
Synergistic Mechanisms Between
Nanoparticles and Surfactants: Insight
Into NP–Surfactant Interactions
Fangzhou Xu1, Xun Zhong1,2*, Zhiqi Li 1, Wenxing Cao1, Yu Yang1 and Mingqian Liu1

1College of Petroleum Engineering, Yangtze University, Wuhan, China, 2Key Laboratory of Drilling and Production Engineering for
Oil and Gas, Wuhan, China

Keywords: synergistic, mechanisms, nanoparticles, surfactant, interactions

INTRODUCTION

Enhanced oil recovery (EOR) technologies are attracting substantial attention worldwide in the last
few decades due to the growing gap between energy supply and social demands, as well as the
noticeable production decline from the existing reservoirs and the difficulties in discovering new
economic reverses (Almahfood and Bai, 2018; Panchal et al., 2021; Wang et al., 2022). Taking the
Shengli Oilfield in China as an example, a 1% increase in oil recovery means additional 46 million
tons of crude oil can be recovered, which is equivalent to the 2-year output of this oilfield.

A surfactant that possesses multiple EOR mechanisms has attracted a great deal of attention.
However, its large-scale applications are generally limited by the high cost (i.e., zwitterionic and
Gemini surfactants), the considerable adsorption loss (i.e., cationic surfactants on sandstone and
ionic surfactants on carbonates), and the possible formation damage especially at harsh reservoir
conditions (i.e., nonionic surfactants at temperatures above their cloud point) (Zhong et al., 2019a;
Pal et al., 2019). Nanoparticles (NPs) are small particles (1–100 nm) with high surface energy and are
free to enter the tiny pores and channels that might be blocked bymacromolecules or other materials.
Moreover, their surface properties can be facilely tailored (i.e., hydrophilic or hydrophobic, positively
charged or negatively charged) to meet the requirements of different situations. The emergence of
nanotechnology has provided some new explications to address some of these head-scratching
problems confronted with surfactant applications and thus realize the goal of maintaining
sustainable hydrocarbon recovery (Zhong et al., 2021; Chen et al., 2022). Surfactant and NP
combinations are widely applied in tight/low-permeability and heavy oil reservoir exploitation,
profile control operations, and so on. Integrating surfactant with NPs can induce further interfacial
tension (IFT) or oil viscosity reduction, better alter the rock wettability, thicken the displacing fluid,
and stabilize the foams or emulsions. Though many satisfying results were obtained, the synergistic
mechanisms between NPs and surfactants remain obscure. This study highlights the interactions
between NPs and surfactants to clarify the underlying synergistic mechanisms, which may shed light
on chemical screening and the manipulation of novel surfactant–NP formulas with greater EOR
potential.

SYNERGISTIC MECHANISMS

IFT Reduction
Sufficient adsorption and accumulation of surface-active agents at the liquid–liquid interface are
required to induce a drastic reduction in IFT. The reduction of excess free energy (G = γ. A, where γ is
oil/water IFT and A is the oil/water interfacial contact area) is the driving force for surfactants and
NPs to stay at the interface. Surfactants can lower the IFT, while NPs can reduce the contact area (Vu
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and Papavassiliou, 2018). Normally, lower Gibbs free energy of
adsorption and lower activation energy of adsorption lead to
higher adsorption of active chemicals.

Repulsion-Assist-Diffusion Mechanism
The repulsive Coulomb interactions between surfactants and NPs
with a similar charge will promote surfactant diffusion to the
liquid–liquid interface. Generally, the higher the surfactant
density at the water/oil interface, the lower the IFT. When
1,000 mg/L of negatively charged SiO2 NPs was introduced
into an anionic surfactant SDS solution, the kerosene/DI water
IFT was reduced by another 30% on the basis of pure SDS
(1,500 mg/L) (Zargartalebi et al., 2014). This mechanism also
works for the nonionic surfactant dodecyl dimethyl phosphine

oxide (C12DMPO, )/silica mixture

because of the fractional negative charge of the oxygen atom.
When 2.5 wt% SiO2 NPs were added into an 8.5 × 10−6 M
C12DMPO solution, a further ~5 mN/m reduction in heptane/
water IFT was reported (Vatanparast et al., 2019). In these cases,
the concentration value derived from equilibrium IFT is denoted
as equivalent concentration (EC), which increases with increasing
NP concentration and decreasing NP size (with higher surface
charge density).

