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In order to improve the accuracy of the short-term prediction of building energy
consumption, this study proposes a short-term prediction model of building energy
consumption based on the CEEMDAN-BiLSTM method. In this study, the energy
consumption data of an office building in 2019 are selected as a sample, and
CEEMDAN is used to decompose the energy consumption data into multiple
components, and the strong correlation components are selected and sent to the
BiLSTM network. The final energy consumption prediction results are obtained by
superimposing the prediction results of each sub-component, and five models are built
simultaneously to compare the errors with the proposed models. The results showed that
the weather type has a great influence on the accuracy of energy consumption prediction.
When the weather fluctuates greatly, the prediction error of energy consumption by a
single prediction model is large. When the weather suddenly changes, the EMD-LSTM
model has a big error in the prediction of air conditioning energy consumption. After
CEEMDAN decomposition of energy consumption data, more detailed components can
be extracted, which makes the BiLSTM prediction algorithm more accurate. Compared
with the CEEMDAN-LSTM model, the CEEMDAN-BiLSTM model reduces eRMSE, eMAPE,
and eTIC by 4.1%, 9.441, and 1.3%, respectively. The proposed model can effectively
improve the accuracy of short-term prediction of building energy consumption.

Keywords: short-term forecast, sub-item energy consumption of buildings, modal decomposition, weather
classification, energy consumption

INTRODUCTION

In the past few decades, with the acceleration of urbanization, the demand for building energy has
greatly increased. The question as to how to reduce building energy consumption has attracted
researchers’ attention (Ding et al., 2021; Somu et al., 2021). However, there are many factors affecting
energy consumption, and building energy prediction is still a complicated task (Yakut and Zkan,
2020; Han et al., 2021; Oh, 2021). An important means of building energy conservation and emission
reduction is fine management of building energy consumption, and the basis of this work is an
accurate prediction of building energy consumption so as to support the optimal management of
building operation and achieve the goal of energy conservation and emission reduction.

At present, there are two main prediction methods of building energy consumption, including the
physical modeling method and the artificial intelligence method. Physical-based modeling methods
can be divided into simplified engineering algorithms and comprehensive methods. Simplified
engineering algorithms mainly include the full-load operation method and degree-day method.
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Comprehensive methods use thermodynamic equations to
accurately calculate building energy consumption (Khattari
et al., 2020; Runge and Zmeureanu, 2019). However, physical
methods usually require a large number of detailed inputs of
buildings and their environment, such as the heating system,
ventilation system, air conditioning system, insulation thickness,
thermal characteristics, internal occupancy load, and solar energy
information (Pinanggih et al., 2021).

In the field of building energy prediction, an artificial neural
network, as an effective method to predict the relationship between
data input and output, has entered the researchers’ field of vision.
The artificial neural network is a novel computing method based
on the human neural activity, which is suitable for dealing with
complex linear and nonlinear mapping problems. Because of its
powerful nonlinear mapping capability, the neural network has
gained more and more recognition in the engineering field (Shapi
et al., 2020). The literature (Runge and Zmeureanu, 2019)
summarizes the application of artificial neural networks in the
hourly prediction of building energy consumption, and the results
showed that the neural networkmodel has achieved good results in
single-step and multi-step prediction. The literature (Ma et al.,
2018) based on historical meteorological data shows that the
support vector machine model is used to predict the monthly
electricity consumption of buildings, and it is stated that the
accuracy of the support vector machine is better than that of
the neural network. The literature (Li et al., 2009) based on using
the SVM algorithm to predict the hourly load of a single office
building shows that the root mean square error is only 1.17%, and
the prediction effect is good. The literature report by Wang et al.
(2018) optimizes the parameters of the short-term model of
building energy consumption by the cross-validation method.
The literature results (Bagnasco et al., 2015) based on using
multilayer perceptron to predict the electricity consumption of
hospital facilities according to meteorological data and time
changes showed that the artificial neural network performs
better in winter. The literature by Neto and Fiorelli (2008)
compares the neural network with the EnergyPlus energy
simulation tool, and the results showed that the neural network
has higher prediction accuracy.

