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Artificial intelligence has great potential for use in smart grids. Power system image

recognition based on artificial intelligence is an important research direction. The

insulator is essential equipment for the power grid and is related to operational safety.

Online operating insulator location identification and fault diagnosis technologies

based on unmanned aerial vehicle (UAV) patrol the images, and deep learning

algorithms have been continuously suggested and developed. These technologies

have achieved good results in practical application. By compiling the recent literature

on insulator detection technology, threecommonapplication scenarios and research

difficulties are uncovered: The need for increased detection accuracy and real-time

speed; faulty image recognition of complex backgrounds and target occlusion; and

multiscale object and small object detection improvements. At the same time, the

improved algorithms in the literature are comprehensively summarized, and the

performance evaluation indices of various algorithms are compared.
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1 Introduction

With the large-scale construction of ultrahigh voltage and the “nine crosses and nine

straight” plan, China’s power industry has graduallymoved to the forefront of the world. At the

same time, the advancements also pose higher challenges to the safe maintenance of the power

systems. Currently, most of the inspection work of power lines relies on traditional manual

methods, with labour that is not only cumbersome and inefficient but that is also constrained

by geographical location. In recent years, UAV patrol technology has been a hot topic in

intelligent power grids, and its application to power inspection is also a significant trend in

smart power grids (Tong, 2022).

As an indispensable insulating element in power transmission lines, insulators’ operating

conditions directly affect the power grid’s reliability and safety. According to statistics, insulator

defects cause the highest percentage of the current accidents in power system failures.
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Therefore, it is vital to monitor insulator conditions and promptly

diagnose faults. By analysing and processing the images captured by

inspection robots or UAVs, the fast and accurate detection of

insulators in aerial images has become a current hot research

topic (Ma, 2021). The UAV captures many high-definition

insulator images, but the images show complex insulator

backgrounds and varying scales. It would be time-consuming to

rely solely on the human processing of image information to identify

whether the insulators are in an intact condition. Hence, the

implementation of automated processing of image data

information and the accurate detection of insulators’ status is the

key to improving the efficiency of power inspections. Many

researchers have devised various methods for location recognition

of aerial insulator images. Different convolutional network models

are emerging with the rapid development of deep learning. The

autonomous learning of features in images through multilayer

convolutions not only improves a model’s generalization

capabilities but also reduces the data dimensionality and

redundant information, reducing the computational cost and

substantially improving the speed and precision of detection

(Zou, 2022).

In the last two decades, object detection has undergone two

development periods (Zou et al., 2019), the traditional object detection

period and the deep learning-based object detection period. After

AlexNet (Krizhevsky et al., 2017) made a splash at the ILSVRC

challenge (Jia et al., 2009) in 2012, the application of traditional target

detection algorithms decreased, and deep learning gradually became

mainstream. This paper summarizes the three common difficulties

encountered in insulator detection based on deep learning object

detection and the algorithm improvements that were made.

2 The deep learning-based object
detection algorithm

In the era of deep learning, target detection algorithms include

“two-stage detection,” “single-stage detection,” and transformer

structure-based algorithms. Figure 1 shows the development history.

2.1 Two-stage detection algorithm

2.1.1 Region-based convolutional neural
network

In 2014, Girshick et al. (2013) proposed the R-CNN algorithm.

R-CNNchanged the previous best-performing but themore complex

integrated system and adopted a simple and scalable detection

algorithm, which improved the mean average precision (mAP) by

more than 30% compared to the previous best results of VOC 2012.

Although the R-CNN algorithm has made significant progress

compared with previous algorithms, it requires iterative

calculations on many overlapping candidate regions, resulting in a

prolonged detection speed.

2.1.2 Spatial pyramid pooling network
Later, in the same year, He et al. (2015) proposed the SPP-Net

algorithm to address the drawback of repeatedly computing

convolutional features in the R-CNN algorithm. SPP-Net

generates fixed-length feature layers by employing an alternative

pooling strategy and spatial pyramidal pooling, without considering

the size of the input image. Additionally, for object deformation,

pyramid pooling is highly robust. In addition, pyramid pooling is

robust against object deformation. The SPP-Net algorithm effectively

improves the detection speed, but there are still some problems. The

training of SPP-Net remains multi-stage, and the researchers only

fine-tune its fully connected layers while ignoring all previous layers.

2.1.3 Fast region-based convolutional neural
network

To address the problems of SPP-Net, in 2015, Girshick

(2015) proposed the Fast R-CNN algorithm, which simplified

the SPP layer and designed a single-scale region of interest (RoI)

pooling layer structure. Introducing a multitask loss function

FIGURE 1
The development of deep learning-based object detection
algorithms.
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improves the precision and speed of Fast R-CNN. While Fast

R-CNN successfully combines the advantages of R-CNN and

SPP-Net, the network (Huang and Zhang, 2020) still uses a

relatively time-consuming selective search method to generate

candidate regions. It requires the acquisition of RoIs before the

images are fed into the CNN network. Therefore Fast R-CNN

network is not an end-to-end network in real implementations or

actual applications.

2.1.4 Faster region-based convolutional neural
network

Faced with these problems, researchers began to focus on

using CNNs directly to generate RoIs. In 2015, Ren et al. (2017)

proposed the Faster R-CNN algorithm, which introduced the

region proposal network (RPN) to generate candidate regions.

The RPN shares the full image convolutional network with the

detection network, and the two merge into a single network to

achieve almost real-time detection. However, the RoI pooling

layer between RPN and Fast R-CNN converts the multiscale

feature mapping into fixed-scale feature mapping, which directly

destroys the translation invariance of the network and is

detrimental to the classification of image objects.

2.1.5 Region-based fully convolutional network
In 2016, Dai et al. (2016) proposed region-based fully

convolutional networks (R-FCNs) to address the shortcomings of

Faster R-CNN.The proposed Position-Sensitive ScoreMap addresses

the difficulties between translation invariance in image classification

and the translation variance in target detection. The R-FCN adopts a

residual network (He et al., 2016) as a fully convolutional image

classifier backbone. It uses a position-sensitive mapping map RoI

pool to coordinate the translation invariance and sensitivity across

the convolutional layers, improving object localization.

2.1.6 Light head region-based convolutional
neural network

Although the detection speed of the R-FCN has been better

than that of the R-CNN family of algorithms in the two-stage

detection algorithm, the overall architecture design is excessively

bulky. To simplify the network and improve the detection speed,

in 2017, Li et al. (2017) proposed a new two-stage detector, the

Light-Head RCNN. It achieves a good balance of speed and

precision by using a thin feature map and a low-cost R-CNN

subnet (pooling and a single fully connected layer) that makes the

head of the network as light as possible.

2.2 One-stage detection algorithm

The one-stage detection algorithm is different from the two-

stage detection algorithm. It adopts the idea of regression

analysis, which does not need to generate candidate regions

and directly obtain the object classification and location

information. It is mainly represented by the YOLO (You Only

Look Once) series algorithm and SSD (Single Shot MultiBox

Detector) algorithm.

