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Centralized algorithms and distributed algorithms have gained great attention on the
energy Internet nowadays. The centralized algorithm presses too much communication
and numeration load to its control center in large-scale and neterogeny EI. The distributed
algorithm requests too many times of iteration, and the performance and convergence
speed is quite slow. The current literature presents a regional dispatch event-triggered
algorithm (RDETA). Energy management in RDETA can transform between a centralized
model and distributed model. With the effort, the energy management does notrequire
iteration times in quantity. And due to event-triggered asynchronous communication,
energy management not only relieson a global synchronous clock but also
decreasecommunication frequency in most cases and increasecommunication
frequency in exigency. In addition, RDETA adopts regional communication and
regional energy dispatch, which can automatically modulate the scale of dispatch area
by the degree of the energy problem. Finally, simulation results and theoretical
demonstration show the aforementioned contributions of the proposed algorithm.

Keywords: asynchronous communication, centralized algorithm, distributed algorithm, energy internet, energy
management, multi-agent system, renewable energy source, zone control

INTRODUCTION

Energy is a fundamental guarantee to industrial engineering and human society. With the much
more frequent appearance of the fossil energy crisis, global environmental pollution, and multiple
energy loads in industry, agriculture, and the daily life of humanity in recent years, it is imperative to
create a better strategy to utilize multi-energy in higher efficiency, lower pollution, and more
sustainable methods. Energy Internet (EI) and multi-energy systems rise in response to the proper
time and conditions (Huang et al., 2010; Sun et al., 2017; Abdella et al., 2021). The key contributions
of EI are to realize cooperation (Wang et al., 2020), optimization (Lu et al., 2019), management
(Zhang et al., 2017), control (Zhang et al., 2020a), and complementation (Qin et al., 2019) among
multiple energy subsystems. Furthermore, EI also contributes greatly in absorbing unstable
renewable energy resources through the complex energy networks, enhancing the utilization rate
of energy and accelerating energy sustainable development.

However, different from traditional fuel-based centralized power systems, EI is called for
effectively coupling various neterogeny energy with different speeds and costs of the
manufacture, transmission, and conversion and simultaneously managing large-scale energy
systems. In consequence, how to cooperatively allocate energy generation resources including
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renewable resources that are incapable to control, complex energy
conversion among various energy, and satisfying changeable and
unpredictable energy loads tends into an exceedingly serious
challenge in EI. For handling these issues, recent investigations
adopt two main methods. One is centralized algorithms, and
another is distributed algorithms.

The centralized algorithm can be subdivided into analytical
algorithms (Lin and Viviani, 1984; Lin et al., 1992; Wright, 1997)
and heuristic algorithms (Sun et al., 2013; Moeini-Aghtaie et al.,
2014). Centralized algorithms have a high quality of performance
and a high speed. They can settle small-scale energy trading with
no need for iteration. However, the centralized algorithms rely on
a strongly centralized communication and control center, are
sensitive to single-point failures and modeling errors (Yile et al.,
2017), are hard to protect users’ privacy (Pourbabak et al., 2017),
etc. To sum up, the centralized algorithm is suitable for small-
scale systems, whereas is unfit for large and complex systems in
EI. To overcome the aforementioned drawbacks, the distributed
algorithm becomes a burgeoning and effective substitute
methodology to replace the centralized algorithm to deal with
large and complex systems in EI. Demystified by multi-agent
systems (Liang et al., 2021), distributed algorithms divide EI into
subsystems and subdivide subsystems into energy devices. So Sun
(2019) named subsystems in EI we-energy, and defined we-
energy as basic energy units with the functions of the multi-
energy manufacture, multi-energy consumption, multi-energy
conversation, and multi-energy storage. This we-energy has
high quality compared with other recent researches in the
author’s view, so this study chooses we-energy as a model of
energy subsystems.

The distributed algorithm in EI mainly includes four species of
rudimentary theoretical knowledge containing price-guide
algorithms (Yuang et al., 2022), alternating direction method
of multipliers (ADMM) (Zhang et al., 2017), Newton descent
algorithms (Li et al., 2020), and consensus-based methods (Sun
et al., 2019). Xu et al. (2018) adopted a quasi-Newton algorithm to
address economic optimization issues in multi-area. Sun et al.
(2015) applied consensus-based methods in multi-agent systems
to EI on the first try. Despite distributed algorithms being much
fitter to large and complex EI than the centralized algorithm, the
synchronous clock bus line is still too long due to the scale of
global systems. Therefore, Li et al. (2019) renovated
communication strategy to asynchronous event-triggered
communication and embedded it into the execution of
traditional distributed algorithms. Through its effort, each
energy body can asynchronously trigger information
exchanging to the global system at discrete instants driven by
serious conditions to remove unnecessary communication.
Nevertheless, communication and calculation in each time of
triggering are still too large to operate. By the way, Li et al. (2019)
sacrificed energy balance under the circumstances that
communication is not triggered whereas disadvantages of
energy mismatch are far more serious than economic loss. So
sacrificing economic optimization is a better choice. Huang et al.
(2016) raised co-optimization among microgrids. Can et al.
(2021) adopted a price-guiding algorithm in EI, whereas the
price in it is the energy selling price. The research value of the

selling price is much less than that of energy manufacturing and
converting costs. Additionally, nonlinear cost functions make
energy cost changeable, which greatly increase the difficulty of
research.

To sum up, recent research on EI has disadvantages hereafter.
First, the largest challenge in energy management is all current
algorithms require iterations. As we all know, iteration press a
great burden on communication and calculation.
Communication and calculation times about algorithms with
iterations are hundreds of thousands of magnification to that
without iterations. So it is a serious matter to invent an algorithm
without iteration in EI. Second, because of the large and complex
scale of EI, the synchronous clock bus line and global
communication consume too much operation cost. The
asynchronous communication in the literature (Li et al., 2019)
addressed that problem to a certain degree whereas the
communication in (Li et al., 2019) was a global
communication. Regional communication may be better.
Third, price-guiding is an irreplaceable method to alloplastic
energy flow issues, because energy price is the only way to
estimate value among different types of energy. However,
recent research only invests in the selling price. Compared
with the selling price, energy cost is far more ponderable in
energy conversation. Nevertheless, because of complex cost
functions, energy cost is fickle and difficult to be modeled.
Finally, distributed algorithms at present are too sensitive to
initial values whereas some initial values are difficult to ensure.

