theorem 4: The largest set of removable edges Er of precisely
controllable networks D(V,E) by generator nodes is E −∪NG

i=1Epi .
Where pi(Vpi ,Epi) ∈ P = {p1,…,pNG

}. p is the set of paths forced
by generator node set VG, |VG| = NG.

Proof : According to the color change rule and Theorem 2,
the subnetwork Ds(Vs,Es) = ∪

NG
i=1pi is controllable by VG. Suppose

there exists an edge (u,v) ∈ Es, such thatVG is still the zero-forcing
set of Ds − {(u,v)}. We know that Ds consists of NG disjointed
paths, and Ds − {(u,v)} consists of NG + 1 disjointed paths. It is
clear that the size of zero-forcing set Z of Ds − {(u,v)} should
greater thanNG. Thus, VG is not a zero-forcing set ofDs − {(u,v)}.
And Ds − {(u,v)} can not be controlled by VG.

Based on Theorem 4, we can get the largest set of removable
edges Er of controllable networksD(V,E) by generator nodes and
extra nodes, as shown in Lemma 2.

Lemma 2: The largest set of removable edges Er of controllable
networks D(V,E) by generator nodes and extra nodes is E −
∪NG+NEN
i=1 Epi . Where pi(Vpi ,Epi) ∈ P = {p1,…,pNG+NEN

}. p is the set of
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FIGURE 5 | (A) Wiring diagram of IEEE 39 bus system; (B) Network model of IEEE 39 bus system. The red nodes are generator nodes.

paths forced by generator node set VG and extra node set VEN,
|VG| = NG and |VEN| = NEN.

Remark 2: According to Theorem 4, we can infer that for a
digraph in which drive node set is a zero-forcing set, the largest
set of removable edges contains all edge in the digraph except
the edges in the forcing paths that the start nodes belong to its
zero-forcing set. The controllable network by generator nodes
and extra nodes is a digraph in which the drive node set and
the zero-forcing set are both VG ∪VEN. Thus, the largest set of
removable edges of the network contains all edges in the digraph
except the edges in the forcing paths that the start nodes belong to
VG ∪VEN.

Theorem 5: There exists a zero-forcing set Z ⫋ VG of
redundantly controllable networks D(V,E) by generator
nodes. The largest set of removable edges Er of redundantly
controllable networks D(V,E) by generator nodes is E −∪|Z|i=1Epi +
∪NG−|Z|
j=1 (vx,vj). Where pi(Vpi ,Epi) ∈ P = {p1,…,p|Z|}, and vj ∈ VG −

Z, (vx,vj) ∈ ∪
|Z|
i=1Epi . p is the set of paths forced by the zero-forcing

set Z ⫋ VG.
Proof : According to the color change rule and Theorem 2,

the subnetwork D′s (V
′
s ,E
′
s ) = ∪

|Z|
i=1pi is controllable by Z. The

subnetworkD′s −∪
NG−|Z|
j=1 (vx,vj) is a set of pathswith the start nodes

of VG D′s −∪
NG−|Z|
j=1 (vx,vj) = {p1,…,pNG

}. According to Theorem 4,
D′s −∪

NG−|Z|
j=1 (vx,vj) = ∪

|Z|
i=1pi is controllable by VG, and removing

any edge (u,v) ∈ D′s −∪
NG−|Z|
j=1 (vx,vj), D′s −∪

NG−|Z|
j=1 (vx,vj) is not

controllable by VG.

5 INSTANCE ANALYSIS

5.1 Instance of Controllable Network by
Generator Nodes and Extra Nodes
In this subsection, IEEE 39 bus system is selected to analysis
analyze the strong structural controllability and the robustness
of strong structural controllability in this paper. There are 39
buses, 10 generator nodes, and 46 edges in the system.Thewiring
diagram and the network model of IEEE 39 bus system are
depicted in Figures 5A,B, respectively, where the red nodes are
generator nodes.

According to the above definition, the IEEE 39 bus
system is the a controllable network s by generator nodes

FIGURE 6 | The forcing paths in the IEEE 39 bus system. Solid lines are edges in paths and dotted lines are other edges in the system.
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FIGURE 7 | The integer’s distribution on the forcing paths of the IEEE 39 bus system.