2.2.1 You only look once series algorithm
In 2016, Redmon et al. (2016) proposed the first one-stage

network, YOLOv1, to address the common problemof the poor real-

time performance of two-stage detection algorithms. Its use of object

detection as a regression problem allows for a direct end-to-end

optimization of detection performance since the entire detection

pipeline is a single network. However, YOLOv1 is ineffective in

detecting small objects and is prone to missed detections in cases

with object overlaps and occlusions. Therefore, in 2017, Redmon and

Farhadi (2017) proposed an improved version of YOLOv1,

YOLOv2, which uses DarkNet-19 as the backbone network and

introduces improvements such as batch normalized preprocessing, a

multiscale training mechanism, and a binary cross-entropy loss

function, resulting in a significant increase in recall and precision.

To improve the network sensitivity to small object detection, in 2018,

Redmon and Farhadi (2018) proposed the YOLOv3 algorithm. It

uses Darknet-53 as the backbone network, deepens the number of

network layers, and introduces the cross-layer summation operation

in Resnet. YOLOv3 is fast in practical applications, while the

background false detection rate is low.

In 2020, Bochkovskiy et al. (2020) proposed the

YOLOv4 algorithm. Combining many previous research

techniques and a wide range of experiments, they investigated the

impact of many generalized algorithms on network performance.

They found the optimal combination, especially the mosaic

augmentation technique, which can effectively solve the “small

object detection difficulty” problem. Compared with YOLOv3,

YOLOv4 has dramatically improved the overall detection

performance and the detection performance for obscured objects.

In the same year, researcher Glenn Jocher released an open-source

implementation of YOLOv5 and its derivative version on GitHub,

whose performance is comparable to YOLOv4. Unlike YOLOv4,

YOLOv5 builds on the PyTorch implementation, with simpler

support, easier deployment, fewer model parameters and support

for conversion to ONNX and CoreML. It is convenient for users to

deploy on mobile, embedded devices, etc.

In 2021, a new generation version of the YOLO algorithm,

YOLOX, was proposed by MEGVII (Ge et al., 2021). It switches the

YOLO detector to an anchorless approach with other advanced

detection techniques, namely, the decoupling header and the leading

label assignment strategy-SimOTA. YOLOX achieves state-of-the-

art results in an extensive range of model comparisons while

improving support for the ONNX, TensorRT, NCNN, and

Openvino deployment versions with strong industrial applicability.

2.2.2 Single shot multiBox detector algorithm
In 2016, Liu et al. (2016) combined the anchor mechanism of

R-CNN and the regression idea of YOLO to propose the SSD

algorithm. SSD is the second single-stage detection algorithm in
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the era of deep learning, which introduces a multiscale detection

technique that performs detection on the feature maps extracted

at each scale. SSD has a higher precision for processing smaller

images than the other one-stage detection algorithms.

2.2.3 RetinaNet
In 2017, Lin et al. (2017) found that the extreme foreground-

background class imbalance encountered during dense detector

training is the main reason why the precision of the one-stage

algorithms lags behind that of the two-stage algorithms. In this

regard, RetinaNet was proposed, which introduces a new loss

function, “focal loss,” which enables the detector to focus more

on difficult samples during training by reconstructing the standard

cross-entropy loss. The focal loss allows the one-stage detector to

achieve comparable precision to the two-stage detector while

maintaining a very high detection speed.

2.3 Transformer structure

In 2017, Transformer, the Self-Attention Architecture, was

proposed, mainly for natural language processing, and expanded

to various domains. In 2020, Dosovitskiy et al. (2020) pioneered the

direct application of Transformer to vision, proposing Vision

Transformer (ViT). ViT segments an image into multiple

nonoverlapping patches, similar to tokens (words) in natural

language processing, and performs a series of linear embedding

operations on each patch as input to the transformer. However, it

is found through experiments that the transformer lacks the inductive

biases inherent to CNNs, such as translational invariance and

localization. Consequently, the generalization is not good when the

training set is insufficient.

In 2021, the second generation of Visual Transformers (VTs)

architecture (Liu et al., 2021a; Yuan et al., 2021a; Yuan et al., 2021b;

Hudson and Zitnick, 2021; Li et al., 2021; Wu et al., 2021; Xu et al.,

2021) based on ViT was proposed. These second-generation VT

networks usually mix convolutional layers with attention layers to

provide a local inductive bias for VTs. These hybrid structures have

the advantages of both paradigms, the attention layer models global

dependencies, while the convolution operation can emphasize local

features of the image content. Most of the experiments in this work

show that these second-generation VTs outperform the training on

ImageNet versus a ResNet of similar size. However, the training

results of these second-generation VT networks on small and

medium-sized datasets are still unclear.

To investigate the training performance of VTs on small and

medium-sized datasets later in the same year, Liu et al. (2021b)

proposed using other self-supervised tasks and corresponding

dense relative localization loss functions. These improvements

can increase the accuracy of VTs to a great extent. Especially

when training from scratch on small datasets, VTs can

significantly improve transformer performance, with the

accuracy values rising to 45%.

3 Insulator dataset and performance
evaluation

3.1 Related literature insulator dataset
source and production

The current datasets publicly applied to deep learningmodels do

not contain insulator images of the transmission lines, and there is

no specialized dataset for aerial insulator image recognition for

transmission lines at home and abroad. The datasets that are

now publicly accessible are the sample data from GitHub’s

Insulator DataSet-Chinese Power Line Insulator Dataset (CPLID,

GitHub—InsulatorData/InsulatorDataSet: Provide normal insulator

images captured by UAVs and synthetic defective insulator images),

as well as datasets created by different research institutions on their

own. The number of acquired insulator images is limited. In

addition, too few data tend to cause an overfitting of the model

obtained from training, resulting in the network’s inability to learn

the true distribution of the data and largely reducing the model’s

generalization ability.

One of the most straightforward ways to deal with the lack of

training data (Nguyen et al., 2018) is to manually create training

data. However, this is a very slow, tedious and expensive process.

One possible way to speed up the process is to use a pretrained

model and fine-tune it with a small amount of manually created

training data to generate more data automatically. When only a

small amount of training data is available, experimenters can use

data augmentation techniques to improve the training

performance. Some simple data enhancement techniques help

train deep learning models, such as mirror flipping, random

cropping, colour conversion, or adding random noise to random

sample images, as shown in Figure 2 (Wang, 2021). Another way

to resolve the lack of training data is to use synthetic images.