These challenges about EI hereinbefore can be settled together.
Herein, a regional dispatch event-triggered algorithm (RDETA)
comes into being to address the aforementioned issues. Mainly
contributions of this article are summarized as following:

1) RDETA does not require iterations. As we all know, iterations
press too much burden on communication and calculation.
Communication and calculation times about algorithms with
iterations are hundreds of thousands of magnification to that
without iterations. Therefore, RDETA could increasingly
decrease communication and calculation costs in EI.

2) RDETA renovates the communication method to event-
triggered asynchronous regional distributed parallel
communication, which is exceedingly fit for large EI.
Because of the scale of EI, global communication requires
too many communicating times. RDETA upsteps
communication scope by event-triggered strategy.
Furthermore, asynchronous communication does not rely
on the synchronous clock bus line. Meanwhile, it decreases
communication frequency in most cases to reduce
unnecessary costs and increases communication frequency
in exigency to aggrandize algorithm adjusting performance to
be answerable for emergency circumstances.

3) This study subdivides energy price into energy selling price,
energy average cost price, and energy momentary cost price.
With this effort, the price-guiding method is better in complex
nonlinear cost functions in EI. It is worth noting that these
concepts all hereinbefore are originally put forward in this
study. They fit energy management whereas may not fit other
economic management issues.
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4) RDETA adopts high order partial differential equations to
centralize dispatch in one or two we-energies. Each energy
devices only transmit its partial differential formula and high
order partial differential formulas to the control platform
inside we-energy. The agents communicate nothing about
operating conditions. Therefore, RDETA reinforced the
protection of users’ privacy. In addition, because of high
order partial differential equations, RDETA is not sensitive
to initial values.

5) Three secondary contributions. One is to replace day-ahead
forecasting with communication-ahead forecasting to
enhance forecasting accuracy. Another is that when the
event-triggered system does not activate, RDETA chooses
to sacrifice economic optimality rather than energy supply-
demand balance because the detriment of energy mismatch is
much greater than that of reducing economic earnings. The
last contribution is that RDETA entirely handles the issue of
energy conversion.

The rest of this study is as follows. Section 2 introduces the
proposed mathematical model of EI, we-energies, and energy
devices. Section 3 first introduces some fundamental knowledge.
Then, it introduces the proposed RDETA. Section 3
demonstrates the optimal performance and avoiding Zeno
behavior of RDETA, too. Section 4 analyses several illustrative
case studies to show the proposed RDETA applied to a simulated
EI. The conclusion drawn from this study is in Section 5.

MATHEMATICAL MODEL OF EI

An anticipated construction of single we-energy, employed to
couple multiple energy components together, is depicted in
Figure 1A. We can divide the energy devices of each we-

energy into seven classes, i.e., including the energy
manufacturer (EM), the energy transform devices (TD), the
energy storage devices (SD), the energy load (EL), the energy
transfer path (TP), the information communication path (ICP),
and the we-energy control platform (CP). As a small but complex
and consummate energy subsystem of the energy prosumer (the
conception of prosumer was in (Kubli et al., 2018)), we-energies
can play multitudinous roles of energy supplier, energy
transformer, and energy terminal user by controlling orders
from CP. CP controls its multi-energy generators, multi-
energy transform devices, multi-energy storage devices, and
multi-energy loads. e.g., each we-energy can sell the part of
excess power flow to other we-energies to help we-energies
under power shortage circumstances and earn an additional
economic profit.

The we-energy is regarded as a power supplier at this moment.
In the meantime, the we-energy shall purchase deficit heat energy
flow from other we-energies if it is hard to reach its heat supply-
demand balance, so it plays a role of the heat terminal user. As
shown in Figures 1A, B, the dispatch inside we-energy is
centralized dispatch controlled by CP whereas the cooperation
among we-energies is implemented under a sparse and
distributed communication network based on the theory of
multi-agent systems that are topology structures with great
promise in the future compositive energy systems. In this
mode, each we-energy only needs to exchange information
with its corresponding neighbors when an event triggers
asynchronous communication to implement their co-
management. We can obtain optimal operating conditions
through RDETA. To this end, the interconnected EI cyber
information structure and physical structure are far different
from preceding energy hub models (Sheikhi et al., 2015; Bahrami
and Sheikhi, 2016). The energy hub models in previous research
are mainly devoted to the energy import side. Each energy hub

FIGURE 1 | (A) We-energy framework. (B) Energy Internet framework.
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can reach its energy supply-demand balance. However, we-
energies are integrated energy agents constituted of energy
hubs and terminal energy users and their co-dispatch can
reach further interconnection on both energy entrance sides
and energy exit sides. Through these efforts, the system
flexibility, scalability, and reliability of EI can be greatly
improved. Additionally, it is necessary for energy in the EI
network to be transmitted and transformed in easy means. So
only power, heat, and gas frequently-used energy conform to the
requirement from the network in EI. On this account, EI in this
study is power-heat-gas EI. Other types of energy including coal
are not discussed in this study. What is noteworthy is that, despite
great promise about interconnection among we-energies, the
large-scale and complex structure of it brings abundant serious
challenges because of the frequency of communication, iterations,
and calculations. To handle these issues, RDETA uses various
methods such as regional communications, event-triggered
asynchronous communications, transitions between distributed
model and centralized model, and high-order partial differential
equations. The purposes of these methods are to avoid global
communications in large EI, reduce unnecessary superfluous
communications and rely upon synchronous clock bus lines,
settle complex and large EI with the performance-superior
centralized algorithm in distributed multi-agent systems, and
avoid iterations. In addition, RDETA replaces the day-ahead
forecasting (Zhang et al., 2020b) with communication-ahead
forecasting to enhance forecasting accuracy.