Many achievements have been made in the aforementioned
research, but each method has some limitations. Physical
prediction methods need to rely on detailed building and
historical meteorological data information, but it is difficult to
obtain detailed operational data in building structures to
determine relevant parameters, and the calculation process is
prone to deviation, which leads to unsatisfactory prediction
results. Although the artificial intelligence method does not
need to know the specific principle of energy consumption
deeply, the traditional neural network algorithm has a slow
convergence speed, serious local over-fitting, and limited scope
of application. In order to better improve the accuracy of building
sub-item energy consumption prediction, this study classifies the
weather types, uses the CEEMDAN method to carry out the
modal decomposition of energy consumption historical data, and
sends the strong correlation components to the BiLSTM neural
network. In order to verify the prediction accuracy of the
CEEMDAN-BiLSTM model, BP, SVR, LSTM, EMD-LSTM,

and CEEMDAN-LSTM models were established
simultaneously and compared with the proposed model. The
results clearly showed the accuracy of the proposed prediction
model. The prediction method of building energy consumption
based on deep learning proposed in this study can provide a
reference for related research and application of building energy
consumption prediction.

PRINCIPLE OF THE CEEMDAN AND
BILSTM ALGORITHM

Principle of the CEEMDAN Algorithm
Empirical mode decomposition (EMD) is to decompose data into
multiple IMF components according to the fluctuation scale of
data series, but modal aliasing is easy to occur when decomposing
nonlinear and non-stationary sequences. The ensemble empirical
mode decomposition (EEMD) adds white noise with different
amplitudes to the original sequence to suppress the aliasing
phenomenon to a certain extent, but the calculation efficiency
of EEMD is low. Therefore, this study adopts the self-adaptive
noise complete empirical mode decomposition method, which
adds white noise with different amplitudes to each component to
obtain the optimal IMF component (Ali et al., 2021). The
CEEMDAN method has lower iteration times than the EEMD
method and also solves the problem of modal aliasing. The steps
of CEEMDAN are as follows.

1) Gaussian white noise with different amplitudes is added to the
original signal x(n),ωi(n)(i � 1, 2/, I), and the ith signal can
be expressed as follows:

xi(n) � x(n) + εiω
i(n), (1)

where xi(n) is the ith signal; x(n) is the original signal, εi is the
parameter to control white noise, and Gaussian white noise with
different amplitudes is added to the signal through the value of εi.

2) EMD decomposition is carried out on the ith signal xi(n) to
obtain the first-order modal component IMF1:

IMF1 � 1
I
∑1
i�1
IMFi1. (2)

3) The first-order residual r1(n) is calculated as follows:

r1(n) � x(n) − IMF1. (3)

4) The first-order modal component IMF2 is calculated as
follows:

IMF2 � 1
I
∑1
i�1
E1{r1(n) + ε1E1[ωi(n)]}. (4)

Here, Ei represents the first-order IMF.

5) The first IMF can be obtained by calculating the k residual,
and the k + 1 residual is k.
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rk(n) � rk − 1(n) − IMFn. (5)
The component k + 1 is as follows:

IMFn � 1
I
∑1
i�1
E1{rk(n) + εkEk[ωi(n)]}. (6)

6) When the surplus is no longer decomposed, the highest order
of IMF is obtained. At this point, the original signal is

x(n) � R(n) +∑k
k�1

IMFk. (7)

BiLSTM Layer Model Structure
Recurrent neural networks (RNNs) can be modeled according to
the inherent characteristics of time series and can store
information before and after collecting data, but the RNN
model has the problem of gradient explosion or gradient
disappearance. LSTM solves the gradient problem of the RNN
by adding a gate controller and memory unit in the hidden layer.

The first step of LSTM is to calculate the forgotten
information. The energy consumption data of the current
module and the output A of the energy consumption data of
the previous module are taken as inputs, and the state of the pre-

FIGURE 1 | CEEMDAN-BiLSTM model framework structure diagram.
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neuron cells is mapped to the ht−1 range from 0 to 1. The
calculation formula is as follows:

ft � σ(Wfp[ht−1, xt] + bf). (8)
The second step of the LSTMmodel is to calculate the memory

information. The input is the current building energy
consumption data ht−1, and the activation function sigmoid
determines it, creates a new candidate value C̃t, adds it to
neurons, and updates the neuron state to get the final memory
state Ct. The formulae are as follows:

it � σ(Wip[ht−1, xt] + bi), (9)
~Ct � tanh(Wcp[ht−1, xt] + bc), (10)

Ct � ftpCt−1 + itp~Ct. (11)
The third step of the LSTM model is to select the output value.
The output neuron state ot is determined by the sigmoid
activation function, and the output part ht is obtained by
processing ot by the tanh function. The formulae are as follows:

ot � σ(Wop[ht−1, xt] + bo), (12)
ht � otptanh(Ct). (13)