However, effectively combining synthetic and real images in the

training of deep learning models is still challenging. Therefore,

researchers have applied supervised domain adaptation (Csurka,

2017) to address this challenge. In this approach, the model is

first trained only for synthetic images and images of the task of

interest; then, fine-tuning for target tasks that typically have few

training examples. In the absence of available training examples,

unsupervised domain adaptation (Ganin and Lempitsky, 2014;

Cai et al., 2018; Long and Wang, 2015; Sener et al., 2016) is a

potential solution that can adapt a model trained only on

synthetic images and images from related tasks for the target

task. The class imbalance problem can be solved to some extent

by synthesizing images, e.g., normal insulator images with

positive samples and faulty insulator images with negative

samples. At the same time, in realistic scenarios, there are

more faulty insulator samples than normal samples, which

results in a positive and negative sample imbalance. A balance

of the unbalanced classes is attained by generating more synthetic

images for classes with fewer training samples. An alternative

solution is the median frequency balancing method, in which
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classes with fewer training samples are assigned higher weights

during training (Eigen and Fergus, 2014; Kampffmeyer et al.,

2016; Badrinarayanan et al., 2017).

Given the identifiability of deep learning models, the dataset

constructed in this comprehensive literature follows the library

construction method of the public PASCAL VOC dataset. The

data annotation tool used for data annotation of the insulator

samples is LableImg, while strictly following the PASCAL VOC

data format: 1) The annotation frame fits the insulator object

tightly; 2) the fuzzy insulators are ignored. LableImg can record

the category names and the location pieces of information of the

objects in the images and store these pieces of information in the

corresponding XML format files for the training of the models.

3.2 Detection object and classification

The insulator images based on UAV patrol contain several

common defects and corresponding severity levels, as shown in

Table 1. The severity level of the insulators includes three kinds of

defects: emergency, major and general. The defects listed in

Table 1 are essential for deep learning insulator fault diagnosis.

3.3 Algorithm performance evaluation
metrics

The accuracy measures for insulator identification or fault

diagnosis are average precision (AP), mean average precision

(mAP), recall (R), and frame per second (FPS). TP indicates that

the actual positive sample is predicted to be a positive sample as

well, TN indicates that the predicted negative sample is a negative

sample, FN indicates that the actual positive sample is predicted

to be a negative sample, and FP indicates that the actual negative

sample is predicted to be a positive sample.

(1) Precision, for the predicted results, indicates the proportion

of the actual positive samples among the predicted positive

samples. The calculation formula is shown below:

P � TP

TP + FP
(3 − 3 − 1)

(2) Recall, for the original sample, indicates how many positive

samples in the sample were correctly predicted. The

calculation formula is shown below:

FIGURE 2
Data enhancement methods. (A) Original image (B) horizontal flip (C) random crop (D) Gaussian noise (E) colour conversion.

TABLE 1 Insulator defects and severity level.

Defect types Emergency
defect

Major
defect

General
defect

• Insulator string pin off or insulator string off. √

• The number of zero value or broken vases on a string of insulators reaches 1 piece at 35 kV, 3 pieces at
110 kV, 4 pieces at 220 kV, 4 pieces at 500 kV and above.

√

• Needle insulator string and porcelain cross-arms are severely damaged, and nuts fall off. √

• High-voltage pillar insulator with cracks, glaze broken area greater than 1 cm2. √

• Insulator string cotter pin dislodged. √

• The number of zero value or broken vases on a string of insulators reaches 1 piece at 10 kV and below,
2 pieces at 35 kV, 3 pieces at 110 kV, 3 pieces at 220 kV, 3 pieces at 500 kV and above.

√

• Ground line dangling insulator string along the line tilt angle less than 30° greater than 30°. √

• Insulator surface staining and flashing serious or rusting seriously. √

• The insulator cotter pin is not open. √

• Insulators indicate dirt and scale accumulation. √

• Ground line overhang insulator string along the line tilt angle is less than 30°. √
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R � TP

TP + FN
(3 − 3 − 2)

(3) Precision and recall are two contradictory measures.

According to the correlation between precision and recall,

when precision increases, recall decreases accordingly, and

vice versa. Therefore, it is necessary to combine these two

parameters and use the AP value to measure the algorithm

performance. The calculation formula is shown below:

AP � ∑
N

n−1
P(n)ΔR(n) (3 − 3 − 3)

where N denotes the number of samples in the test set, P(n)

denotes the precision P when identifying n samples, and ΔR(n)
denotes the change in recall R when the number of identified

samples changes from n-1 to n. For multi-classification (K-class)

detection tasks, the model is usually evaluated using the mean

mAP. The calculation formula is shown below.

mAP � AP

K
(3 − 3 − 4)

(4) Speed evaluation. An important measure of the detection

speed of the detection algorithm is the frame rate per second

(FPS), i.e., the number of images that can be processed per

second; the larger the FPS, the faster the detection speed and

the better the real-time performance of the algorithm. The

calculation formula is shown below:

FPS � 1/(T
F
) (3 − 3 − 5)

where T denotes the total image processing time consumed by

the algorithm and F denotes the number of image frames

processed by the algorithm.

The literature (Chen et al., 2018; Zhao et al., 2019a; Zhao

et al., 2019b; Lai et al., 2019; Miao et al., 2019; Pan, 2019; Wu

et al., 2019; Yang, 2019; Zuo et al., 2019; Chen et al., 2020; Chen

andMin, 2020; Ding, 2020; Ji, 2020; Ji et al., 2020; Pan et al., 2020;

Shen et al., 2020; Wu, 2020; Yan and Chen, 2020; Yao and Qin,

2020; Zhou et al., 2020; Gao et al., 2021b; Chen et al., 2021; Liu

et al., 2021c; Liu et al., 2021d; Liu et al., 2021e; Huang et al., 2021;

Tan, 2021; Tang et al., 2021; Tian et al., 2021; Wang et al., 2021;

Yan and Wang, 2021; Yi et al., 2021; Zhang et al., 2021; Zhang

and Guo, 2021; Zhu et al., 2021; Gao and Wang, 2022; Huang

et al., 2022; Jiang et al., 2022) has used average precision (AP),

mean average precision (mAP), recall (R) and frames per second

(FPS) metrics to evaluate the improved algorithms. Among them,

26 papers adopted the most frequently used APmetric, 14 papers

adopted the mAP metric, 17 papers adopted the R metric and

17 papers adopted the FPS metric. In the insulator detection task,

the average precision (AP) is undoubtedly necessary because it is

a direct measure of whether the insulators in the aerial images

can be correctly identified as insulator classes. However, in

industrial applications, the metric of most interest to

application personnel is the recall rate because the level of

recall is directly related to whether the model can identify all

the insulators in the aerial images.