Interfacial Concentrate Mechanism
NPs can concentrate surfactants on the interface and effectively
reduce the interfacial area available to the surfactants. There are
two action modes. 1) For NPs with no interfacial activity that
originally stayed in the water or oil phase, surfactant molecules
can adsorb on NPs through electrostatic attraction or
hydrophobic interactions. NPs with modified hydrophilic-
lipophilic balance can thereafter migrate to the interface. The
competitive adsorption between the liquid and the NPs makes
surfactant molecules partially desorb from NPs and redistribute
on the interface to reduce the IFT. If the NPs can stay at the
interface, the reduction in the interfacial area will promote IFT
reduction. Otherwise, the impacts of NPs can be dismissed (Vu
and Papavassiliou, 2018). Similar results were reported by
Moghadam and Azizian (2014) and Vatanparast et al. (2019).
In this case, NPs are good candidates as surfactant carriers, but
the surfactant/NP concentration ratio should be carefully
tailored. NP aggregation or precipitation may cause adverse
impacts (Ravera et al., 2006). 2) For original NPs with
interfacial activity (such as Janus NPs) that can stably stay at
the interface, though there are negligible interactions between
NPs and surfactants, this mechanism still works. According to Vu
and Papavassiliou (2019), Janus NP alone barely had any impacts
on heptadecane/water IFT, and surfactant SDS alone with an
interfacial concentration of 0.91 molecule/nm2 could reduce the
IFT by ~25%.When Janus NPs covered 37.5% of the interface, the
local SDS concentration would increase from 0.65–0.95 to
1.8–2.4 molecule/nm2, leading to a reduction of ~75%. In this
scenario, NPs that could occupy a larger interfacial area or
preferentially be positioned in the middle of the interface are
better choices when low IFTs are required at relatively low
surfactant concentrations.

Solubility Reduction Mechanism
The interactions between surfactants and NPs can reduce
surfactants’ solubility in the water or oil phase and, thereafter,
facilitate their migration to the interface. For instance, driven by
electrostatic attraction, oil-soluble cationic surfactant
dodecylamine (DDA) could adsorb on negatively charged
hydrophilic kaolinite NP surfaces. Therefore, its partition in
the water phase and its adsorption at the oil–water interface
would increase. According to Wang et al. (2004), 1 mM DDA
alone could decrease the hexadecane/water IFT by around
10 mN/m from the original 49 mN/m. Introducing 2.0 wt%
kaolinite into the system could induce another 10 mN/m
reduction. While for palmitic acid (PA, oil-soluble-)–kaolinite
system, the repulsion between particle and surfactant would
hinder surfactant migration toward the interface and result in
an IFT increase.

Adsorption Reduction Mechanism
In real cases, surfactant adsorption loss is a worrying problem
that increases the cost. Meanwhile, due to reduced effective
concentration, a low IFT can hardly be ensured in middle and
deep reservoirs. NPs can effectively reduce surfactant adsorption
loss by forming NP shielding (Alonso et al., 2009; Zhong et al.,
2019b), increasing the repulsion between surfactant and rocks
(Zargartalebi et al., 2015), providing more fierce collision, and
friction effect between NPs and sands (Wu et al., 2017), among
others. Therefore, the validity of the surfactant in the presence of
NPs can be longer.

Wettability Alteration
Surfactant makes rock less oil-wet through ion-pair or adsorption
mechanism, while by adsorbing or exerting structural disjoining
force, NP addition enhances the likelihood that a more water-wet
condition will arise.

Co-Adsorption Mechanism
Surfactant adsorption on NP surfaces through electrostatic
attraction or hydrogen bonding can accelerate the co-
adsorption of surfactant and NPs by inducing NP aggregation
or deposition. Both the formation of nanostructures and the
change in surface free energy are conducive to a more noticeable
wettability change (Karimi et al., 2012; Songolzadeh and
Moghadasi., 2017). In this case, higher salinity and
temperature are preferred (Al-Anssari et al., 2018). However,
the possible formation damage should be considered, and a
suitable NP concentration should be selected.

Dispersity Increase Mechanism
NPs in an aqueous dispersion tend to self-assemble to form a
wedge-like structure at the discontinuous phase. Under the drive
of Brownian motion or electrostatic repulsion, dispersed NPs
push the confined NPs forward and impart a huge force called
disjoining pressure (Chengara et al., 2004). Generally, higher
disjoining pressure corresponds to a more obvious wettability
change. Either increasing NP concentration and stability or
decreasing NP size and solution salinity can raise the
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disjoining pressure (Hendraningrat et al., 2013). The addition of
surfactant into NP dispersion can increase NP dispersity and
stability in the aqueous phase through hydrophobic interaction or
imposing supercharging effect. By generating a more favorable
wet–wet condition, a higher recovery can be obtained (Zhao et al.,
2018; Zhong et al., 2020).

Foam/Emulsion Stabilization
Surfactants are traditional foam and emulsion stabilizers. Using
surfactants and NPs together can construct three-phase foam and
Pickering emulsions with higher stability. To generate the
synergisms, NPs that are capable to stably adsorb on the air/
water or oil/water interface is a precondition. Using surfactant
with NPs can in situ modify the hydrophilicity-lipophilicity
balance and surface charge of NPs to stabilize the foams and
the emulsions better.

