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Power system clustering is an effective method for realizing voltage control and preventing
failure propagation. Various approaches are used for power system clustering. Graph-
theory-based spectral clustering methods are widely used because they follow a simple
approach with a short calculation time. However, spectral clustering methods can only be
applied in system environments for which the power generation amount and load are
known. Moreover, it is often impossible to sufficiently reflect the influence of volatile power
sources (e.g., renewable energy sources) in the clustering. To this end, this study proposes
a probabilistic spectral clustering algorithm applicable to a power system, including a
photovoltaic (PV) model (for volatile energy sources) and a classificationmethod (for neutral
buses). The algorithm applies a clustering method that reflects the random outputs of PV
sources, and the neutral buses can be reclassified via clustering to obtain optimal
clustering results. The algorithm is verified through an IEEE 118-bus test system,
including PV sources.

Keywords: hierarchical spectral clustering, electric power system, photovolataics, power system analysis,
expansion

1 INTRODUCTION

New and renewable energy resources have been increasingly used worldwide owing to energy policies
aimed at achieving carbon neutrality (Cauz et al., 2020; Li et al., 2021). From a numerical perspective,
the accumulated capacity of global wind power increased by a factor of 36.7 (from 16.9 to 621.6 GW)
between 2000 and 2019. Within the same time frame, photovoltaic (PV) capacity increased by a
factor of 480.8, from 1.2 GW in 2000 to 590.3 GW in 2019 (IRENA, 2021). Owing to the
variability in wind and PV generation, wind and PV are treated as variable renewable energy
(VRE) sources. In one instance in Denmark (where high renewable penetration has been
achieved), VRE generation exceeded demand for 845 h and recorded a high demand of 213%.
Such situations have become more frequent since the first occurrence in 2015 (Holttinen et al.,
2021). Increases in the uncertainty and variability of VRE sources are expected to pose
challenges to the secure operation of modern power systems. Accordingly, probability
analyses have been applied to incorporate the uncertainties from VRE sources and
converter-interfaced generation (Wiget et al., 2014; Leeuwen and Moser, 2017). Novel
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approaches are required to handle the corresponding
challenges in power system operation, planning, and control.

The clustering (i.e., partitioning, islanding, and splitting) of
electric power systems is a concept that emerges especially
frequently in control and protection technologies (Park and
Kim, 2006; Sarajpoor et al., 2021). In power systems,
clustering methods are used in various ways and for various
purposes. Chai et al. proposed a double-layer voltage control
strategy to solve the voltage violation problem in a distribution
system. The proposed method was aimed at minimizing the PV
active power curtailment and network power loss of each cluster.
In this case, the process of dividing clusters was based on a
clustering method that operated according to electrical distance,
thus facilitating rapid optimization. In general, following the high
penetration of PV power, numerous approaches have been
proposed based on the corresponding voltage (for example, to
avoid voltage violations). In this context, decentralized or
distributed control based on power network clustering offers
an advantage over centralized control (Cao et al., 2021). The
clustering method can be applied not only to system control but
also to event detection (Ma et al., 2021). Nevertheless, in the case
of a large existing system, it is difficult to search for events owing
to the large quantities of measured data. A graph-theory-based
network partitioning algorithm has been proposed to address this
problem and accelerate the system response.

The clustering algorithms used in several of the papers cited
herein can be classified into different categories (Si et al., 2021).
Among these algorithms, hierarchical spectral clustering is an
important clustering method and is widely used for the
partitioning of electric power systems. Owing to its strong
theoretical basis (von Luxburg, 2007; Lee et al., 2014), this
method has been used in various power system studies. This
spectral clustering technique can be applied using the electrical
parameters (e.g., the topology, admittance, and power flow) of a

power system alongside hierarchical clustering, where the
preferred number of clusters is considered the input.
Consequently, hierarchical clustering can be obtained for the
connection strength determined by the chosen electrical
weighting (Sánchez-García et al., 2014). This method has been
studied from various perspectives, such as to improve the
calculation efficiency and partition quality through orthogonal
conversion (Tyuryukanov et al., 2018), to island power systems
according to the minimum active flow disruptions (Amini et al.,
2020), and to prevent cascading failures through tree partitioning
(Bialek and Vahidinasab, 2022). As described above, numerous
studies have focused on clustering; these studies and their
findings are summarized and compared in Table 1.

However, methods for clustering in power transmission
systems that incorporate variable power sources (e.g.,
renewable generation) have not been fully discussed. This is
because when applying power flow-based clustering, the results
can differ in response to variations in power generation.
Clustering according to topology or admittance can be
considered; however, this leads to further issues that cannot be
addressed (e.g., those concerning a branch list with an overload
risk, maximum overload rates, and overload probabilities).
Accordingly, a probabilistic flow analysis method has been
proposed to address these issues (Zhu et al., 2020; Wang et al.,
2021; Lin et al., 2022). It is necessary to discuss clustering based
on a consideration of a probabilistic interpretation of renewable
power generation sources (e.g., PV sources). Therefore, in this
paper, we propose a probabilistic clustering methodology for
power systems operating with a high penetration of VRE sources.

The main contributions of this paper are as follows:

• A probabilistic spectral clustering methodology based on
the Monte Carlo method: This method can be applied to
power systems by considering the characteristics of VRE

TABLE 1 | Comparison of clustering references.