4 Insulator detection based on the
improved deep learning algorithm

Traditional location identification and fault diagnosis

methods are difficult to adapt to the detection work in the era

of big data and operate inefficiently. Because of the ability to

extract high-level abstract features from a large amount of data,

deep learning techniques are gradually being widely used in the

field of location identification and fault diagnosis. In deep

learning-based insulator detection tasks, algorithms applied in

industrial scenarios must achieve high accuracy and real-time

performance. In the inspection process, aerial insulator images

are often encountered with poor detection precision due to

complex backgrounds and excessive occlusion. In addition,

problems such as multiscale objects in a single insulator image

and difficulties in detecting small objects lead to missed

detection. As a result, researchers in related fields have

improved various deep learning algorithms to alleviate the

problems encountered in insulator detection. It is important

to note that accurate insulator location identification is a

prerequisite for insulator fault diagnosis. The insulator

location identification is mainly an operation to obtain the

location of insulators and their categories in response to the

problems of partial obscuration of insulators in inspection

images, the difficulty of detection, and low accuracy. On the

contrary, the fault diagnosis of insulators is mainly an operation

performed to obtain the fault points of insulators caused by the

influence of the self-weight of conductors, lightning, wind, ice,

snow, dust pollution, and other factors that cause insulators to

fall off the string, break, foul and so on. In the improved

algorithms mentioned in this section, for insulator location

identification and fault diagnosis work, researchers use

methods such as one-stage algorithms and two-stage

algorithms for deep convolutional neural networks. These

algorithms contain both improved algorithms to improve

insulator localization recognition rate and improved

algorithms to enhance insulator fault diagnosis.

4.1 Improving precision and maintaining
real-time

A high-voltage insulator requires continuous monitoring and

inspection to prevent failures and emergencies (DianaSadykova,

2019). Manual inspection is costly because it requires covering a

large geographical area where severe weather conditions can

affect the proper operation of the insulators. Automatic detection
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of insulators from aerial images is the first step towards

performing real-time classifications of insulator conditions

using a UAV. The accurate identification of insulators or

insulator faults in real time is a difficult problem, and

researchers have proposed many improved algorithms from

this perspective.

4.1.1 On the improvements of the convolutional
network layer

Zhang et al. (2021) increased the convolutional layer

perceptual field by replacing the original convolutional layer

in the YOLOv3 backbone network with a cavity convolutional

layer with an expansion rate of two, which enabled the

convolutional network to fuse more object information while

ensuring the resolution. According to the morphological

characteristics of insulators, the distance metric formula in the

k-means clustering algorithm is improved to cluster an anchor

box size that is more suitable for insulator characteristics. There

is 7.9% improvement in the recognition AP value while operating

in real-time. Pan et al. (2020) analysed the scattering transform

principle and convolutional neural network (CNN) to make a

low-pass filter for scattering coefficient processing. The Gram

matrix method is combined to reduce the noise interference of

insulator string background information to enhance the edge

texture features of low-frequency coefficients. Finally, the SSD

network framework achieves the efficiency of CNN for real-time

insulator string localization calculations. Ding (2020) proposed

three lightweight fully convolutional blocks for use with stacked

neural networks on the network structure underlying the YOLO-

LITE algorithm. They used the k-means algorithm to cluster the

bounding boxes in the training set and proposed a multifeature

fusion method and a reduced model input size method. Finally,

the best real-time object recognition and localization model

comes from various stacking experiments. By improving the

convolutional layer, researchers can improve the feature

extraction ability of the whole network. Nevertheless, as the

convolutional module increases, the detection time

consumption increases, and the detection speed decreases

accordingly.

4.1.2 On the improvements of the backbone
network and feature extraction

Liu et al. (2021c) developed a new deep learning-based

intelligent diagnosis method for electrical insulators, termed

Box-Point Detector, which consists of a deep convolutional

neural network followed by two parallel branches of

convolutional heads. The proposed Box-Point Detector forms

an efficient end-to-end architecture which implements all

predictions including regions and endpoints into a single

network and adopts a smaller downsampling rate to generate

high-resolution feature maps in order to preserve more original

information faults for small sizes. Experimental results show that

Box-Point Detector can accurately diagnose high-voltage

insulator faults in real time under a variety of conditions.

Chen et al. (2021) used VoVNet with a stronger feature

extraction capability as the backbone network of the

YOLOv3 algorithm. A novel feature enhancement module was

also proposed to effectively enhance shallow feature maps’

semantic information and perceptual field—an effective

improvement of insulator detection precision of the model

with a guaranteed detection speed. Chen and Min (2020)

added a new small-target-friendly 4-fold downsampled

residual block to the middle of the second residual block and

the third residual block of Darknet-53, the backbone network of

YOLOv3, to improve the detection precision of small objects.

Based on the feature that the positions of insulators in similar

images are roughly the same, the images are classified by the

perceptual hashing algorithm, and the candidate region scanning

strategy is used to speed up the detection speed for similar

images. The accuracy of the improved insulator detection

method improved from 93.6% to 99.2%, and the detection

speed of similar images improved by 4.6%. Wu et al. (2019)

used Crop-MobileNet as the base network to extract depth

features. They used the Euclidean distance-based K-means

algorithm to improve the stability of the generated last frame.

Finally, the YOLOv3 architecture is used to detect the insulators

and the locations of faults. The method significantly improves the

detection speed of the network while maintaining the insulator

detection performance and can meet the real-time detection

requirements of UAV power inspection. Liu et al. (2021d)

relied on the convolutional neural network (CNN) to extract

features and process them to form an end-to-end detection

network. MobileNet was used as the base network of SSD to

achieve high-speed and high-precision detection of insulators.

The detection precision of porcelain insulators on 500 kV lines

and composite insulators on 220 kV lines reaches 96.29% and

90.85%, respectively, and the average detection speed reaches

43 F·s-1, which can meet the requirements of real-time insulator

detection. Ji et al. (2020) used the MobileNetV3 network as the

feature extraction backbone. The architecture uses the

MobileNetV3 network as the feature extraction backbone,

designs a new perceptual field module RFB-X, and uses the

focal-loss function to solve the positive and negative sample

imbalance problem. The experimental results show that the

model improves the speed and accuracy of insulator detection.

Huang et al. (2022) designed a deep learning network

incorporating multidimensional feature extraction to alleviate

the problem of poor real-time insulator detection and insufficient

feature extraction capabilities based on edge computing.

ResNet101 is used as the backbone feature extraction network.

The inception module is used to build a data pooling layer and

embeds a compressed excitation module and a convolutional

attention module to efficiently extract features from different

dimensions. The edge recognition framework of insulator states

is also constructed using the joint technical means of the cloud-

edge and edge-edge federation collaboration. The experiments
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demonstrate the effectiveness of the insulator state edge

recognition method that fuses multidimensional features.

From the perspective of backbone network optimization,

researchers fuse lightweight backbone networks to improve

the detection speed. The feature extraction capability is

improved to maximize the detection precision while

maintaining the detection speed.

4.1.3 On the improvements of the activation
function of the network layers and the loss
function of training

Yao and Qin (2020) used the “GIoU loss function” instead of

the loss function of the original YOLOv3 to improve the

detection precision of the insulators without increasing the

model size and verified the effectiveness of the improved

algorithm. Yan and Chen (2020) used the focal loss function

and equilibrium cross-entropy function instead of the loss

function of the original algorithm. They trained the network

analytically, selecting the frozen layer and adopting a multistage

migration learning strategy. The study’s results proved that the

proposed method has high precision and real-time performance.