We-Energy Model
As seen in Figure 1A, at the energy entrance or export side, the
received power flow(Pin), heat flow (Hin), and gas flow (Gin)
enter into or depart from the we-energy via the solid-state
transformers, the caliducts, and the natural gas pipelines.
Inside the we-energy structure, the received generated power
flow comes from the wind generators (WG) (PW), the solar
generators (SG) (PS), and the power output of the CHP units
including coal-based CHP units (CCHP) (PCC) and gas-based
CHP units (GCHP) (PGC). The received dissolved power flow is
split into two paths, i.e., the one consumed by the terminal power
users and the other one transformed by the power conversion
devices including electric boilers (EB) (PEB) and power-to-gas
devices (P2G) (PP2G). The received generated heat flow comes
from the heat output of CHP units incorporating solar heat
devices (SH), CCHP (HCC), GCHP units (HGC), and EB
(HEB). The received consumption of heat flow is utilized by
terminal users only because heat is difficult to transform. The
received generated gas flow comes from the equivalent gas
generators (EGG) and the gas output of P2G (GP2G). The
received dissolved gas flow is subdivided into two paths,
i.e., the one consumed by the terminal gas users and the other
one transformed by the gas-based CHP units(PGC). In addition,
the energy (i.e., power, heat, and gas) storage devices (PS, HS, and
GS) can adjust their operating conditions of energy supply or
demand of the we-energy, which are determined by the
discharge/charge states (PSD),(HSD), and(GSD). It is worth
noting that, all the aforementioned energy flows are vectors.
The positive values of the symbol of energy output, and vice-

versa. The energy loads contain two parts including the utilization
of terminal users and the transfer loads. The transfer loads mean
one type of energy converses with another type of that, e.g., power
flow converses to gas flow via P2G, by this method, certain gas
load transfers to the power load.

From the preceding part of the study, we can get to know that,
the EM includes five kinds of devices, i.e., theWG, the SG, the SH,
the CCHP, and the EGG. The TD includes the P2G, the EB, and
the GCHP. The SD contains PS, HS, and GS.

Energy flow in we-energies could be calculated as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Pin
i,t−PU

i,t

Hin
i,t−HU

i,t

Gin
i,t−GU

i,t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
v SST
PP η SST

PP v EB
PH η EB

PH v p2G
PG η P2G

PG

0 1 0

v GCHP
GP η GCHP

GP v GCHP
GP η GCHP

GP v EWC
GG

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Pin
i,t+PEM

i,t +PSD
i,t

Hin
i,t+HEM

i,t +HSD
i,t

Gin
i,t+GEM

i,t +GSD
i,t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
(1)

i is the serial number of the we-energy; t is the time; superscript U
is the terminal energy user; v is the proportion of the energy
converted from the corresponding energy carrier in the total
energy flow; and η is the efficiency of energy conversion.

⎧⎪⎨⎪⎩
PEM
i,t � PW

i,t + PS
i,t + PCCHP

i,t

HEM
i,t � HS

i,t + PCCHP
i,t

GEM
i,t � GEGG

i,t

(2)

We consider an EI as a multi-agent system with n we-energy
subsystems, including in each we-energy no more than ξ
participants but not limited to energy devices and terminal
users. For the simplification of notations, we adopt a three-
dimensional vector {Xi,j ∈ R3|i � 1, ..., ε; j � 1, ..., ξi} to
represent the decision variables of controllable devices in EI
and employ xm

i,j to represent the m th element of Xij. The
three elementsx1

i,j,x
2
i,j, and x3i,j in Xij express power, heat, and

gas flow, respectively.

EM Devices Mathematical Model
Renewable Energy Devices Model
One of the main purpose is to promote the utilization of
renewable resources because they are clean, environmentally
friendly, and low-cost. However, renewable energy resources
are scattered in the distribution of geographic position and
unpredictable energy production in time. As for better
absorbing them, the forecasting accuracy is exceedingly
significant. Traditional researchers adopt day-ahead forecasting
(Bahrami and Sheikhi, 2016) to predict renewable energy
generators. Nevertheless, due to the long time scale (1 day),
the accuracy of day-ahead forecasting is exceedingly hard to
be assured. For heightening the predicted precision, this study
presents communication-ahead forecasting using the day-ahead
assist method as follows:

{μmi,j,tk+1 � xm
i,j,tk

+ sgm
i,j,tk

(tk+1 − tk) + Δr(tk+1−tk)
∣∣∣∣∣xm

i,j ∈ RE} (3)
REmean the set of renewable energy devices; tk and tk+1 mean the
present time and the next measuring time; sgm

i,j,tk
is the day-ahead

subgradient factor which expresses the tendency of xm
i,j,tk

in tk;
Δr(tk+1−tk) is the day-ahead convex or nonconvex compensation
from tk to tk+1 because the trend of xm

i,j may not be linear; μmi,j,tk+1 is
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the mathematic expectation of xm
i,j,tk+1 . Note that the accurate

value may not be the mathematic expectation because of the
forecast error. In this study, we assume that the forecasting error
obeys the Gaussian distribution whose feasibility analysis has
been introduced in the study by Wu et al. (2015). Then, the
probability density function of xm

i,j,tk+1 can be modeled as:

f(xm
i,j,tk+1) � 1���

2π
√

σmi,j,tk+1
e
−
(xm

i,j,tk+1
−μm

i,j,tk+1
)

2(σm
i,j,tk+1

)2 ∣∣∣∣∣xm
i,j,tk+1 ∈ RE (4)

σmi,j,tk+1 is the standard deviation of xmi,j,tk+1 , which shows the
dispersed degree of accurate value. σmi,j,tk+1 is determined by
day-ahead forecasting and measure frequency. It can be
calculated as:

σmi,j,tk+1 � Imi,j(tk+1 − tk) (5)
Imi,j is the day-ahead disperse degree forecasting value.