FIGURE 8 | (A) Wiring diagram of IEEE 14 bus system; (B) Network model of IEEE 14 bus system. The red nodes are generator nodes.

and extra nodes. A zero-forcing set of the system is
Z = VG ∪VEN = {v30,v31,v32,v33,v34,v35,v36,v37,v38,v39} ∪ {v7,v13}.
The forcing paths are depicted in Figure 6, where solid lines
are edges in path sand dotted lines are other edges in the
system. The integer’s distribution on these forcing paths are
given in Figure 7, which is an efficient set of distribution.
α = 1–12+ 39 = 28. For every 1 ≤ j < 28, there are is exactly
one node in this path set such that dmax

α (v) = j. According to
the lemma 2, the largest set of removable edges Er of IEEE 39
bus system is E −∪10,+,2i=1 Epi , which are dotted lines in Figure 6.
Er = {(v2,v1)(v2,v25)(v3,v4)(v5,v8)(v6,v7)(v9,v39)(v10,v13)(v11,v6)
(v13,v12)(v14,v4)(v15,v16)(v16,v21)(v16,v24)(v17,v27)(v18,v17(v19,v20)
(v22,v23)(v26,v28)(v29,v26))}.

5.2 Instance of Redundantly Controllable
Networks by Generator Nodes
In this subsection, IEEE 14 bus system is selected to analysis
analyze the strong structural controllability and the robustness
of strong structural controllability in this paper. There are 14
buses, five generator nodes, and 20 edges in the system. The
wiring diagram and the network model of IEEE 14 bus system
are depicted in Figures 8A,B, respectively, where the red nodes
are generator nodes.

According to the above definition, the IEEE 14 bus system
is the a redundantly controllable networks by generator nodes.
A zero-forcing set of the system is Z ⊂ VG = {v1,v2,v6,v8}. The
forcing paths are depicted in Figure 9A.The integer’s distribution
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FIGURE 9 | (A) The forcing paths of four drive nodes in the IEEE 14 bus system. (B) The integer’s distribution on the forcing paths of four drive nodes in the IEEE 14
bus system. (C)The integer’s distribution on the forcing paths of five drive nodes in the IEEE 14 bus system.

on the forcing paths of four drive nodes are given in Figure 9B,
which is an efficient set of distribution. α1 = 1–4+ 14 = 11. For
every 1 ≤ j < 11, there are is exactly one node in this path set such
that dmax

α1 (v) = j.
According to the Theorem 5, the largest set of

removable edges Er of IEEE 14 bus system is E −
∪4i=1Epi +∪

5−4
j=1 (vx,vj), which are dotted lines in Figure 9A.

Er = {(v2,v1)(v2,v3)(v2,v4)(v2,v5)(v3,v4)(v4,v7)(v4,v9)(v5,v6)(v6,v12)
(v6,v13)(v10,v9)}. Due to v3 is being a generator node, when all
edges in Er are removed from the IEEE 14 bus system, the system
is still strong structuallystructurally controllable. At this point,
the zero-forcing set of the system is Z = VG = {v1,v2,v3,v6,v8}.
The integer’s distribution on the forcing paths of five drive nodes
are given in Figure 9C, which is an efficient set of distribution.
α2 = 1–5+ 14 = 10. For every 1 ≤ j < 10, there are is exactly one
node in this path set such that dmax

α2 (v) = j.

6 CONCLUSION

This paper analyses analyzes the robust strong structural
controllability of complex power systems. Considering the
dominant role of generators in the control of power systems, we
define three kinds of controllable networks by generator nodes,
precisely controllable networks by generator nodes, redundantly
controllable networks by generator nodes, and controllable
networks by generator nodes and extra nodes. Additionally,
the satisfied conditions of zero-forcing set in the controllable
networks by generator nodes and extra nodes are given in
Theorem 3 and Lemma 1, and the relevant proof is also given.
Besides, the robustness of strong structural controllability in

three kinds of controllable networks by generator nodes are
analyzed. We give the satisfied conditions and the relevant proofs
of the largest set of removable edges in three kinds of controllable
networks by generator nodes. Finally, the robust strong structural
controllability of the IEEE 39 bus system is investigated. We have
found that the IEEE 39 bus system is the a controllable networks
by generator nodes and extra nodes, and the scale of the largest
set of removable edges is 19.
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