Paper Advantages Disadvantages

Sarajpoor et al. (2021) Proposes a time aggregation framework for choosing representative
periods for studies that include both wind and load data

Inapplicable to clustering content for network segmentation

Chai et al. (2018) 1) Novel index based on electrical distance and voltage capability Local voltage regulations are required in applications
2) Network partition based on Tabu search

Cao et al. (2021) Undertakes network partitioning considering the voltage sensitivity (based
on electrical distance) to achieve decentralized control

Cannot guarantee application in transmission system because of its
application in the distribution system

Ma et al. (2021) Proposes graph-theory-based network partitioning algorithm to realize
decentralized detection with a faster response

Numerous grouping steps for network partitioning

Si et al. (2021) Summarizes the concepts and general process in electric load clustering
for smart grids

Does not cover specific application cases

von Luxburg, (2007) Presents the most common spectral clustering algorithms and derives
them from scratch via several different approaches

Does not cover the application of the power system

Sánchez-García et al.
(2014)

Provides a thorough theoretical justification of the use of spectral clustering
in power systems, including the results of our methodology for several test
systems

Clustering process considering the variability of VRE sources is
neglected

Tyuryukanov et al. (2018) Proposes an approach based on the orthogonal transformation of spectral
clustering to closely fit the axes of the canonical coordinate system

Clustering process considering the variability of VRE sources is
neglected

Amini et al. (2020) Improves hierarchical clustering such that the generator coherency
constraint can be included in the clustering process

Clustering process considering the variability of VRE sources is
neglected

Bialek and Vahidinasab,
(2022)

Offers a graph-theoretic justification for tree-partitioning based on spectral
clustering

Does not include the system dynamics simulation when tree-
partitioning
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sources whilst applying the hierarchical spectral clustering
method in the existing power system network.

• The classification and reprocessing of neutral buses:
Neutral buses are generated as a result of the proposed
probabilistic clustering method and the change in power
flow. By reprocessing such buses using neutrality and
probabilistic evaluation index, optimal clustering results
can be derived.

• The definition of new evaluation indices for probabilistic
clustering: The probabilistic expansion index is discussed
anew, allowing the expansion to be used as a clustering
evaluation index for application under probabilistic
conditions. As a result, a more appropriate clustering can
be derived.

The remainder of this paper is organized as follows: In Section
2, the essential preliminaries are introduced, and the spectral
clustering method and related contents are summarized. Section
3 describes the proposed probabilistic spectral clustering method,
PV modeling, and neutral bus classification. In Section 4, the
results of the method applied to an IEEE 118-bus test system are
verified. Finally, the discussion and conclusion are presented in
Section 5 and Section 6.

2 HIERARCHICAL SPECTRAL
CLUSTERING OF POWER SYSTEM

A power system can be partitioned via hierarchical spectral
clustering, as shown in Figure 1A; the proposed probabilistic

spectral clustering is shown in Figure 1B. The spectral clustering
algorithm consists of four steps, as illustrated in Figure 1.

2.1 Graph Representation of Network
2.1.1 Terminology
For graph-theory-based network partitioning, power systems
with N buses are represented as a graph G = (V, E) with a
vertex set V and edge set E. The buses and transmission lines (or
transformers) in power grids can be denoted as vertices (nodes)
and edges (links), as follows:

vi ∈ V, i � 1, 2, . . . , N , (1)
eij ∈ E ⊂ V × V, i, j � 1, 2, . . . , N. (2)

This graph is only considered a simple graph (i.e., no loops or
multiple edges are allowed). Multiple edges are replaced by
equivalent single edges. All graphs are undirected.

2.1.2 Edge Weights Reflecting Power System
The topological structure of the graph does not include the
electrical information of the power system. Therefore, the edge
weights should be used. Edge weight is a functionw: E → R such
that the weight is calculated as follows:

1) w(eij) � w(eji) for all eij,
2) w(eij) � 0 if eij ∉ E,
3) w(eii) � ∑N

j�1,j ≠ iw(eij).

In this study, we adopt the notation that w(eij) � wij if i ≠ j,
and di � w(eii) for the weighted vertex degree. In a purely

FIGURE 1 | Clustering process. (A) Hierarchical spectral clustering method. (B) Probabilistic spectral clustering and classification of neutral buses.
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topological structure, all edges have unit weights. To represent
power grids, we can use the values of the power flows as edge
weights. When Pij denotes an active power flow from buses i to j,
the corresponding edge weight is defined as follows:

wij �
∣∣∣∣Pij

∣∣∣∣+∣∣∣∣Pji

∣∣∣∣
2

. (3)

The power-flow-based weight depends on the operating point
and denotes the importance of a branch. Thus, a branch with a
small flow is more likely to be removed. In contrast, a branch with
a large flow exhibits a strong connection between each vertex and
is more likely to be grouped together with other elements.

2.1.3 Graph Laplacian Matrix
Laplacian matrices are used in the spectral clustering method for
efficient graph partitioning. The method uses the eigenvector and
eigenvalues of two types of Laplacian matrices, which are related
to the undirected weighted simple graph G = (V, E, w).

The Laplacian matrix L of G is an N × N matrix, where N is
the number of vertices.

[L]ij �
⎧⎪⎨⎪⎩

di,
−wij

0,
,

if i � j
if i ≠ j and eij ∈ E
otherwise.

(4)

The normalized Laplacian matrix is calculated using a
diagonal matrix D with nonzero elements di.

Lnor � D−1/2LD1/2, (5)

[Ln]ij � [Ln]ij �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1,
−wij��
di

√ ��
dj

√
0,

,
if i � j
if i ≠ j and eij ∈ E
otherwise.

(6)

The normalized Laplacian matrix is scale-independent and
more suitable for clustering.

The eigenvalues of the Laplacian matrix are non-negative real
numbers, and the number of zero eigenvalues is equal to the
number of connected components in the graph. For the
normalized Laplacian matrix of a connected graph with N
vertices, the eigenvalues can be written as follows (von
Luxburg et al., 2008):

0 � λ1 ≤ λ2 ≤ . . . ≤ λk ≤ . . . ≤ λN ≤ 2, (7)
λ2 > 0. (8)

By taking the k smallest eigenvalues together with their
respective eigenvectors (]1, ]2, . . . , ]k, . . . , ]N) of the
normalized Laplacian matrix, we can partition the power
system using a spectral clustering method. This method is
described in the next section.