In addition, the confidence intervals of xm
i,j,tk+1 can be solved as

[xm−down
i,j,tk+1 , xm−up

i,j,tk+1] by the Eq. 4 by the homologous method in
probability theory in the confidence level 100(1 − z)%. We
choose z as 0.05 in this study. In addition, we adopt TD, SD,
and EL to absorb all renewable energies. Then the operating
conditions of renewable energy devices can be:

{xm
i,j,tk+1 ∈ [xm−down

i,j,tk+1 , xm−up
i,j,tk+1]∣∣∣∣∣xm

i,j ∈ RE} (6)
Based on the aforementioned reason, the cost of renewable

energy devices can be the punishment for energy deficiency. So if
we choose the forecasting result higher, the economic
optimization will be better, whereas the dependability will be
worse, and vice-versa. The cost functions of renewable energy
devices can be as following:

Cm−RE
i,j,tk+1 � aREi,j (xm

i,j,tk+1 − xm−down
i,j,tk+1 )2 (7)

aREi,j is a positive constant.
The limits of renewable energy devices are as follows:

{xm
i,j,tk+1 ∈ [xm−down

i,j,tk+1 , xm−up
i,j,tk+1]∣∣∣∣∣xm

i,j ∈ RE} (8)
That is the same as Eq. 6.

By the way, Δr(tk+1−tk) and σmi,j,tk+1 have their trigger conditions.
If the trigger condition of Δr(tk+1−tk) is not reached, the tendency
of xmi,j,tk will be regarded as linear. If the trigger condition of σ

m
i,j,tk+1

is not reached, we will regard the mathematic expectation of
xm
i,j,tk+1 as the accuracy of it and the equations including Eqs 4–8

will be meaningless because the forecasting precision is enough.
In this study, the trigger condition of them is that they are more
than 4 and 50 s, respectively.

Fossil Fuel Burning Based EM Devices
First, the technology of co-generation combining heat and power
has already matured recently. And because of the high-efficient
performance, that technology is much better than fuel-based
plants and fuel-based boilers in the purpose of
environmentally friendly and economic optimal. To sum up,
fuel-based plants and fuel-based boilers are all replaced by co-

generation combined heat and power devices. Second, to handle
and investigate the ramping rate constraints of CCHPs, its form
in discrete shape is always modeled into a knapsack mathematical
problem. It is worth noting that we only consider the ramping
constrain of the bower but not of heat because the response speed
of heat is exceedingly slow. That reason is also fit for GCHP. The
cost function of CCHP is as follows:

Ci,j,tk � ai,jx
1
i,j

2 + bi,jx
1
i,j,tk

+ αi,jx2
i,j,tk

2

+βi,jx2
i,j,tk

+ ci,jx
1
i,j,tk

x2
i,j,tk

+ χi,j+
(x1

i,j + x2
i,j,tk

) × (ηi,j)−1 × prf

(9)

where ai,j, bi,j, αi,j, βi,j, ci,j, and χi,j express cost factors, which are
controlled by the energy emission of the thermal unit. They are all
constants and the second-order coefficients with a single variable
are positive constants. ηi,j is the energy conversion efficiency of
CCHP. prf represents the price of coal. And the constraints of
CCHP are as follows:

−Pramp
i,j ≤x1

i,j,tk
− x2

i,j,tk
≤Pramp

i,j (10)
di,jx

1
i,j,tk

+ ei,jx
2
i,j,tk

+ f i,j ≥ 0 (11)
di,jx

1
i,j,tk

+ ei,jx
2
i,j,tk

≤ gi,j (12)
Pramp
i,j is the ramp rate constraint. Other coefficients without

introduction are constants.

EGG Devices
Natural gas is a kind of fossil fuel and there are not any devices
that can produce it. The only way to get natural gas is to buy it
from related departments. The only thing we need to consider is
the natural gas price, which cannot be changed by EI but decided
by other departments.

TD Devices Mathematical Model
P2G and EB Models
The model and cost function of P2G are as follows:

−x3
i,j,tk

� ηi,j,tkx
1
i,j,tk

(13)
Ci,j,tk � −θi,j,tkx1

i,j,tk
(14)

ηi,j,tk is the energy transforming the efficiency of P2G. θi,j,tk is a
positive constant that expresses operating cost. The constraint of
DP2G is as follows:

PP2G−min
i,j ≤ − x1

i,j,tk
(15)

PP2G−min
i,j is the start-stop limit of P2G. Because power energy in

the network of EI is limited and the capacity of P2G is very large,
we do not consider the energy conversion upper constraint. There
is a resemblance between P2G and EB in the model, the operating
cost function, and the constraint. We only need to replace the
energy type.

GCHP Models
The model and operating cost function of DGC are as follows:
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Ci,j,tk � (x1
i,j + x2

i,j,tk
) × (ηi,j)−1 × (prg + θi,j) (16)

Where θi,j is a positive constant that expresses operating cost. ηi,j
is the energy conversion efficiency of CCHP. prg represents the
price of gas. By the way, some coefficients are shown in the same
letters between CCHP and GCHP, whereas the significance of
them is different because the subscripts change along with the
types of device. The reason is also fit to conditions between other
devices.

The constraints of GCHP are as follows:

−Pramp
i,j ≤x1

i,j,tk
− x2

i,j,tk
≤Pramp

i,j (17)
di,jx

1
i,j,tk

+ ei,jx
2
i,j,tk

+ f i,j ≥ 0 (18)
di,jx

1
i,j,tk

+ ei,jx
2
i,j,tk

≤ gi,j (19)
Pramp
i,j is the ramp rate constraint. Other coefficients without

introduction are constants.