Emulsion Stabilization
De-emulsion occurs in two successive steps: coagulation and
coalescence. Adsorbed charged NPs can increase the
electrostatic or steric repulsion between oil droplets and
control coagulation. However, NPs can form an obstacle to
restrict the coalescence by forming a rigid coating around the
liquid droplets to prevent coalescence. Meanwhile, using
surfactant and NPs together can also thicken the continuous
phase by forming network structures (Ortiz et al., 2020). It is also
worth noting that for Pickering emulsion preparation, a
reduction in IFT is not an essential precondition. A lower IFT
can reduce the required external energy input. To stabilize the

emulsions, NPs should be able to go and stay at the oil/water
interface. According to Lian et al. (2020), for mono-layer NP
stabilized emulsions, NPs with contact angles of 15°–90° and
90°–165° should be selected for O/W and W/O emulsion,
respectively. While for multiple-layer NP stabilized emulsions,
the ranges are 15°–129.3° and 50.7°–165°. The adsorption of
surfactants on NPs can in situ change NP wettability and
favor their migration to the interface.

Foam Stabilization
NPs have higher adhesion energy compared to surfactants. By
accumulating at the interfaces, minimizing the contact area
between air and water, increasing the film strength and
lamella elasticity, and decreasing the gas diffusion, NPs are
good foam stabilizers. However, the impacts of NP
hydrophilicity, size, and surface charge are significant. NPs
should be sufficiently hydrophilic to disperse in the aqueous
phase and also sufficiently lipophilic to stay stably at the interface
(Majeed et al., 2021). Properly taking full advantage of
surfactant–NP interactions can partially alleviate this
contradiction.

SURFACTANT ADSORPTION ON NPS

The synergisms between NPs and surfactants highly rely on
surfactant–NP interactions, and surfactant adsorption on NP
surfaces is an important embodiment. The driving forces that
push surfactant to adsorb on NPs are electrostatic attraction

FIGURE 1 | Surfactant adsorption on NPs through different interactions.
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(Figure 1A, Peng et al., 2017), hydrogen bonding (Figure 1B,
Zhong et al., 2019b), hydrophobic interactions (Figure 1C, Vu
and Papavassiliou, 2018), and so on.

Electrostatic attraction dominates in systems when the surfactant
and NP possess the opposite charge, for example, cationic surfactant
CTAB/hydrophilic SiO2 system (Songolzadeh and Moghadasi., 2017)
and zwitterionic carboxyl betaine/hydrophilic SiO2 system. Liu et al.
(2017) reported that the saturated adsorption density of C12B on silica
was 8.5 × 10−3mmol/m2 at pH = 6.1.

Hydrogen bonding is the main driving force that facilitates the
adsorption of oligooxyethylene-based nonionic surfactants on
hydrophilic NPs with hydroxyl groups on the surfaces and mainly
adsorbs in the form of micellar structures. In this case, NP stability is
relevant to the extent of micelles coverage. According to Sharma et al.
(2010), a maximum of 14 C12E9 micelles could be adsorbed (on
average) on each silica particle (diameter = 15 nm).

Hydrophobic interaction is the main driving force that promotes
the adsorption of water-soluble surfactant on hydrophobic NPs. By
forming nano-complex and exposing the hydrophilic head of
surfactant molecules to the aqueous phase, the dispersity of
hydrophobic NPs in water significantly increases. According to Vu
and Papavassiliou (2018), the maximum adsorption density of SDS
and C12E8 on hydrophobic nanotubes (length = 20 nm, diameter =
4 nm) was 2.62 and 2.43molecules/nm2, respectively. The loading of
short- and straight-molecule surfactants is higher than long and
branched ones.

CONCLUSION

Integrating NPs with a surfactant can produce many
synergisms: 1) inducing further IFT reduction through the
repulsion-assist-diffusion mechanism, interfacial

concentrate mechanism, solubility reduction mechanism,
and adsorption reduction mechanism; 2) better modifying
rock wettability through the Co-adsorption mechanism or
dispersity increase mechanism; and 3) increasing the stability
of emulsions and foams by forming a rigid coating around the
liquid droplets, thickening the continuous phase or
increasing the lamella elasticity. However, all the
synergisms are closely related to surfactant adsorption on
NP surfaces, which can be affected by surfactant type and
structure, NP size and surface charge, and solution
conditions. In order to exert the synergisms adequately,
NP hydrophilicity should be carefully tailored, and the
adsorption behaviors of surfactants on NPs or at the
interface and the other interactions between NPs and
surfactants should be further studied.
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