2.2 Spectral Clustering
Clustering refers to the classification of the vertices in a graph into
several groups (clusters) such that vertices in the same cluster are
highly interconnected but are weakly connected to vertices in
other clusters. Among the clustering methods, spectral
clustering uses normalized Laplacian eigenvalues and
eigenvectors. The concept applies the first k eigenvectors
corresponding to the smallest k eigenvalues (called spectral
k-embedding) and identifies the geometric coordinates that
match the N vertices. These coordinates form the N rows of the
N × k matrix, consisting of k eigenvectors. The resulting
points are clustered using a spectral clustering algorithm, as
discussed below.

2.2.1 Laplacian Matrix Calculation
The Laplacian and normalized Laplacianmatrix are calculated for
graph G using Eqs (4)–(6), as described in the previous section.
At this time, the edge weight is calculated as a power flow using
Eq. (3). The latter of the two calculated matrices is used in this
study. The eigenvectors of this matrix provide the coordinates
representing each bus in the space Rk. The constant k can be
determined using the spectral embedding process described in the
next section.

2.2.2 Spectral Embedding
Spectral embedding is an important process in spectral clustering.
This process employs the first k eigenvectors of the Laplacian
matrix, that is, it reduces the dimensions of the matrix from the
N × N Laplacian graph to the N × k (k≪N) matrix X, which
consists of the chosen eigenvectors. In other words, the
dimensions to be analyzed are reduced from RN to Rk. This
makes it possible to increase the quality of the resulting clusters
whilst reducing the computation time.

The criterion for determining the embedding space k is based
on the eigengaps (i.e., the differences between two sequential
eigenvalues). However, in general, we can obtain a better k
-partition with smaller eigenvalues (Sánchez-García et al.,
2014). Hence, we use a relative eigengap, as follows:

γk �
λk+1 − λk

λk
(k≥ 2). (9)

When the value of the eigengap is large, we obtain a better
network partition with at least k clusters. Therefore, in the
following simulation, the value of k that maximizes the
eigengap value is set as the embedding space.

2.2.3 Coordinate Normalization
After spectral embedding, the coordinates of the N vertices are
represented in space Rk. However, the magnitudes of coordinates
differ; hence, the results from the clustering may be distorted.

TABLE 2 | Characteristics of the photovoltaic (PV) module.

PV module characteristic Value

Current at maximum power point, IMPP (A) 7.76
Voltage at maximum power point, VMPP (V) 28.36
Short circuit current, ISC (A) 8.38
Open circuit voltage, Voc (V) 36.96
Current temperature coefficients, Ki (A/°C) 0.00545
Voltage temperature coefficients, Kv (V/°C) 0.1278
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Therefore, spectral clustering is performed once each coordinate
value has been normalized to norm 1. This process involves
projecting each coordinate into a hypersphere, i.e., a (k -1)-sphere
(depending on the embedding space k). The value of each
coordinate can be normalized as follows:

ui � xi

‖xi‖ (1≤ i≤N). (10)

2.2.4 Hierarchical Clustering
Through the clustering process described above, we express each
bus as a coordinate in space Rk, and we perform clustering by
classifying the coordinates. Several methods are available for
grouping each bus, including k-means, k-medoid, and
hierarchical clustering (Sarajpoor et al., 2021). The k-means
and k-medoid methods are frequently used for grouping, but
they have several disadvantages. First, the clusters must be
determined before clustering. Moreover, the connections
between buses in the graph are neglected. Thus, the
hierarchical clustering method is applied in this study.

Hierarchical clustering offers several advantages over other
clustering methods. It identifies the hierarchy of clusters,
which we represent as dendrograms. A dendrogram is a tree
diagram that visualizes the hierarchical spectral structure of a
power system. This method employs a bottom-up process
applied for power system clustering. In N buses, the two
most similar buses are merged into a cluster. Here,
similarity refers to the distance between buses or clusters.
This distance indicates the Euclidian distance between buses
i and j.

similarityij �





ui − uj






 (ui, uj ∈ Rk). (11)
After the buses are chosen, a new graph with N-1 buses is

formed. In the new graph, the two closest buses are merged into a
new cluster again, and this process is repeated until the desired

number of clusters is obtained. This procedure helps grasp the
hierarchical structure immediately, and the number of clusters
can be adjusted without additional calculations.

2.3 Clustering Evaluation
Through the hierarchical spectral clustering described thus far,
the desired number of clusters can be obtained from graph G. The
purpose of clustering is to identify a cluster in which the buses in
the cluster are strongly connected to each other and weakly
connected to buses in other clusters. To evaluate the quality of
a cluster, two quantities are defined to evaluate the connectivity
described above. First, boundary (z) is defined as the sum of the
edge weights of buses within a specific cluster C and those of the
buses within other clusters. It can be used to evaluate the
connectivity between different clusters.

z(C) � ∑
i∈C, j ∉ C

wij. (12)

Second, the volume (vol) of cluster C is defined as the sum of
the degrees of cluster C. It can be used to evaluate the connectivity
of the buses within a specific cluster:

vol(C) � ∑
i∈C

di. (13)
For the abovementioned purposes, the quality evaluation

metric for a cluster can be defined as the value obtained by
dividing the boundary by the volume. It is denoted as the
expansion (ϕ) (Sarajpoor et al., 2021).

ϕ(C) � z(C)
vol(C). (14)

The smaller the value of the expansion for the network
partition, the better the clustering (i.e., strong connections
between buses included in a specific cluster, and weak
connections between buses outside thereof). When partitioning
the power system into k clusters, we use the maximum expansion
value to evaluate the quality of the clustering method (Sánchez-
García et al., 2014):

ϕmax(C1, . . . , Ck) � max
1≤i≤k

ϕ(Ci). (15)

It is possible to evaluate whether clustering has been well
executed by using a normalized cut (i.e., the arithmetic mean of all
clusters’ expansions) (von Luxburg, 2007). This method is widely
used in the evaluation of graph clustering because the average
quality of all clusters can be evaluated.