Ji (2020) modified the bounding box dimension in the network.

They improved the original loss function using the Focal Loss

function, the linear activation function, and the Leaky ReLU

activation function in the network using the Mish function. The

improved YOLOv3 calculates a 3.4% improvement in its

detection accuracy while maintaining detection speed. The

researchers improved the activation and loss functions of the

original algorithm according to the actual, especially the Focal

Loss function, by reducing the weights of the easily classified

samples, making the model focus more on the difficult classified

samples during training, achieving an increase in convergence

speed as well as more accurate localization detection.

In the literature (Wu et al., 2019; Chen and Min, 2020; Ding,

2020; Ji, 2020; Ji et al., 2020; Pan et al., 2020; Yan and Chen, 2020;

Yao and Qin, 2020; Chen et al., 2021; Liu et al., 2021c; Liu et al.,

2021d; Zhang et al., 2021; Huang et al., 2022), by improving the

selection algorithm, the detection AP or mAP is improved

compared to the original algorithm while taking into account

the detection speed, which can meet the requirements of real-

time detection. However, most of the literature only focuses on

improving detection precision while ignoring the problem of

missed insulator detection, i.e., the high or low recall rate. Thus,

subsequent research can further improve the algorithm to

improve the detection recall of the model while maintaining

the current results.

4.2 Complex background and target
occlusion

With the fault of power line insulators leading to

transmission system failures, insulator detection systems based

on overhead platforms have been widely used. Insulator targets

or diagnostics are performed in the complex context of aerial

images, which is an exciting but challenging problem (Tao et al.,

2020). Researchers have proposed many improved algorithms

from this perspective.

4.2.1 On the improvements of the backbone
network and feature extraction

Zhang and Guo (2021) fine-tuned the proportion of RPN

candidate regions on the original model to increase the number

of anchors. They replaced the backbone network VGG16 in

Faster R-CNN with ResNet-101 and used multiscale training for

model training. This method can improve the insulator detection

precision and alleviate the missed detection problem due to

partial insulator occlusion. Compared with the original model,

the detection precision of the improved model is improved by

4.88%. Zhu et al. (2021) replaced the backbone VGG16 in Faster

R-CNN with ResNet-50 as the backbone network, improved the

feature extraction network framework, and performed multiscale

feature fusion. The mAP on the test set reaches approximately

98.5%, which alleviates the insufficient recognition accuracy due

to the complex background of the insulator images. Tan (2021)

used the insulator localization network (one-level detection

backbone) of SSD to extract multilevel features and make

predictions. Additionally, they introduced a densely connected

convolutional network (DenseNet) to enhance the classification

capability of the insulator detection system. The researchers

optimized the original algorithm backbone network to

improve the network’s ability to extract features. It is possible

to extract more relevant features of insulators in complex

backgrounds.

4.2.2 On the improvements of feature
processing

Yi et al. (2021) trained Faster R-CNN with multiscale

features. The proportion of candidate regions generated by

sliding windows is adjusted according to the insulator’s

characteristics. An adversary generation strategy for detecting

difficult samples is introduced to detect insulators of different

sizes and accurately obscured transmission lines. Huang et al.

(2021) proposed a feature pyramid and multitask learning-based

insulator detection method. The feature pyramid is constructed

by fusing high- and low-dimensional feature information to

avoid the loss of detailed information such as object location

and achieves efficient detection of insulators in complex

backgrounds. A multitask learning algorithm is also

introduced to further enhance the generalization ability of the

model and improve the insulator detection precision. Chen et al.

(2018) proposed an insulator detection method based on a U-net

network. The shallow features and high-dimensional features are

fused by a superposition method, where the shallow, high-

resolution feature maps are used for pixel localization, and the

deep high-dimensional feature maps are used for pixel
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classification. It avoids the loss of detailed information such as

target location and can effectively detect insulators in complex

backgrounds. Liu et al. (2021e) proposed an improved algorithm,

YOLOv3-dense, which enhances the reuse and propagation of

features. Additionally, a multilayer feature mapping module is

used in the YOLOv3-dense network to obtain the rich semantic

information in the upper and lower layers, which has good

performance for detecting insulators of different sizes under

different background disturbances. Wang et al. (2021)

synergized the full convolutional network (FCN) with the

YOLOv3 object detection algorithm. First, the FCN algorithm

is used to achieve the initial segmentation of insulator targets to

avoid the interference of background regions on the insulator

fault detection. Second, the YOLOv3 model is used for insulator

fault detection, drawing on the idea of aiding in labelling and

predicting the category of insulator faults on the output tensor of

three scales to ensure that the model detects insulator faults of

different sizes accurately. The K-means clustering algorithm is

used to optimize the anchor box parameters of YOLOv3.

Compared with improving the backbone network, the

researchers choose to optimize from the perspective of feature

fusion by superimposing and fusing multiple layers of features to

extract the more insulator features.

4.2.3 On the improvements of anchor
generation and filter, the loss function of
training, and the activation function of the
network layers

Zhao et al. (2019a) improved the anchor generation method

and nonmaximal suppression (NMS) screeningmethod by Faster

R-CNN. At the same time, the improvedmethod has significantly

improved the detection of insulators of different scales and can

effectively distinguish and detect insulator shading. Gao and

Wang (2022) proposed an improved algorithm based on the

CornerNet-Lite network model. The algorithm applies the

LeakyReLU function to design a more reasonable activation

function. It can effectively alleviate the problem of model

leakage when pylons intermittently block insulators, and

multiple targets are clustered. Tian et al. (2021) incorporated

the squeeze-and-excitation (SE) attention module in the

YOLOv5s network to strengthen the network’s ability to

identify insulator objects. K-means clustering is also used to

construct the prior frame of insulators to improve the

localization precision. Last, a loss function with joint

confidence and localization tasks is built to enhance the

performance of insulator detection in complex backgrounds.

Tang et al. (2021) combined the object segmentation model

SERes-Unet with the improved YOLOv5. The SERes-Unet

model cuts the images into two categories, the background

and insulator targets. The improved YOLOv5 algorithm is

responsible for detecting these two classes and filtering by

nonmaximal suppression to obtain the insulator positions in

the full complex background. The researchers’ optimization

makes the improved regression frame more adaptable to

insulator objects with occlusion in real scenes.

4.2.4 On the improvements of the training
strategy of the network

Zhao et al. (2019b) improved the regional fully convolutional

network (R-FCN). The aspect ratio of the proposed frame of the

RPN in the R-FCN model is modified according to the aspect

ratio characteristics of the insulator object. Additionally, for the

masking problem, an Adversarial Spatial Dropout Network

(ASDN) layer is introduced into the R-FCN model to

generate masks for some positions of the feature map to

obtain incomplete samples of the object features to improve

the model’s detection performance for samples with poor object

features. Miao et al. (2019) proposed a method combining SSD

with a two-stage fine-tuning strategy to automatically extract the

multilevel features from aerial images. The two-stage fine-tuning

strategy is also implemented using different training sets,

enabling the well-trained SSD model to directly and accurately

identify insulators in aerial images with complex backgrounds.