SD Devices Mathematical Model
There is an optimal reserve in SD. If the stored energy is much less
than the optimal reserve, it will press too much stress on SD
devices. If things go on like this for too long, it may injure the
capacity of SD devices. If the stored energy is much more than the
optimal reserve, the stored energy will be under a risk of a leak. So
the optimal condition function of SD is as follows:

Om
i,j,tki,t

� ai,jx
m−S
i,j,tk

(xm−S
i,j,tk

− 2μmi,j) + bi,j (20)
O is the optimal function of stored energy in SD, superscript m
represents the type of energy, xm−S

i,j,tk
is the stored energy in time, tk.

μmi,j is the optimal reserve of energy in SD, ai,j and bi,j are
invariable constants, and ai,j is negative. The cost function of
DPSD is as follows:

Ci,j,tk � Om
i,j,tk

− Om
i,j,tk−1 + θi,j

�����xm
i,j,tk

�����2 (21)
θi,j is a positive constant that expresses operating cost, and xm

i,j,tk
is

the energy flow from SD. So we can know the following:

xm
i,j,tk

� xm−S
i,j,tk−1 − xm−S

i,j,tk
(22)

The limits of SD are as follows:

−xm
i,j

in − SD
≤xm

i,j,tk
≤xm

i,j

out − SD
(23)

xm−S−min
i,j ≤xm−S

i,j,tk
≤xm−S−max

i,j (24)
xm
i,jin − SD and xm

i,jout − SD are the maximum energy flow limits
about energy input and output rate of DPSD, respectively.
xm−S−min
i,j and xm−S−max

i,j are minimum and maximum values of
energy capacity, respectively.

EL Mathematical Model
There are two essential challenges in EL. One is the randomness
of terminal users, the other is load shifting. Load shifting is
analyzed here. RDETA could absorb the randomness of terminal
users in the large multi-agent system of EI by RDETA, which will
be introduced in Section IV. In the multi-energy system of EI,

different energy loads can transform between each other by
energy conversion, e.g., power flow converses to gas flow via
P2G, through this method certain gas load transfers to the power
load. So the model of EL is as follows:

xm
i,j,tk

� um
i,j,tk

+ trmi,j,tk (25)
trn1i,j,tk + trn2i,j,tk + trn3i,j,tk + . . . + trnNi,j,tk � −ηmn

i,j tr
m
i,j,tk

(26)
ηmn
i,j is the energy conversion efficiency from energym to energy n.
m is a constant, while n is a set of various numbers because a kind
of energy can change into more than one type of energy. By the
way, the energy load can also be forecast predicted by
communication-ahead forecasting which is similar to
renewable energy resources. The only difference is that we
regard the mathematic expectation of forecasting value as the
accuracy value because the randomness of energy load is much
lower than that of renewable energy resources.

ENERGY MANAGEMENT AND RDETA
ALGORITHM
Proposes and Difficulties of Energy
Management
Considering an EI with a number of we-energies, the expectation
of energy management is to minimize the cost under the
circumstance that the total energy demand in the whole
society that covers is satisfied by the synergy among all
participators. We can model it as a mathematical objective
function as:

min obj � ∑ε,ξi
i�1,j�1

(Ci,j,tk)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑ε
i�1

∑ξi
j�1

I × Xi,j � ∑ε
i�1

∑ξi
j�1

Ui,j

φ(xm
i,j)< 0

(27)

The cost not only includes the visualized economic
expenditure but also contains some invisible expenditure
incorporating but not limited to the inaccurate forecasting of
renewable energy resources, undertaking the risk of energy
mutation, energy pour and energy shortage, and the like. Ui,j

is the matrix of terminal users’ energy consumption. φ is a local
closed convex set for Xi,j. The main difficulties of energy
management are as follows:

First, the maximal challenge is too many iterations for the
following reason. The complex mathematical issue of energy
management is impossible to be solved by continuous math
theory. So the only way to settle it is discrete mathematics
based on supercomputers. However, that method brings
hundreds of thousands of times of iterations. What is more,
each time of iteration is accompanied by large communication.
Second, the randomness of terminal users and the uncertainty of
renewable energy resources cause a mass of trouble. Third,
because of the complexity of energy management, recently
parallel algorithms in computer math in embedded software
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are incompatible with EI, which highly limits the high
performance of supercomputers. Fourth, because of the large
scale of EI, it is exceedingly difficult to build the synchronous
clock bus line and global communication. Fifth, although a
certain part of EI is uncertain, it does not change
tempestuously moment by moment. When participators
change a little, the dispatch earnings may be no more than the
cost of computing and communicating. Sixth, the principle of
multi-energy conversion is complex and multitudinous, and the
iteration in the algorithm is incompatible with energy conversion.
Seventh, the privacy of we-energies and devices is difficult to
protect. Last but not least, the cost of energy generation and
conversion is changeable, which causes certain trouble to
economic optimization.

The Developing of Energy Management
Algorithms
Energy management in a traditional power system adopts the
centralized algorithm, which is nearly infeasible because of too
much pressure on the control center and communication. So the
distributed algorithm rises (Yuang et al., 2022). The distributed
algorithm not only greatly reduces the pressure of the control
center but also absorbs renewable energy resources in the huge
system of EI. Moreover, the issue of privacy protection is half
done in it (agents communicate with neighbor agents so their
privacy is not entirely protected). Additionally, the incompatible
issue is settled on its own. The distributed algorithm is great
progress because it is at least a feasible method. However, other
disadvantages hereinbefore still exist. What is more, the
distributed algorithm requires an excess of iteration times
and a large of communications at each time of iteration.
What is worth noting is that the computing and
communicating times in distributed algorithms are much
more than that in centralized algorithms. Whereas the
computing and communicating in distributed algorithm
allocate to all we-energies, but that in the centralized
algorithm are entirely undertaken by the control center. A
large number of technology limits including the hardware
structure, the size of the microcircuit, and the packaging
technology impose certain restrictions on the performance of
the supercomputer in the control center, so a centralized
algorithm is impracticable. However, the number of the
control platforms is not limited, so distributed algorithms
can handle much more complex issues. So the distributed
algorithm is doable in EI although the computing and
communicating cost is large. Li et al. (2019) proposed the
asynchronous distributed algorithm which reduces some
meaningless communication and does not require the
synchronous clock bus line. However, there are still various
challenges in energy management, especially the iteration
problem and the communicating and computing pressure it
brings. Furthermore, the algorithm in the study by Li et al.
(2019) sacrifices energy supply-demand balance under certain
circumstances, which does great harm to EI. To this end, this
study proposed that the RDETA algorithm can handle all
aforementioned challenges. The difficulties of energy

management, the contributions, and the greatest motivations
of all these algorithms are in Table 1 (✔ for entirely addressing,
✖ for not addressing, • for half addressing). RDETA adopts
several technologies. Some are original, others are not original.
Table 2 shows all technologies and their contributions and their
original circumstances (✔ for original, ✖ for not original).