ϕmean(C1, . . . , Ck) � 1
k
∑k

i�1ϕ(Ci). (16)

In this study, in view of the expansion of renewable energy
sources in power systems, a metaheuristic approach is applied for
probabilistic interpretation. To this end, numerous clustering
results must be analyzed for various cases. For this purpose, the
above two objective function equations are used to efficiently
optimize and evaluate the results. In contrast, several more
complex objective functions were required for the method
proposed by Cotilla-Sanchez et al. (2013).

FIGURE 2 | Graphical example of neutrality index (cluster number = 3).
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3 PROBABILISTIC SPECTRAL
CLUSTERING METHODOLOGY

In this section, we propose a probabilistic spectral clustering
method applicable to power systems containing variable sources
(e.g., renewable energy sources). In addition, we explain the
process of optimizing the neutral buses that may arise in the
process of probabilistic analysis by using an evaluation index
(i.e., the expansion described in the previous section). To this end,
a model is required for the PV output power and its
corresponding variability.

3.1 Modeling of Variable Renewable Energy
Source: Photovoltaic (PV)
In this study, assuming a situation inwhich PV sources are expanded
in a power system, we repeatedly perform the clustering process for a
power flowwith an intermittent PV output. The output power of the
PV is affected by the randomphenomenon of solar irradiance, which
changes the power flows of the branches in the power system.
Generally, it is more efficient to model irradiance using a beta
probability density function than other probability density functions
(Teng et al., 2013). Accordingly, the solar irradiance can be expressed
as follows:

fbeta(s) �
⎧⎪⎪⎨⎪⎪⎩

Γ(α + β)
Γ(α)Γ(β)sα−1(1 − s)β−1 (0≤ s≤ 1, α, β≥ 0)

0 otherwise

,

(17)

β � (1 − μ)(μ(1 − μ)
σ2

− 1), (18)

α � μβ

1 − μ
. (19)

In the above, fbeta(s) denotes the beta distribution function
for solar irradiance, where s is a random variable
characterizing the solar irradiance (kW/m2); Γ is a gamma
function comprising the beta distribution function; and α and
β are the parameters of the beta distribution function, where
both must be positive. μ and σ denote the mean and standard
deviation of s, respectively, and these values are used to
calculate the parameters. The values of the mean and
standard deviation of s for a specified time period are
0.657 kW/m2 and 0.284 kW/m2, respectively (Hung et al.,
2014).

The output power of the PV module depends on the solar
irradiance, ambient temperature, and parameters of the PV
module. When the PV module operates at the maximum
power point and at a solar irradiance s, the output power can
be calculated as a function of s as follows (Sehsalar et al., 2019):

PPV(s) � N × FF × V(s) × I(s), (20)
FF � VMPPIMPP

VocISC
, (21)

V(s) � Voc −KV × TC, (22)
TC � Ta + s ×

Tn − 20 (℃)
0.8

, (23)
I(s) � s × (ISC + Ki × (TC − 25 (℃)). (24)

FIGURE 3 | Proposed methodology. (A) Probabilistic spectral clustering algorithm. (B) Neutral bus classification.
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Here, N denotes the number of PV modules, and FF is the
fill factor obtained from Eq. (22); VMPP and IMPP are the
voltage and current at the maximum power point in V and A,
respectively; Voc and ISC are the open-circuit voltage and
short-circuit current, respectively; TC, Ta, and Tn are the
cell, ambient, and nominal operating temperatures of the
PV cell, respectively (in °C); and KV and Ki are the voltage
and current temperature coefficients, respectively (in V/°C and
A/°C, respectively). The output power of the PV system
installed on the buses in the power system can be
determined using Eq. (20). The parameters of the PV
module in Table 2 also reflect the values reported in the
study by Hung et al. (2014).

3.2 Probabilistic Optimal Power Flow
Algorithm
The PV output varies depending on the changes in the solar
irradiance over time; accordingly, the value of the power flow in
the power system also varies. Owing to this randomness, the
results from the power-flow-based spectral clustering vary
continuously. The power generation of the existing turn-on
generators should be readjusted to match the PV output. The
total power generation of conventional generators is adjusted via

the total load, PV generation, and power loss parameters, as
follows:

∑ng

i�1 PGi � ∑nl

j�1 PLj −∑nPV

k�1 PPVk + Ploss. (25)

In the above, PGi denotes the active power generation at
the generator bus i; PLj is the load at the bus j; PPVk denotes the
PV generation at bus k; ng, nl, and nPV denote the total number of
generator buses, load buses, and buses connected to PV, respectively;
and Ploss is the power loss in the network.

In this study, the problem regarding the re-dispatching of
generators is solved using an optimal power flow (OPF)
calculation, and the objective function is the total fuel cost, as
represented by the generator output active power
(Chayakulkheeree, 2014; Shaheen et al., 2019).

min
PGi

FC � ∑ng

i�1 cost(PGi). (26)

In the above, FC denotes the total cost of the conventional
generator connected to bus i, ng is the total number of generator
buses and PGi denotes the active power generated at generator
bus i.

The constraints of the OPF problem are the power-balance
equation and variable limits.