Lai et al. (2019) combined edge computing, line detection, image

rotation and vertical projection. The method learns the features

of various insulators in complex backgrounds by training the

YOLOv2 network to achieve accurate identification. Optimizing

the training strategy of the network aims to improve the

network’s adaptability to extract features in various complex

backgrounds and to have more vital generalization abilities in

different application scenarios.

Most studies (Chen et al., 2018; Zhao et al., 2019a; Zhao et al.,

2019b; Lai et al., 2019; Miao et al., 2019; Liu et al., 2021e; Huang

et al., 2021; Tan, 2021; Tang et al., 2021; Tian et al., 2021; Wang

et al., 2021; Yi et al., 2021; Zhang and Guo, 2021; Zhu et al., 2021;

Gao and Wang, 2022) use AP as the main evaluation index,

which is improved compared with the original algorithm.

However, the model may not recognize insulator objects fully

in application scenarios with complex images and object

occlusion backgrounds, leading to partial insulator missed

detection. In the literature (Chen et al., 2018; Zhao et al.,

2019a; Zhao et al., 2019b; Lai et al., 2019; Miao et al., 2019;

Liu et al., 2021e; Huang et al., 2021; Tan, 2021; Tang et al., 2021;

Tian et al., 2021; Wang et al., 2021; Yi et al., 2021; Zhang and

Guo, 2021; Zhu et al., 2021; Gao and Wang, 2022), only half of

them also use the recall rate as the evaluation index, and the vast

majority are not mainly aimed at improving the recall rate.

Therefore, researchers can work on improving the detection

recall based on the application algorithm for this scenario.

4.3 Multiscale and small target

Insulator failures may endanger the safety of the entire

transmission system. Therefore, monitoring insulators is a

priority to maintain the safe operation of power systems.
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However, insulator targets or insulator defects in insulator

images may have different sizes, and it is still a challenging

problem to improve the detection precision of small targets at

present (Gao et al., 2021a). Meanwhile, small target detection is a

hot research topic, especially in the electric power field. For this

problem, researchers have also proposed many improved

algorithms.

4.3.1 On the improvements of feature
processing and anchor box scaling

Shen et al. (2020) fused the shallow feature map with the

deep feature map in Faster R-CNN to improve the algorithm’s

ability to extract object features. The scale of the anchor frame

is improved according to the shape characteristics of insulators to

enhance the detection ability of small-scale insulators. Multiscale

training is also performed to reduce the influence of insulators of

different scales on the recognition rate. Zhou et al. (2020) also used the

multiscale feature fusion method. The backbone network VGG16 of

Faster R-CNN was also replaced with ResNet-101 to effectively

improve small-scale object detection precision. On the other hand,

Jiang et al. (2022) combined the feature pyramid network (FPN) with

the Faster R-CNN algorithm and fused multiscale features. At the

same time, the algorithm improves the maximum pooling layer. It

uses the soft-NMSalgorithm instead ofNMS to circumvent the case of

mistakenly deleting overlapping detection frames due to an

overlapping target occlusion, which reduces the leakage of small-

sized insulators in images. Wu (2020) achieved multilayer network

feature fusion using a Concat connection. The improved

YOLOv3 algorithm was also trained using an end-to-end

multiscale training approach. The improved algorithm has a

significant improvement in the detection precision and detection

speed for small objects. Chen et al. (2020) proposed a YOLOv3-based

feature selection network (FS-YOLOv3) detection method. The

redundant low-level detail features are filtered out using a

pyramidal feature attention network, and the low-level detail

features are fused with deep-level semantic features. It effectively

alleviates insulatormissed detection and inaccurate localization due to

the small proportion of insulators and the complex background in the

infrared power images. Pan (2019) proposed an MFIDN insulator

detection network model based on multiscale and fine-grained

features. The model shows that fine-grained features and

multiscale prediction positively enhance the insulator detection by

comparing the singlemodel structure and the single output of the one-

stage detection algorithm. Yan andWang (2021) proposed a method

to detect insulator rust faults based on balanced feature fusion SSD.

For the problemof amissed detection of small objects in insulator rust

objects, the feature layers in the backbone network of SSD are fused

with balanced features. This feature fusion method improves the

network’s ability to capture detailed information and solves part of the

small target miss detection problem. For multiscale object detection,

researchers choose to optimize from the perspective of multiscale

feature fusion and multiscale anchor frame reconstruction. The

multilayer features are superimposed and fused to achieve more

insulator detail extraction. Meanwhile, multiscale anchor frame

reconstruction can obtain more suitable regression frames.

However, it also increases the computational time consumption of

the network, thus reducing the detection speed.

4.3.2 On the improvements of the network’s
training strategy and convolutional layer
combinations

Gao et al. (2021b) proposed an improved insulator fault

diagnosis method for transmission lines with YOLOv4. A

multistage migration learning strategy and cosine annealing

learning rate decay method are used in the training phase to

improve the training speed and overall performance of the

network. Meanwhile, in the testing phase, the images with

small objects are tested after generating high-quality images

TABLE 2 Algorithm improvement strategies for the comprehensive
literature.

No. Improvement strategies

(1) Modify the convolution layer parameters

(2) Improving the maximum pooling layer

(3) Using the Gram matrix method to reduce background noise

(4) Multiscale feature fusion

(5) Adding attention mechanism module

(6) Increase the network width

(7) Replace the loss function

(8) Replace the activation function

(9) Optimize Anchor scaling/number/generation method

(10) Optimize the screening method of Anchor (nonmaximum
suppression-NMS)

(11) Modify backbone network

(12) Improve the feature extraction network fetching framework

(13) Adding feature enhancement module

(14) Classification of similarly located insulators using a perceptual hashing
algorithm

(15) Training the network using a multistage migration learning strategy

(16) Automatic adjustment of learning rate using cosine annealing learning rate
decay method in the training phase

(17) Training the network using multiscale

(18) Introduction of feature reuse network (DenseNet)

(19) Introduction of adversary generation strategy to detect difficult samples

(20) Introduction of adversarial space discarding network to generate
incomplete samples of target features (generation of defective samples)

(21) Introduction of multitask learning algorithm

(22) Fusion of the two algorithms

(23) The combination of the target segmentation algorithm and target detection
algorithm

(24) One-stage algorithm combined with a two-stage algorithm fine-tuning
strategy

(25) Optimization of the training strategy of the network by combining edge
computing, line detection, image rotation, and vertical projection methods

(26) Test phase to generate high-quality images for the presence of small targets
using hypersegmentation generation network
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TABLE 3 Evaluation index of detection performance of comprehensive literature.