Basic Knowledge of Graph Theory
Consider an EI system with ε we-energies, where i th we-energy
has ξi participators. An undirected graph Graph � (V, E, B) is
adopted to model it, where V � {vi|i � 1, 2,/, n} is a set of nodes
representing agents in multi-agent systems and E ⊆ V × V is a set
of undirected edges. Therein, the edge (vi, vj) denotes that vi node
and vj node can communicate with each other if needed. The
relationships between vi and vj is shown in B � [bi,j] ∈ Rm×n. The
diagonal elements in that matrix are all zeros constantly. If a non-
diagonal element bi,j > 0, (vi, vj) ∈ E, they are neighbor agents.
Whereas ifbi,j � 0,(vi, vj) ∉ E, they are not neighbor agents. In
the undirected graph, sides between nodes are not directed, so
(vi, vj) ∈ E equals to(vj, vi) ∈ E. In this study, we only study
connected graph because non-connected graph represents two
island energy system that need to be researched, respectively. If
we replace a node the graph will be non-connected, that node is
called cut-vertex.

RDETA Algorithm
In this study, the main purpose is to minimize all costs under the
circumstance that all energy demands and all limits are satisfied.
So we can model all participants in each we-energy as a vector
space including a lot of vectors including the operating
condition vector{Xi,j ∈ R3|i � 1, ..., ε; j � 1, ..., ξi}, their partial
differential, and high-order differentials of cost functions. It
is worth noting that, for polynomial functions, their high-order
differentials will restrain to zero sooner or later. Whereas for
other functions including but not limited to exponential
functions, trigonometric functions and logarithmic functions,
and their high-order differentials will never restrain.
Additionally, some functions may have a too high order,
which may greatly increase the computing pressure. So we
should use an order supremum dd to avoid these troubles. If
a vector is not zero after (dd + 1) order differential, we adopt
Chebyshev polynomials to lower the order to dd. We establish
that in the original state all we-energies operate in the island
model in a random condition and that all the energy supply-
demand balances are satisfied. Then we will transmit the change
value vector of energy resources and the energy loads to the
control center inside the we-energy and the control center will
solve the energy mismatch vector. Due to the different time
scales between different types of energy, we deal with the
forecasting results of a different energy in different ways for
renewable energy devices and energy loads as follows:

x1
i,j,tk

� 0.5 × (zx1
i,j,tk

+ fx1
i,j,tk+1) (28)

x2
i,j,tk

� zx2
i,j,tk

(29)
x3
i,j,tk

� fx3
i,j,tk

(30)
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zx and fx are the present energy flow and the forecasting energy
flow in the next measuring time. The responding speed of power
is less than 1 ms and the inductor and capacitance can store or
release some power in proper time. So we regard the power flow
as the average value of the zx and fx so that the power flow in the
time between two measurings will press close to the power
demand.

The responding speed of gas may be several seconds or
several seconds. We control gas at this time, and because of
the slowly responding speed, the control may come into play
in the next measuring time. So we regard the gas flow as fx in

the next measuring time. . The responding time of heat is too
long to consider. For this reason, the forecasting of it is
meaningless. So we do not forecast it to reduce computing.
Then each device transmits all their condition vectors, their
partial differential and high-order partial differentials vectors
of cost functions to the control center. Then, the control can
solve the issues that all the first-order partial derivative values
of the same independent values in EM are equal when the
multi-energy balance is reached by high-order partial
differential equations. The homologous independent values
vector shows their optimal working conditions without TD

TABLE 1 | The development and contributions of an energy management algorithm.

Type of algorithm Centralized
algorithm

Distributed algorithm Asynchronous
distributed algorithm

Regional
dispatch event-

triggered
algorithm
(RDETA)

Greatest motivation First algorithm in
energy
management

Disperse the pressure in the
control center

No longer
communicate
meaninglessly

No longer need
iterations

Feasibility analysis Infeasible Feasible Feasible Feasible
Difficulty in energy management
and the addressing
circumstances of the algorithms

Too many iterations ✖ ✖ ✖ ✔

Randomness of terminal
users and renewable energy
resources

✔ ✔ ✔ ✔

Incompatible parallel
algorithms in computer

✖ ✔ ✔ ✔

Build the synchronous clock
bus line

✖ ✖ ✔ ✔

Global communication ✖ ✖ ✖ ✔

Meaningless
communications

✖ ✖ ✔ ✔

Energy conversion ✖ ✖ ✖ ✔

Privacy-protecting ✖ • • ✔

Changeable cost ✖ ✖ ✖ ✔

Difficulty they bring and the addressing circumstance in later
algorithms

Too much pressure
to control center

✔ ✔ ✔

Increase too many times of
communications in each time
of iteration

✖ ✔

The accuracy of astringency is
poor

✖ ✔

Sacrifice energy
supply-demand
balance

✔

TABLE 2 | All technologies in RDETA and their contributions and original circumstances.