FIGURE 4 | IEEE 118-bus system with photovoltaic (PV) integration.
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Pinj,k −∑N

l�1VkVl[Gkl cos(δl − δk) + Bkl sin(δl − δk)] � 0, (27)
Qinj,k −∑N

l�1VkVl[Gkl sin(δl − δk) − Bkl cos(δl − δk)] � 0. (28)
Here, Pinj,k is the total active power injected into bus k, and

Qinj,k is the total reactive power injected into bus k.Gkl and Bkl are
the conductance and susceptance of the admittance Ykl (an
element of the admittance matrix), respectively; δl and δk are
the voltage angles at buses k and l, respectively; and N is the total
number of buses. Thus,

PGi,min ≤PGi ≤PGi,max, i � 1, 2, . . . , ng, (29)
QGi,min ≤QGi ≤QGi,max, i � 1, 2, . . . , ng, (30)
Vi,min ≤Vi ≤Vi,max, i � 1, 2, . . . , n, (31)

VkVl[Gkl cos(δl − δk) + Bkl sin(δl − δk)]≤flowlim,kl ,
k, l � 1, 2, . . . , n. (32)

In the above equation, flowlim,kl is the branch flow limit of the
line that connects buses k and l.

The clustering considering the random variable should be
performed by aggregating the repeated results obtained from the
power-flow-based clustering affected by the random PV output.
To this end, we propose a probabilistic spectral clustering
algorithm. This algorithm repeats the spectral clustering
process described in the previous chapter (Figure 1) by

reflecting the power flow determined from the power flow
calculations considering the variable PV output. This
algorithm is summarized as follows.

1) Employ test power system data for the probabilistic spectral
clustering algorithm.

2) Determine the random PV output calculated through Eq.
(20). The solar irradiance follows the beta distribution
function; hence, the value of the PV output is randomly
determined, changing the value of the power flow.

3) Calculate the power flow in the power system whilst considering
the PV output as a negative load. The power flow may vary
depending on the random PV output at each moment.

4) Apply each branch’s flow to the corresponding edge
weight. In this study, the weight is based on the active
power flow, and the value of the edge weight depends on
the PV output.

5) Perform the spectral clustering shown in Figure 1. This
process involves calculating the Laplacian matrix, spectral
embedding, and hierarchical clustering.

6) Repeat Steps 2–5 N times (i.e., the maximum iteration
number). The PV output varies at each iteration; hence,
the clustering results from the test power system also vary.

7) Count the number of clusters in which each bus is included
after the N iterations.

8) Assign buses to each cluster. In this process, non-neutral
buses can be easily allocated, though some neutral buses are
not. Hence, it is necessary to classify the neutral buses. This
is described in the next section.

3.3 Neutral Buses and Classification
3.3.1 Definition of Neutral Buses
Under a probabilistic condition, the clustering result varies
according to the variable generation source. This is because
the change in PV generation affects the power flow in the
power system. As a result, certain buses are grouped into
clusters; however, it remains difficult to identify which buses
are classified into which clusters. These buses can be referred to as
neutral buses. The neutral buses can also be treated as having an
almost equal probability of being assigned to each cluster. To
define neutrality in this study, the distance between two points is
used [i.e., from the most neutral case and from the counting
number (in which each bus is grouped in each cluster)
represented in the coordinates]. It is possible to identify which
cluster has a high grouping probability for each bus by using the
angle between the cases grouped into only one cluster and the
coordinates of each case. Using these two elements, the neutrality
index (NI) at each bus can be defined as follows:

D � ⎛⎝∑k

i�1
∣∣∣∣∣∣∣∣∣ni − pi

∣∣∣∣2⎞⎠
1/2

, (33)

NI � (Dmax −D

Dmax
)

i

. (34)

In the above, D denotes the distance between the
coordinates P (consisting of the counting number in which

FIGURE 5 | Simulation result at (A) 20%, (B) 50%, (C) 80%
penetration level.
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each bus is grouped into each cluster) and the coordinates for
the most neutral coordinate N. The distance between the two
points N and P is given by the Euclidean distance. If the
number of clusters is k for N(n1, n2, . . . , nk) and
P(p1, p2, . . . , pk), then the distance in k dimensions is
defined as shown above.

i indicates the cluster to which each bus belongs with a
higher probability. As shown in Figure 2, i can be obtained
from the angles between the vector NP (formed by the most
neutral coordinate N and the coordinates for the bus to be
obtained) and the vectors NCi [formed by N and the least
neutral coordinates Ci (i = 1, 2, . . ., k)]. For example, if the
cluster number is three, the coordinate of the most neutral case
is N (3,333.33, 3,333.33, 3,333.33) when the number of
iterations is 1 × 104. Moreover, Dmax denotes the distance
between the least neutral case [C1 (10,000, 0, 0), C2 (0, 10,000,
0), or C3 (0, 0, 10,000)] and the most neutral coordinates. The
case of P1 case has a smaller distance D1 than that of P2.
Therefore, it can be said that the NI value of P1 is larger and
more neutral. Indicator i can be obtained from the case with
the smallest value between the angles θ formed by the two
vectors NPm (m = 1, 2) and NCn (n = 1, 2, 3). For the coordinate
P1, an angle θ11 formed with NC1 is less than an angle θ12

formed with NC2; thus, the value of i is 1. For this reason, it
may be seen that the value of i for P2 is 2.

For neutral buses with high NI values, a reclassification process
and a verification process are required. These processes refer to the
evaluation of a neutral bus using an index appropriate for the
probabilistic environment, as described in the next section.

3.3.2 Classification and Reprocessing Based on
Probabilistic Evaluation Index
To evaluate clustering results (as described in the previous section),
we calculate the expansion [Eq. (14)] of each cluster and use their
maximum (Eq. (15)) or average (Eq. (16)) expansion values.
However, this method can only evaluate the results when
clustering the power system in each iteration: it is impossible to
evaluate the overall results of the probabilistic clustering (i.e., those
reflecting the changing power flow with respect to the variable PV
power output). Therefore, a novel method is needed to evaluate the
clustering results whilst reflecting random renewable generation
during iteration. This method can also be used to determine the
clusters into which the neutral buses should be classified.