The LSTM model enhances the memory of neurons through
three gating units, discards useless information, and solves the
problem of long dependence. However, the LSTM model cannot
make full use of the data information before and after building
sub-item energy consumption, so this study uses the BiLSTM
model to identify the features of modal components. The BiLSTM
neural network can obtain complete data information before and
after energy consumption. The front layer LSTM obtains the
intrinsic characteristics of the building energy consumption data
in front: the back-layer LSTM obtains the intrinsic characteristics
of the building energy consumption data in the back and finally
combines the two to obtain the building energy consumption data
characteristics. The formulae are as follows:

�ht � LSTM






→(xt), (14)

h
←
t � LSTM

← (xt), (15)
ht � 〈 �ht, h

←
t〉. (16)

Among them, �ht obtains semantic feature information of forward
building energy consumption data through forward LSTM, and
h
←
t obtains semantic feature information of backward building

energy consumption data through backward LSTM. LSTM






→(xt)

represents the front-to-back feature, and LSTM
← (xt) represents

the back-to-front feature. Finally, the hidden layer state E is the
characteristic of building energy consumption data.

CEEMDAN-BiLSTM Coupling Model
The data series of energy consumption is affected by many factors
and belongs to nonlinear and non-stationary signals. Therefore,
this study puts forward the CEEMDAN-BiLSTM prediction
model. First, the sub-energy consumption sequence was
decomposed into multiple sub-components by the CEEMDAN
method, and the strong correlation sub-components were

screened out for normalization. Then, the strong correlation
components were sent into the BiLSTM model to obtain the
predicted values of the sub-components. Finally, the predicted
values of the sub-components were reversely normalized to
obtain the final energy consumption prediction results. The
CEEMDAN-BiLSTM model structure is shown in Figure 1.

The specific modeling process is as follows:

1) CEEMDAN decomposition

The original energy consumption sequence x(t) is decomposed
into multiple IMF and residual components Rn by the
CEEMDAN method.

2) IMF component screening

Calculate the Pearson correlation coefficient of the original
sequence x(t) and each sub-component, and the formula is as
follows:

p0 �
∑n
i�1
pi

2p(n + 1), (17)

where pi represents the Pearson correlation coefficient of two
continuous variables, and n is the number of subcomponents. P0
is the threshold of the correlation coefficient, and strong
correlation components can be screened out according to p0.

3) BiLSTM network prediction

In order to avoid the influence of different dimensions of
energy consumption series after CEEMDAN decomposition, the
strong correlation components are normalized. The specific
parameters of the BiLSTM model are set as follows: in order
to prevent over-fitting, dropout is set to 0.5; the absolute error
function is the loss function, tanh is the activation function, adam
is the optimization function, and the training times are set to
1,000 times. The LSTM layer node number is set to 50; the batch
size is set to 72.

BUILDING SUB-ITEM ENERGY
CONSUMPTION PREDICTION MODEL

Modeling Classification Basis
Building energy consumption consists of air conditioning
energy consumption, lighting energy consumption, and
power energy consumption. The energy consumption of air
conditioning is mainly composed of air conditioning terminals,
cold and hot stations, and other pieces of equipment. Lighting
energy consumption mainly consists of landscape lighting,
corridors, emergency, and lighting equipment. Power
consumption is mainly composed of fans, elevators, and
water supply devices. Moreover, the energy consumption of
lighting power has a strong correlation with the work and the
rest of the staff, and the energy consumption of air conditioning
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has a certain trend with the seasons and temperatures. Analysis
of a specific load of energy consumption shows that when the
weather changes, lighting, air conditioning, and ventilator
equipment will also be adjusted accordingly, and when the
weather suddenly changes, the energy consumption of each
sub-item will also fluctuate greatly.

Because the energy consumption of buildings is quite
different between abrupt weather and non-abrupt weather,
the weather is divided into abrupt weather and non-abrupt
weather according to the meteorological classification index.
The itemized short-term prediction process of building energy
consumption based on the CEEMDAN-BiLSTM model is
shown in Figure 2. The following are selected as
characteristic quantities: 24 h of the day, outdoor hourly
average relative humidity, hourly average wind speed,
outdoor hourly average temperature, holidays, and weather
changes. In order to improve the accuracy of the forecast,
abrupt weather and non-abrupt weather are subdivided into
four weather types. The historical data of lighting energy
consumption, air-conditioning energy consumption, and
power energy consumption of different weather types are
decomposed by CEEMDAN so as to become a stable energy
consumption series. Different meteorological factors are added
to the decomposed strong correlation subcomponents as the
prediction conditions of the BiLSTM model. The predicted
values of sub-components are reversely normalized and

superimposed to obtain the final energy consumption
prediction result.