Literature Improved
algorithm

Applic-
ation
scenario

Location
identification

Fault
diagnosis

APO/
%

API/% mAPO/
%

mAPI/
%

RO/
%

RI/% FPSO/
(f·s-1)

FPSI/
(f·s-1)

Improvem-
ent
strategies

Zhang et al. (2021) YOLOv3 (a) √ 83.90 91.80 — — 80.30 89.10 33.00 35.00 (1) (9)

Pan et al. (2020) SSD (a) √ — — — — — 89.56 — 31.00 (3)

Ding, (2020) YOLO-LITE (a) √ 32.98 40.65 — — 48.00 52.00 15.00 25.00 (4) (9)

Liu et al. (2021c) Box-Point
Detector (New)

(a) √ 71.90 73.70 — — — — 30.30 (11) (12)

Chen et al. (2021) YOLOv3 (a) √ — — 91.94 98.01 82.74 97.67 34.00 29.00 (11) (13)

Chen and Min,
(2020)

YOLOv3 (a) √ 93.60 99.20 — — — — — — (13) (14)

Wu et al. (2019) YOLOv3 (a) √ — — 90.00 84.00 — — 26.10 40.90 (9) (11)

Liu et al. (2021d) SSD (a) √ — (procelain:
96.29)

— 93.57 — (procelain:
95.12)

— 35~43 (11)

(composite:
90.85)

(composite:
85.24)

Ji et al. (2020) RFB (a) √ — — 91.36 91.91 — — 11.20 12.90 (7) (11)

Huang et al. (2022) ResNet101 (a) √ 97.50 99.70 — — 97.50 98.90 — 18.6~23.6 (4) (5)

Yao and Qin,
(2020)

YOLOv3 (a) √ 90.00 92.50 — — — — 58.80 58.80 (7)

Yan and Chen,
(2020)

YOLOv3 (a) √ 89.20 91.80 — — 89.60 90.10 — — (7) (15)

Ji, (2020) YOLOv3 (a) √ — — 89.40 93.10 — — 25.00 24.00 (7) (8) (9)

Zhang and Guo,
(2021)

Faster R-CNN (b) √ 86.82 91.70 — — 74.67 84.67 — — (9) (11) (17)

Zhu et al. (2021) Faster R-CNN (b) √ — — — 98.50 — — — — (4) (11) (12)

Tan, (2021) SSD (b) √ — 95.00 — — — 92.00 — 10.00 (18)

Yi et al. (2021) Faster R-CNN (b) √ 89.11 93.44 — — 77.75 85.50 — — (9) (17) (19)

Huang et al. (2021) FPN (b) √ 80.10 92.30 — — 80.50 90.10 — — (4) (21)

Chen et al. (2018) U-net (b) √ 85.80 88.90 — — — — — — (4)

Liu et al. (2021e) YOLOv3 (b) √ 90.31 94.47 — — 91.00 96.00 — — (4) (18)

Wang et al. (2021) FCN + YOLOv3 (b) √ — — 92.23 96.88 — — — — (9) (23)

Zhao et al. (2019a) Faster R-CNN (b) √ 64.00 81.80 — — — — — — (9) (10)

Gao and Wang,
(2022)

CornerNet-Lite (b) √ 87.00 93.00 — — — — — — (8)

Tian et al. (2021) YOLOv5 (b) √ — — 98.24 98.46 — — — — (5) (7) (9)

Tang et al. (2021) U-net、YOLOv5 (b) √ 95.30 97.30 — — 99.00 99.00 — — (10) (23)

Zhao et al. (2019b) R-FCN (b) √ 77.27 84.29 — — — — — — (9) (20)

(Continued on following page)
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TABLE 3 (Continued) Evaluation index of detection performance of comprehensive literature.

Literature Improved
algorithm

Applic-
ation
scenario

Location
identification

Fault
diagnosis

APO/
%

API/% mAPO/
%

mAPI/
%

RO/
%

RI/% FPSO/
(f�s-1)

FPSI/
(f�s-1)

Improvem-
ent
strategies

Miao et al. (2019) SSD (b) √ 81.28 94.12 72.77 90.41 79.00 90.00 — — (24)

Lai et al. (2019) YOLOv2 (b) √ — 90.00 — — — — — 30.00 (25)

Shen et al. (2020) Faster R-CNN (c) √ 87.05 95.80 86.80 93.60 85.25 92.35 — 4.20 (4) (9) (17)

Zhou et al. (2020) Faster R-CNN (c) √ — — 87.30 91.30 — — — — (4) (11)

Jiang et al. (2022) Faster R-CNN (c) √ — — 50.63 81.97 — — — — (2) (4) (10) (22)

Wu, (2020) YOLOv3 (c) √ 93.15 95.31 92.51 94.72 — — 45.93 46.12 (4) (17)

Chen et al. (2020) YOLOv3 (c) √ — — — — 93.21 95.54 17.2 16.8 (4) (5)

Pan, (2019) YOLO + SSD (c) √ 83.10 93.20 — — — — — — (4)

Yan and Wang,
(2021)

SSD (c) √ 78.20 80.20 — — — — — — (4)

Gao et al. (2021b) YOLOv4+SR-GAN (c) √ — — — 89.54 — — — 12.24 (15) (16) (26)

Yang, (2019) Faster R-CNN (c) √ 86.50 88.90 — — — — — — (4) (5)

Zuo et al. (2019) Adaboost (c) √ 85.00 95.00 — — 86.00 93.00 — — (1) (4)
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using the hyperscore generation network to improve the

ability to identify small objects effectively. Yang (2019)

added the conv3 layer feature map on top of the single-

scale feature map and embedded the STN (Spatial

Transformer Networks) module in the conv3 layer feature

map. The improved algorithm can detect the image’s small

object insulators and rotating insulators better. Zuo et al.

(2019) proposed a cross-connected convolutional neural

network-based insulator detection method. The method

connects the last three convolutional layers of the region

suggestion network to the fully connected layer separately.

This connection allows the convolutional features of these

three layers to be fed into the classifier and regression layers

simultaneously, resulting in a series of high-quality insulator

candidate regions. Finally, the obtained region of interest

features are fed into the cascaded Adaboost classifier, which

can effectively identify and precisely locate insulators at

different scales. The researchers worked on changing the

training strategy of convolutional networks and the way

convolutional layers are combined. This improvement

reduces the traditional multiscale feature fusion time to a

certain extent while achieving the purpose of multiscale

feature extraction.