To evaluate the clustering results from N iterations, the
representative index (based on expansion) must be determined
in the evaluation. We can consider the maximum and average
values of expansion as the index, as described in the previous
section (Eq. 15 and Eq. 16). There are N iterations after setting
the representative value at each iteration; hence, the probabilistic
clustering quality should be evaluated using N data elements. In
this study, we use the maximum value amongst the N
representatives as a probabilistic clustering evaluation index to
conservatively judge the clustering quality when the PV output
drastically changes the power current in the system. Therefore,
the indices for evaluating the probabilistic clustering results can
be defined using the following two equations (with reference to
Eq. 15 and Eq. 16):

ρmax � max
1≤j≤N

ϕmax.j, (35)

ρmean � max
1≤j≤N

ϕmean.j. (36)

Here, ρmax and ρmean are the probabilistic clustering evaluation
indices based on the expansion maximum (ϕmax) and mean
(ϕmean), respectively. Because the two indices take the
maximum value of the expansion in the overall iteration, we
can see that even when the PV output has the worst effect on
power system clustering, the indices indicate whether the cluster
is well established and determine the average cluster quality of all
clusters. However, in this study, we did not use the index ρmax to
classify neutral buses; instead, we used ρmean. The evaluation
index was defined using the mean expansion value because if the
maximum expansion value is used, the expansion value of the
worst cluster will take this same maximum value, resulting in a
probabilistic index overlap.

The aforementioned index can be used to determine which
cluster is the most appropriate for a neutral bus to be grouped
into. To this end, the neutral buses are first relocated to each
cluster, and the expansion values (which vary depending on the
PV output) are aggregated. By calculating the probabilistic

FIGURE 6 | Hierarchical structure at 20% penetration level with respect
to PV output. (A)Bus 24 belongs to Cluster 1. (B)Bus 24 belongs to Cluster 2.
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clustering evaluation index when placing the neutral buses in
each cluster, we can determine in which cluster the value of the
index is minimized when placing the neutral buses. At this time,
the neutral buses can be classified into their corresponding

clusters. That is, the neutral buses can be further classified
using the mean index (ρmean). The flowchart in Figure 3
summarizes this process and the probabilistic spectral
clustering algorithm discussed in the previous section.

FIGURE 7 | Neutrality index results at each penetration level.

FIGURE 8 |Histogram of probabilistic clustering evaluation indices for each cluster at a 20% penetration level. (A–C) ρmax of Clusters 1, 2, and 3, respectively (D–F)
ρmean of Clusters 1, 2, and 3, respectively.
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4 CASE STUDY

As described in this section, the proposed probabilistic spectral
clustering algorithm and neutral bus classification were tested
using an IEEE 118-bus test system (as shown in Figure 4). This
system approximates the American Electric Power system and
contains 19 generators, 35 synchronous condensers, 177 lines,
nine transformers, and 91 loads. The total generator output and
load consumption of the test system were 4,374.5 MW and
4,242.0 MW, respectively. To reflect the random outputs of PV
generation, the PV models described in the previous section were
connected to 20 buses in the power system as shown in Table 3.
By varying the rating of the PV power to 42.42, 106.05, and
169.68 MW, we tested the probabilistic spectral clustering
algorithm for system penetration levels of 20, 50, and 80%,
respectively. A penetration level means the ratio of the sum of
PV ratings to the total load. Depending on the output of the PV
system, the outputs of the generators that were turned on were re-
dispatched for the OPF calculations. All numerical calculations
(e.g., the power flow calculations) were implemented using
MATLAB software (Zimmerman and Murillo-Sanchez, 2020).

We first performed the proposed probabilistic spectral
clustering (described in the previous section) based on the
power flow Laplacian. Owing to the variable generation source
(here, the PV source), the power flow in the test system differed
for each iteration. Consequently, the coordinates of each bus
differed for each iteration, producing different clustering results.
In this simulation, the 118-bus system with PV integration was
divided into three clusters. As shown in Table 4-1, Table 4-2,
and Table 4-3, we observed the number of times each bus was
partitioned into clusters during the 10,000 iterations. Referring
to the tables, Figure 5 shows the graphs for the cluster
counting number and the NI [Eq. (33)] for the 10 most
neutral buses.

Each table summarizes the results from the probabilistic
spectral clustering after 10,000 repetitions, and buses with the
same counting number were grouped and displayed in ascending
order. Therefore, when the count number was divided by 10,000,
the probability of the buses belonging to each cluster could be

calculated. This shows the number of times each bus is grouped
into each cluster in the 118-bus system incorporating a variable
PV power output.

From Table 4-1, it can be seen that certain buses can be
reliably classified into each cluster; however, in the case of Bus 24,
the counting numbers grouped into two clusters are similar;
hence, it can be considered as a neutral bus. Furthermore,
Figure 6 shows snapshots in which Bus 24 is grouped
differently into Clusters 1 and 2 according to the variability of
PV; here, the hierarchical structure of the buses (as analyzed by
spectral clustering) is shown. The similarity of the buses varies
owing to PV variability, which changes the cluster to which Bus
24 is assigned.

Next, the counting numbers in which the buses are clearly
classified in Table 4-1 decreased as shown in Table 4-2 to
Table 4-3 furthermore, when the penetration level of PV
sources increased, reliable clustering became more difficult. In
particular, in the case of a 20% penetration level, Buses 44 and 65
were reliably clustered; however, when the penetration level
increased to 50 and 80%, the buses become neutral and
clustering them presented ambiguity.

The simulation results at each penetration level suggest that
different neutral buses appear in each case. The most neutral
buses for each case were obtained from the maximum NI.
Accordingly, the NIs grouped into the clusters for the buses
described in Figure 5 at each penetration level are summarized in
Figure 7. Among the three clusters, the values of the maximum
cluster probability and NIs for most neutral buses at each
penetration level are listed in Table 5.