Evaluating Indicator
Synchronous BP, SVM, LSTM, EMD-LSTM, and CEEMDAN-
LSTM models are established, and the calculation accuracy is
compared with the proposed models. The average absolute
percentage error eMAPE, root mean square error eRMSE, and
Hill inequality coefficient eTIC are selected to evaluate the
model accuracy, and the expressions are as follows (18)~(20).

eTIC �

����������∑Z
i�1
(y′

i − yi)2√
������∑Z
i�1
(y′

i)2√
+

������∑Z
i�1
(yi)2√ , (18)

eREMS �

����������∑Z
i�1
(y′

i − yi)2
Z

√√
, (19)

eMAPE � 1
Z
∑Z
i�1

∣∣∣∣∣∣∣∣y′
i − yi

yi

∣∣∣∣∣∣∣∣, (20)

where z is the purpose of the test sample, y′ is the predicted value
of building energy consumption, and y is the actual value of
building energy consumption.

FIGURE 2 | CEEMDAN-BiLSTM model prediction process.
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FIGURE 3 | Prediction results of different models. (A) Sunny weather lighting. (B) Sunny weather air conditioner. (C) Sunny weather power. (D) Turn to rain weather
lighting. (E) Turn to rain weather air conditioner. (F) Turn to rain weather power.
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RESULTS AND DISCUSSION

The effectiveness of the CEEMDAN-BiLSTM model is verified
by the weather conditions and energy consumption data of an
office building in Fuzhou, Fujian Province in 2019. According
to statistics, there were 273 abrupt weather days in Central
Africa in 2019, including 111 sunny days, 47 cloudy days, 53
overcast days, 62 rainy days and 92 abrupt weather days. In
non-abrupt weather, considering sunny weather as an example
for analysis, 25 days were selected as training samples and
8 days as test samples in sunny weather. For a sudden change
in weather, the weather from sunny to rainy is considered as an
example. Among the 16 days of weather from sunny to rainy,
12 days were selected as training samples and 4 days as test
samples.

The forecast results of lighting, air conditioning, and power
consumption in sunny weather are shown in Figures 3A–C. In
sunny weather, the fluctuation of the building energy
consumption curve is small, and the change in energy
consumption has certain regularity. Except for BP and SVM
models, the other four models all showed good prediction effects.
In the prediction curves of air-conditioning energy consumption
and power energy consumption, it can be observed that the LSTM
model based on the CEEMDAN method has the highest fitting
degree to the curve, and the prediction effect of the combined
model is obviously better than that of the single prediction model.
The forecast results of each sub-item energy consumption under
abrupt weather conditions are shown in Figures 3D,F. Under
abrupt weather conditions, affected by various meteorological
factors, the energy consumption curve fluctuates greatly, and the
predicted power of each model deviates from the actual power.
After the sudden change of weather, the predicted value of the
lighting energy consumption of the BP neural network is lower
than the actual energy consumption. Compared with the other
two combined models, the EMD-LSTM model has more chaotic
curves, resulting in larger errors.

In order to compare the prediction effects of each model more
accurately, the errors of the six models are plotted in Table 1. In
sunny weather, most indexes of the combined model based on the
LSTM algorithm are better than those of the single model.
According to the analysis of the prediction results of lighting
energy consumption, it can be seen that the eRMSE, eMAPE, and
eTIC indexes of the four deep learning models have little difference.
Compared with EMD-LSTM and CEEMDAN-LSTM, the eMAPE