High-order
partial

differential
equation

Asynchronous
communication

Coupling
distributed

model
and centralized

model

Regional
communication

Communication
-ahead

forecasting

Concept of average
cost and

instantaneous
cost

Sacrifice
economic

optimization
to ensure
energy
balance

Contribution Remove
iterations,
protect users’
privacy

Remove synchronous
bus line, avoid
meaningless
communication

Make infeasible
centralized
algorithms
feasible

Remove global
communication

Enhance the
accuracy of
forecasting

Handle the energy
management issue at
a changeable cost

Avoid the
detriment of
energy mismatch

Originality ✔ ✖ ✔ ✔ ✔ ✔ ✔
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devices. That first order is the instantaneous cost of the
corresponding type of energy for the reason we will
introduce in as follows. Then if the instantaneous cost of
one type of energy is less than another type of energy and the
cheap energy can change into the expensive energy by TD
devices, the control center can solve another issue when the
instantaneous cost of the expensive energy equals that of the
conversion of the cheap energy when the multi-energy is
balance. The instantaneous cost of conversion energy is the
first-order partial differential of a composite function. The
inside function is the cost function of the controllable EM
devices of that energy (renewable energy devices are not
controllable). The outside function is the cost function of
TD. The new independent variable is the new operating
conditions of relevant EM devices and the changeable of
them is the opposite number of the operating conditions of
TD devices. After that, the optimal work of island mode in
each we-energy is finished. The next issue is the collaborative
optimization among we-energies. First, we should solve all
instantaneous costs of each energy and stack them into a price
vector Si with three elements. The instantaneous cost of
energy whose load changes to another load is the partial
differential of the energy generation about the controllable
EM cost functions, while the instantaneous cost of energy
whose load changes from another load is the partial
differential of part of the energy generation which is
utilized by terminal users about that. Then, the we-energy
will transmit the energy price vector to neighbor we-energies
and compute the trigger vector as follows:

Ti
1 � Si

Ti
2 � ave{Ti

1, all(Ti2
1)|i ~ i2}

Ti
3 � ave{Ti

2, all(Ti2
2)|i ~ i2}

.......

T
i
k � ave{Ti

k, all(Ti2
k
)|i ~ i2}

(31)

The symbol ave means the average vector of all vectors in
the set. The symbol ~ means that the two number we-energies
between that symbol are neighbor-agents. The symbol all
means a set of all elements under that circumstance. All
we-energies will transmit their Ti

1 to Ti
q+1 to their neighbor-

agents. q is the number of cut-vertex in the EI system. The
reason for that is the low connected degree EI needs more
control. If the difference value absolute of one of the element
in Ti

1 to Ti
q+1 is larger than the homologous element in the

trigger vector ℵ which is very small, the asynchronous
communication between their two we-energies will be
triggered. Then, two we-energies will be regarded as one
big we-energy. They will share one control center and
repeat the we-energy partial differential equation dispatch
hereinbefore as follows:

d(Ci,j,tk)
xm
i,j,tk

� d(Ci,j’,tk)
xm
i,j’ ,tk

d(Ci,j,tk)
xm
i,j,tk

� k1,
d2(Ci,j,tk)
(xm

i,j,tk
)2 � k2,

d3(Ci,j,tk)
(xm

i,j,tk
)3 � k3...

dn(Ci,j,tk)
(xm

i,j,tk
)n � kn

d(Ci,j′,tk)
xm
i,j′,tk

� kk1,
d2(Ci,j′,tk)
(xm

i,j′,tk)
2 � kk2,

d3(Ci,j′,tk)
(xm

i,j′,tk)
3 � kk3...

dn(Ci,j′,tk)
(xm

i,j′,tk)
n � kkn

(32)
The partial derivative values are the energy prices for the reason

that is expressed hereinafter. k and kk are constants. There are three
advantages of this operation. First, this operation is centralized in the
two we-energies but is distributed in the whole EI for the reason that
the twowe-energies are very small to the whole large system of EI. It is
worth noting that the method of partial differential equations is unfit
for big systems but is fit for small systems. A big we-energy including
two we-energies is a small system that is very fit to the method of the
partial differential equations. Second, the partial differential equations
can solve the issue of energymanagement without iteration. However,
it is unfit for large systems because of the pressure of communication
and computing. The RDETA adopts the partial differential equations
in two we-energies which not only avoid iteration but also avoid too
much computing and communicating pressure.

So the price vector in the two we-energies will be the same. Then,
the control center will compute how much energy should be
transmitted from one we-energy to another and stack it into an
energy flow vector. After that, the asynchronous communication
will be cut off, while the energy transmitting value will be reserved
in a transmitting vector and the we-energies will transmit energy
according to that. There are some points which should be emphasized.
First, a we-energy can only asynchronously communicate to only one
we-energy at a time. If the price difference still exists between it and
another we-energy, that we-energy may communicate to it after it
finished the asynchronous communication before. Second, after the
asynchronous communication, if another asynchronous
communication between them does not appear, the energy
transmitting between them will be invariant even if the operating
conditions of some energy devices change by the dispatch inside the
own we-energy or the asynchronous communication between the we-
energy and another we-energy. Third, when the nextmeasuring time is

FIGURE 2 | Heat instantaneous price (cent).
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reached, all we-energies will dispatch inside themselves by partial
differential equations first, then they may asynchronously
communicate and asynchronously dispatch. If one or two we-
energies have the energy transmitting assignment between other
we-energy, the asynchronous energy dispatch should consider the
energy transmitting assignment. Fourth, if one we-energy should
asynchronously communicate to two or more we-energies, whose
we-energy will be communicated first may be random because there is
not an asynchronous clock bus line in EI, so the trigger timemaynot be
same in different we-energies. We cannot control which two we-
energies will trigger early. Fifth, if the operating condition of a device is
out of its in equation constraint, we will adjust it to a value on the
constraint boundary. Then, we will adjust other values to reach the
energy balance. By these methods, the energy management of RDETA
will be realized. What is more, if the energy conversion efficiency and
the operating cost factor of TDdevices are all under a trigger condition,
we can regard the transmitted load as the terminal users’ load to
simplify the computing pressure. In this study, that condition is 70%
for energy conversion and 2 cent for the operating cost factor. It is
worth noting that, RDETA cannot adopt KKT. The KKT is a good
optimal method and good at handling optimal problems with in
equation limits. However, KKT requires entire cost functions. If we
adopt KKT, too much pressure will be given on communication and
computing. To this end, RDETA adopts partial differential equations
rather than KKT conditions. Devices only need to exchange partial
differential vectors rather than all cost functions by this means.
Generally, the communication needs to end when all the
asynchronous communication is not triggered, while if the number
of cut-vertex is less than 3, we can stop the communication when all
we-energies communicate to all neighbors for one time.