As shown in Figure 7, the NIs for neutral buses varied
according to the penetration level. In particular, when the
penetration level increased, the NI value of the most neutral
bus likewise increased. The result of the clustering was not
ensured, owing to the variable power generation (e.g., with PV
sources). In addition, in Table 5, by observing the number of
buses exhibiting the maximum probability for each penetration
level, we see that buses were most neutral at penetration levels of
20 and 80%. At a penetration level of 50%, the probability of the
most neutral bus (Bus 65, which had the largest NI value) was not
the smallest value. This is because the counting number of Bus 65
was grouped into Cluster 1, and the value of NI also increased.

At a penetration level of 20% or 80%, the probability of each
bus being grouped into a specific cluster was less than or
approximately equal to 50%. Furthermore, the higher the
penetration level, the lower the probability. A low clustering

TABLE 3 | List of buses connected to PV model.

Bus numbers

15, 17, 30, 34, 37, 38, 49, 61, 63, 64, 65, 66, 68, 69, 77, 78, 80, 81, 100, 116

TABLE 4-1 | Simulation results at 20% penetration level.

Bus number Cluster 1 Cluster 2 Cluster 3 Bus number Cluster 1 Cluster 2 Cluster 3

1–23 10,000 0 0 83–95 0 0 10,000
24 5,564 4,436 0 96–99 0 2,657 7,343
34–75 0 10,000 0 100–112 0 0 10,000
76–78 0 2,668 7,332 113–115 10,000 0 0
79–80 0 2,657 7,343 116 0 10,000 0
81 0 2,739 7,261 117 10,000 0 0
82 0 2,657 7,343 118 0 10,000 0
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probability does not guarantee that the buses grouped into a
specific cluster represent the optimal clustering results. Therefore,
when neutral buses are assigned to three clusters, it is necessary to
determine which cluster is most appropriate for grouping, by
considering the variable PV power output. To this end, the
expansion-based evaluation process described in Figure 3 is
required. In this example, the classification process was
applied to Buses 24, 65, and 44, and the index ρmean was
calculated. The smaller the value of each index, the smaller the
value of the expansion, indicating a more optimal clustering
result. In Figure 8 (below), histograms of the values ϕmax and

ϕmean (as calculated using the Monte Carlo procedure) are shown.
The maximum values for each index (i.e., the values of ρmax and
ρmean) are also shown in the figure.

Neutral bus classification is the process of obtaining the
expansion value for each cluster when placing neutral buses
into Clusters 1–3 (for each penetration level) and repeating
this process 10,000 times by considering the random output of
the PV power. As a result, when each neutral bus was assigned
to Clusters 1 and 2, the evaluation index value was minimized;
that is, optimal clustering was achieved. Figure 8A and
Figure 8B show the same histogram for the penetration

TABLE 4-2 | Simulation results at 50% penetration level.

Bus number Cluster 1 Cluster 2 Cluster 3 Bus number Cluster 1 Cluster 2 Cluster 3

1–13 10,000 0 0 66–67 0 6,338 3,662
14–18 9,997 3 0 68 0 6,245 3,755
19 9,992 8 0 69 0 4,562 5,438
20–23 9,997 3 0 70 0 4,599 5,401
24 1,117 8,883 0 71 0 4,884 5,116
25–32 9,997 3 0 72 1 5,363 4,636
33 1,665 7,542 793 73 0 4,884 5,116
34 1,665 7,548 787 74–75 0 4,550 5,450
35 1,665 7,533 802 76–77 0 849 9,151
36 1,665 7,548 787 78 0 846 9,154
37–40 1,665 7,533 802 79–80 0 788 9,212
41 1,502 7,618 880 81 0 807 9,193
42 0 6,338 3,662 82 0 848 9,152
43 1,664 7,547 789 83 0 788 9,212
44 0 6,340 3,660 84–94 0 671 9,329
45 0 6,338 3,662 95–99 0 788 9,212
46 0 6,023 3,977 100–112 0 671 9,329
47 0 5,181 4,819 113–115 9,997 3 0
48–63 0 6,338 3,662 116 0 6,245 3,755
64 17 6,328 3,655 117 10,000 0 0
65 461 6,237 3,302 118 0 4,550 5,450

TABLE 4-3 | Simulation results at 80% penetration level.

Bus number Cluster 1 Cluster 2 Cluster 3 Bus number Cluster 1 Cluster 2 Cluster 3

1–23 10,000 0 0 73 2 7,873 2,125
24 2,185 7,815 0 74–75 2 7,683 2,315
25–32 10,000 0 0 76–77 2 2,546 7,452
33–40 9,928 70 2 78 1 2,527 7,472
41 9,818 178 4 79e80 1 2,509 7,490
42 181 7,733 2086 81 1 2,541 7,458
43 9,927 71 2 82 2 2,517 7,481
44 3,213 4,901 1886 83–84 0 2079 7,921
45 181 7,733 2086 85–92 0 2078 7,922
46 89 8,593 1,318 93 0 2,104 7,896
47 5 8,682 1,313 94–99 0 2078 7,922
48–64 181 7,733 2086 100 0 2,508 7,492
65 337 7,594 2069 101 0 2,500 7,500
66–67 181 7,733 2086 102 0 2078 7,922
68 11 7,830 2,159 103–112 0 2,508 7,492
69 2 7,691 2,307 113–115 10,000 0 0
70 2 7,692 2,306 116 11 7,830 2,159
71 2 7,873 2,125 117 10,000 0 0
72 123 7,809 2068 118 2 7,682 2,316
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level of 20% (shown in Figure 7). It can be seen that when ϕmax
used, the distribution of the expansion values is completely
consistent, making it impossible to classify neutral buses using
ρmax. In addition, because the shapes and maximum values of
ρmean in Figures 8D, E, and Figure 8F differ from each other, it
is necessary to check the value of ρmean and classify the
neutral buses.