Most of the literature (Pan, 2019; Yang, 2019; Zuo et al., 2019;

Chen et al., 2020; Shen et al., 2020; Wu, 2020; Zhou et al., 2020; Gao

et al., 2021b; Yan and Wang, 2021; Jiang et al., 2022) uses AP or

mAP as the primary evaluationmetric, which is improved compared

to the original algorithm. However, focusing on the recall rate in the

application scenario ofmultiscale object and small object detection is

more important. Only a few papers in the literature (Pan, 2019;

Yang, 2019; Zuo et al., 2019; Chen et al., 2020; Shen et al., 2020; Wu,

2020; Zhou et al., 2020; Gao et al., 2021b; Yan andWang, 2021; Jiang

et al., 2022) also use the recall rate as an evaluationmetric.Multiscale

insulator object detection is prone to the missed detection of some

insulator objects of different scales. Therefore, the study of algorithm

improvement for this application scenario should focus on

improving the recall rate and thus reducing the missed insulator

targets of different scales. Hence, the recall rate can be used as the

main evaluation index in subsequent research for this scenario.

5 Comprehensive literature
experimental results and conclusion

5.1 Experimental results

Literature review shows that most of the research performed in

the past mainly addresses three application situations: Scenario (a):

improved detection precision and real-time detection, Scenario (b):

complex background and target occlusion of images, and Scenario

(c): multiscale and small object detection difficulties. For the three

common application scenarios, the researchers made targeted

improvements from the perspective of the original deep learning

algorithm. The results produced were all improved compared with

the original algorithm. A comparison of the algorithm performance

evaluation indices is shown in Table 3. APO, mAPO, RO, and FPSO

represent the performance indicators of the original algorithm. API,

mAPI, RI, and FPSI represent the performance indicators of the

improved algorithm. Meanwhile, the algorithm improvement

strategies of the related literature are organized as shown in

Table 2. They are arranged by number. The algorithm

improvement strategies of the corresponding literature can also

be seen in the “Improvement strategies” in Table 3.

5.2 Conclusion

By generalizing the experimental data from the literature and

combining them with different application scenarios, there are

following conclusions can be drawn:

For application Scenario (a), from the data in Table 3

literature (Wu et al., 2019; Chen and Min, 2020; Ding, 2020; Ji,

2020; Ji et al., 2020; Pan et al., 2020; Yan and Chen, 2020; Yao

and Qin, 2020; Chen et al., 2021; Liu et al., 2021c; Liu et al.,

2021d; Zhang et al., 2021; Huang et al., 2022), most

researchers choose the one-stage YOLO family of

algorithms for improvement, which is closely related to its

advantages. The YOLO algorithm is fast and can perform real-

time detection because the YOLO framework treats target

detection as a regression problem, unlike the RCNN

algorithm’s complex processing process. However, the

YOLO algorithm can be said to trade precision for speed,

and the localization precision of detected objects is poor.

Therefore, many researchers choose the YOLO algorithm to

improve the detection speed while ensuring the detection

speed to achieve the double improvement of detection

precision and speed. The SSD algorithm combines

R-CNN’s anchor mechanism and YOLO’s regression idea,

which can also meet the scenario requirements through

improvement. Thus, the YOLO series and SSD algorithm

are preferred to improve the detection precision and speed.

For application scenarios (b) and (c), the data from the literature

(Chen et al., 2018; Zhao et al., 2019a; Zhao et al., 2019b; Lai et al.,

2019;Miao et al., 2019; Pan, 2019; Yang, 2019; Zuo et al., 2019; Chen

et al., 2020; Shen et al., 2020; Wu, 2020; Zhou et al., 2020; Gao et al.,

2021b; Liu et al., 2021e; Huang et al., 2021; Tan, 2021; Tang et al.,

2021; Tian et al., 2021; Wang et al., 2021; Yan and Wang, 2021; Yi

et al., 2021; Zhang and Guo, 2021; Zhu et al., 2021; Gao and Wang,

2022; Jiang et al., 2022) in Table 3 show that the algorithms chosen

by the researchers are not as high as those required to meet the real-

time requirements. Among the selected algorithms are mostly the

Faster R-CNN algorithm for two-stage detection, which is related to

its advantages. Faster RCNN contains RPN networks that enable a

high accuracy detection performance. At the same time, compared

with other one-stage detection networks, the two-stage network is

more precise and can solve multiscale and small-object problems
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more effectively. The corresponding YOLO algorithm is also

selected for improvement according to the researchers’

implementation needs (detection speed, etc.).

As seen from the data in Table 3, researchers performed

algorithm optimization for three application scenarios, mainly

with the primary goal of improving the detection accuracy (AP/

mAP). In practical applications, focusing on accuracy and

ignoring the recall rate is easy, while a low recall rate may

directly lead to target misdetection. Compared with low object

recognition precision, the loss caused by the low recall rate of

missed detection may be greater. Therefore, the detection recall

rate should be the primary evaluation index in the insulator

detection task of intelligent power grids.

6 Summary and prospects

This paper focuses on a review of insulator detection techniques

for intelligent power grids based on deep learning. First, the

development of deep learning-based object detection algorithms is

summarized. Second, we review the implementation of deep learning

algorithms on insulator detection tasks and improved algorithms for

three application scenarios. As seen from Table 3, for application

scenarios (a), (b), and (c), researchers have improved the existing

object detection networks based on them, and all have achieved some

success in terms of experimental results.

Overall, the detection speed of the regression-based object

detection algorithm on the insulator detection task is

relatively fast, which can meet the requirements of real-

time detection, but the detection precision is relatively low.

Therefore, improving detection precision based on

maintaining the detection speed is a hot research topic.

The candidate region-based object detection algorithm

outperforms the regression-based object detection

algorithm’s detection precision performance. The improved

algorithm for scenarios (b) and (c) is effective, but the

detection speed has difficulty meeting the real-time

requirements and faces challenges in application promotion.

By summarizing and analysing the above technologies, we list the

current challenges encountered in insulator location identification or

fault diagnosis and possible future research trends, while expecting to

promote research development in this field.

(1) Firstly, most of the current insulator fault diagnosis techniques

based on deep learning are based on locating and identifying

insulator images and then diagnosing the faults in insulators. This

method is complicated and time-consuming in practical

application. At the same time, the fault diagnosis effect of

insulator is limited by the localization and recognition effect

of insulator. Secondly, there aremany types of faults in insulators,

such as “cracks and corrosion.” These defects have obscure

features and are difficult to train directly as a dataset. This is

because the models trained using these datasets will misdiagnose

similar features of non-insulator defects. Therefore, one of the

next research trends is how to directly diagnose potential faults in

insulators and determine whether the faults belong to insulators

or not. For example, if insulators and insulator defect locations

are used as separate data sets for training the model. Then, in the

localization and identification stage of insulator target and defect

location, the defect location detected by the model and the

insulator location detected are calculated by area overlap, and

the location of the fault point of the insulator can be initially

diagnosed.

(2) There is insufficient sample data for insulator faults. Also, there

are many types of faults in insulators and the sample data of the

fault types that can be collected are unbalanced. And in model

training, insufficient data can lead to overfitting of the model.

Unbalanced data types can cause false training accuracy

of the model, which can lead to false detection (Cai et al.,

2022). Therefore, without being able to change this hard

condition, the training strategy of the model should be

changed, and the migration learning technique will be

one of the key methods to solve the problem of

insufficient insulator fault samples.
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