AUTHOR=Kim Juhwan , Lee Jaehyeong , Kang Sungwoo , Hwang Sungchul , Yoon Minhan , Jang Gilsoo TITLE=Probabilistic Optimal Power Flow-Based Spectral Clustering Method Considering Variable Renewable Energy Sources JOURNAL=Frontiers in Energy Research VOLUME=10 YEAR=2022 URL=https://www.frontiersin.org/journals/energy-research/articles/10.3389/fenrg.2022.909611 DOI=10.3389/fenrg.2022.909611 ISSN=2296-598X ABSTRACT=
Power system clustering is an effective method for realizing voltage control and preventing failure propagation. Various approaches are used for power system clustering. Graph-theory-based spectral clustering methods are widely used because they follow a simple approach with a short calculation time. However, spectral clustering methods can only be applied in system environments for which the power generation amount and load are known. Moreover, it is often impossible to sufficiently reflect the influence of volatile power sources (e.g., renewable energy sources) in the clustering. To this end, this study proposes a probabilistic spectral clustering algorithm applicable to a power system, including a photovoltaic (PV) model (for volatile energy sources) and a classification method (for neutral buses). The algorithm applies a clustering method that reflects the random outputs of PV sources, and the neutral buses can be reclassified via clustering to obtain optimal clustering results. The algorithm is verified through an IEEE 118-bus test system, including PV sources.