In the analysis results, the optimal cluster for each neutral bus
was found to be the cluster with the highest probability inTable 5.
The optimal cluster can be obtained using this value because the
value of indicator i matches the cluster with the highest
probability.

5 DISCUSSION

In this simulation, when the penetration level increased, the
probability that most buses were grouped into a specific cluster
also decreased. Thus, as the penetration level of PV power
increased, the clustering results changed more frequently, and
the number of buses that were difficult to classify increased.
The NI value for each bus also increased. Therefore, the most
neutral buses can be found using the NI values, and such buses
should be classified.

The most neutral buses for each penetration level can be
organized as shown in Table 5. As a result, at penetration levels of
20 and 80%, the probability of an optimal cluster is low (~50%),
and the NI is high. This is because differences between the
probabilistic evaluation index values for each cluster in
Table 6 are very small; thus, each clustering result has a
similar effect. For this reason, to obtain the most optimal case
among similar clustering results, it is necessary to group the
clusters with the highest clustering probability among the neutral
buses, as well as to verify the results using the probabilistic
clustering evaluation index.

In the case of a penetration level of 50%, the NI value was high;
however, the maximum probability was also high.When applying
the neutral bus classification process in this case, the differences

in the values of the probability evaluation index between Cluster 2
and other clusters were found to be large. Therefore, classification
should be first performed on the most neutral buses (with the
smallest maximum probability), before proceeding to the next-
most neutral buses. Thus. buses will be grouped into clusters with
the highest probability, similar to the results mentioned above.

6 CONCLUSION

This paper introduces a novel method for performing spectral
clustering in power systems with variable sources (e.g., renewable
energy sources). Because the output of a renewable energy source
is variable, it is necessary to consider variable generation at every
moment when clustering. To this end, we propose a probabilistic
approach based on a widely adopted graph-theory-based spectral
clustering method. The conventional spectral clustering method
is limited in that it can only be used in power systems for which
the power generation and load can be determined. To overcome
this problem and reflect the effects of variable power sources, we
developed the probabilistic spectral clustering method to group
buses into clusters with the highest grouping probability. The
results from the probabilistic clustering can be further optimized
by classifying neutral buses. The proposed method was applied to
an IEEE 118-bus system with PV integration to confirm the
clustering results, which varied depending on the PV
penetration level. In addition, the neutral buses for each
case generated by the probabilistic spectral clustering
method were classified to calculate the probabilistic
evaluation index for each cluster and to verify which cluster
yielded the optimal clustering.

This method can be applied to power system clustering under
conditions of variable renewable energy sources, and it is
expected to be implemented in power system planning and
operation in the future for net-zero establishment. The
probabilistic clustering methodology applied in this study
synthesizes the expansion value, which depends on the
variability of VRE, via the Monte Carlo procedure and

TABLE 6 | Probabilistic clustering evaluation index in each penetration level case. The minimum value for the evaluation index ρmean. Since the cluster with the minimum
ρmean is the optimal cluster, we emphasized this with bold fonts.

Penetration level 20 (%) 50 (%) 80%

Evaluation index ρmax ρmean ρmax ρmean ρmax ρmean

Cluster 1 3.3466 2.4154% 10.8802 7.1623% 7.6356% 5.1725%
Cluster 2 3.3466 2.4977% 4.6483 3.2697% 7.4233% 5.1259%
Cluster 3 3.8689 2.6325% 10.8802 7.2417% 7.6356% 5.2654%

TABLE 5 | Most neutral buses in each penetration level case.

Penetration level (%) Neutral buses Probability Neutrality index

20 24 55.64% (cluster 1) 0.49051
50 65 62.37% (cluster 2) 0.49982
80 44 49.01% (cluster 2) 0.73832
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identifies the optimal clustering point. This probabilistic analysis
method can help determine an optimal operation plan in
environments where the penetration of renewable energy is
high. In particular, from the perspective of system planning
and operation, improvements in system reliability and stability
can be expected in environments with high renewable energy
penetration. This can be achieved through the installation and
control of high-voltage direct current across the interfaces
between clusters determined using the probabilistic clustering
methodology.
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NOMENCLATURE

Abbreviations
PV Photovoltaic

VRE Variable renewable energy

Symbols
z(C) Boundary of cluster C

γ Eigengap

λ Eigenvalue

ϕ(C) Expansion of cluster C

ϕmax Maximum expansion of clusters

e Mean expansion of clusters

μ Mean of random variable

α, β Parameter of fbeta

ρmax Probabilistic clustering evaluation index based on expansion max

ρmean Probabilistic clustering evaluation index based on expansion mean

σ Standard deviation of random variable

δl Voltage angle at bus k

vol(C) Volume of cluster C

Bkl Susceptance of the admittance Ykl

E Edge set

e Normalized coordinates of bus i

fbeta Beta probability density function

FC Total fuel cost

FF Fill factor

G Graph

Gkl Conductance of the admittance Ykl

ISC Short-circuit current

Kc Voltage temperature coefficients

Ki Current temperature coefficients

L Laplacian matrix

Ln Normalized Laplacian matrix

ng Total number of generator buses

NI Neutrality index

nl Total number of load buses

nPV Total number of PV buses

PGe Active power generation at generation bus i

Pinj,k Active power injected into bus k

PLj Active power consumption at load bus j

Ploss Power loss in the network

PPVk PV generation at PV bus k

Qinj,k Reactive power injected into bus k

s Random variable of solar irradiance

Ta Ambient temperature of PV cell

Tc Cell temperature of PV cell

Tn Nominal operating temperature of PV cell

v Eigenvector

V Vertex set

Voc Open-circuit voltage

xi Coordinates of bus i

Ykl Admittance of branch from buses from i to j
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