value of the CEEMDAN-BiLSTM prediction model is reduced by
2.4 and 1.9%, respectively. CEEMDAN-LSTM model has obvious
performance advantages in predicting air-conditioning energy
consumption. Compared with EMD-LSTM and CEEMDAN-
LSTM combined models, the eRMSE of the CEEMDAN-LSTM
model is reduced by 6.6 and 1.1%, respectively, the eMAPE is
reduced by 36.512 and 12.065, respectively, and the eTIC is
reduced by 4.1 and 1.1%, respectively. The LSTM model is not
sensitive enough to power consumption, while EMD-LSTM,
CEEMDAN-LSTM, and CEEMDAN-BiLSTM models extract
curve details through modal decomposition, which makes the
prediction algorithm more accurate. Under abrupt weather
conditions, both BP and SVM prediction models have large
errors in energy consumption. The combination model has an
excellent prediction effect on lighting energy consumption and
power energy consumption. In this comparison in a smaller
numerical range, the combination model can be used directly.
The CEEMDAN-BiLSTM model has the best performance in the
short-term hourly prediction of air conditioning energy
consumption, and the eMAPE value is reduced by 14.4, 23.3, 9.3,
8.1, and 4.4%, respectively, compared with BP, SVM, LSTM, EMD-
LSTM, and CEEMDAN-LSTM models, that is, CEEMDAN
decomposition improves the prediction performance of the
model to a certain extent. After the power consumption data is
decomposed by CEEMDAN, the details that can be extracted by
the LSTM network and BiLSTM network are further increased, so
CEEMDAN has a positive effect on energy consumption
prediction.

TABLE 1 | Prediction errors of different models.

Type XP-70 eMAPE eRMSE eTIC Type XP-70 eMAPE eRMSE eTIC

Sunny weather lighting BP 0.214 13.171 0.047 Turn to rain weather lighting BP 0.297 18.363 0.119
SVM 0.251 16.228 0.056 SVM 0.229 14.957 0.084
LSTM 0.184 9.928 0.043 LSTM 0.216 12.788 0.091
E-L 0.170 9.885 0.032 E-L 0.194 10.984 0.069
C-L 0.165 7.874 0.026 C-L 0.176 9.549 0.057
C-B 0.146 7.260 0.025 C-B 0.148 9.308 0.048

Sunny weather air conditioner BP 0.37 221.837 0.214 Turn to rain weather air conditioner BP 0.362 228.188 0.194
SVM 0.418 257.109 0.202 SVM 0.451 272.092 0.224
LSTM 0.334 169.663 0.139 LSTM 0.311 180.398 0.171
E-L 0.266 154.198 0.142 E-L 0.299 169.867 0.143
C-L 0.211 129.751 0.112 C-L 0.262 130.153 0.111
C-B 0.200 117.686 0.101 C-B 0.218 123.652 0.111

Sunny weather power BP 0.2485 3.312 0.128 Turn to rain weather power BP 0.296 3.814 0.176
SVM 0.2825 3.934 0.182 SVM 0.286 3.502 0.172
LSTM 0.2395 3.172 0.126 LSTM 0.248 2.758 0.149
E-L 0.183 2.303 0.082 E-L 0.198 2.166 0.102
C-L 0.1615 1.856 0.086 C-L 0.188 2.108 0.094
C-B 0.16 1.672 0.067 C-B 0.16 1.932 0.087
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In this study, the predicted values and effective values of all test
samples of building energy consumption are counted. Compared
with the CEEMDAN-BiLSTM model, the CEEMDAN-LSTM
model reduces eMAPE, eRMSE, and eTIC by 4.1, 9.441, and 1.3%,
respectively. In other words, after CEEMDAN modal
decomposition of building energy consumption, the BiLSTM
network is more accurate than the LSTM network prediction
algorithm.

CONCLUSION

In this study, a short-term prediction model of building energy
consumption based on the CEEMDAN-BiLSTM method is
proposed. The energy consumption data of lighting, air
conditioning, and power are decomposed by CEEMDAN and
then sent to the BiLSTM network for energy consumption
prediction. At the same time, five models are established and
compared with the proposed model. The CEEMDAN-BiLSTM
model solves the problem of low accuracy of traditional
forecasting methods when energy consumption fluctuates. The
main conclusions are as follows:

1) BP and SVM models are simple in structure, showing large
errors in all kinds of weather, so they are not suitable for the

prediction of energy consumption series. The accuracy of the
LSTM model is difficult to guarantee when the energy
consumption fluctuates greatly. When the weather suddenly
changes, the EMD-LSTM model shows a big error in the
prediction of air conditioning energy consumption.

2) More detailed components can be extracted by CEEMDAN
decomposition of energy consumption curve data, which
makes the prediction of the BiLSTM network more accurate.

3) The difference between the predicted energy consumption of
the CEEMDAN-LSTM model and the actual energy
consumption is small, and the prediction accuracy meets
the requirements of short-term prediction.
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