Testification of Optimality and Avoiding
Zeno Behaviors
As you can see, we do not prove the astringency of RDETA. The
reason for that is there is not any iteration in RDETA, the astringency

is obviously meaningless. The optimality is very easy to understand.
However, what is themeaning of avoiding Zeno behaviors? The Zeno
behaviormeans the trigger happens infinite times in a limited time. In
this study, the Zeno behavior means the asynchronous
communication is activated infinite times in one time of measuring.

The cost is changeable, which brings a serious challenge to energy
management. For handling that issue, we propose several concepts
including average cost, instantaneous cost, and finite difference cost.

The average cost is the specific value of the whole energy
generation or conversion cost (can be solved by the cost
function) and the energy flow. The finite difference cost is
the specific value of a length of energy cost and the energy
flow difference. The difference between the average cost and
the finite difference cost is that the average cost is a specific
value with the whole generation (conversion) energy, which is

FIGURE 3 | Power instantaneous price (cent).
FIGURE 4 | Power exchanging flow (kw).

FIGURE 5 | Heat exchanging flow (kw).
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from zero to an energy flow value. However, the finite
difference cost is between energy flow a to energy flowb.
That value can be solved by the difference value of the cost function
value between a and b. If we choose a pair of values about a and b, in
which a is exceedingly similar tob, the length finite difference cost can
change into a point cost. The point cost is called the instantaneous cost.

Because the absolute value of ℵ is exceedingly small, we can
assume it as zero. Only if all trigger vectors are the same, the
asynchronous communication will stop. Obviously, if all price
vectors in each we-energy are the same, all trigger vectors will be
the same, too. If price vectors are not all in the same value, Ti

1 will
trigger asynchronous communication. So the necessary and sufficient
condition of asynchronous communication will stop is that all price
vectors are in the same value.

FIGURE 6 | Gas exchanging flow (kw).

FIGURE 7 | WholeEI asynchronous communication trigger times.

FIGURE 8 | Power supply-demand mismatch.

FIGURE 9 | Heat supply-demand mismatch.

FIGURE 10 | A gas supply-demand mismatch.
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If there are εwe-energies in EI, we can regard them as ε − 1 we-
energies because we can regard two neighbor we-energies as one
big we-energy. The neighbor we-energies of the big we-energy are
all of the neighbor we-energies of them. The asynchronous
communication can adjust their price vectors to the same.
Even if another we-energy communicates to one of them,
which leads their price vectors different, they can adjust
themselves. What is worth noting is if a we-energy
communicates to one of them for one time, the change of that
we-energy which does not belong to the big we-energy is different
from the change while the big we-energy is really one we-energy
because that we-energy only communicates to one of them but
not to both of them. However, after several times of adjusting
inside the big we-energy and between the outside we-energy and
one of the we-energy in the big we-energy, the dispatch will be the
same of the big we-energy is a really we-energy because the big
we-energy will adjust them to one we-energy sooner or later even

if other we-energies disturb them. The two we-energies will
undertake the perturbance together. Then, we can regard the
big we-energy and a neighbor we-energy of it as a bigger we-
energy for the same reason. So the big we-energy can enlarge over
and over again until adsorbing the whole EI. So the price vectors
of each we-energy will be the same after certain communication.
The asynchronous communication will stop at the same time.
The Zeno behavior of the asynchronous communication time is
infinite and will never appear.

The optimization proof of the whole EI is the same as that of
one we-energy because we can regard the whole EI as a big we-
energy. In that big we-energy, all energy cost functions are convex
functions, all price vectors are the same, and all energy conversion
instantaneous costs are the same too. Under that circumstance,
the energy balance is reached. If some energy devices operate in
another condition, other devices also need to change the
operating conditions to ensure the energy balance. The price
of them will change. According to the theory of convex
optimization, the increasing finite difference cost of the
devices generating or transforming more energy is more than
the decreasing finite difference cost of other devices because all
functions are convex functions. (The cost functions of TD devices
are also convex functions because they are composite functions.)

There are a large number of contributions of RDETA, which are
summarized in Figure 2. Some are obvious while some are vague.
We introduce some obscure contributions here. It is worth noting
that there is not a relationship between the importance of the
contributions and whether to introduce them here. The only
reason to introduce them is that they are difficult to understand.

The reason RDETA can enhance privacy protection is that each
we-energy only needs to exchange their Ti

1 to T
i
q+1 to other neighbor

agents when the asynchronous communication is not triggered. The
information in them is very less. Their operating conditions and a lot
of important information do not need to exchange. The reason
RDETA can make infeasible centralized algorithms feasible is that
centralized algorithms are unsuitable for large systems, while
RDETA only adopts it in one or two we-energy. The reason

FIGURE 11 | Times of communicating and computing pressure.

FIGURE 12 | We-energy framework.
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RDETA can remove global communication is that RDETA only
communicates in two we-energies at one time.

SIMULATION RESULTS

The performance of the proposed RDETA algorithm is tested on
an EI system with five we-energies. The simulation platform and
all data are shown in the Supplementary Appendix. The
measurement interval time is 10 s. The simulation results are
as follows.

Figures 2, 3 are the instantaneous price of power and heat (the
gas price never changes). Figures 4–6 are energy exchanging between
each we-energy and others. Figure 7 is the asynchronous
communication times in whole EI. What is worth noting is that
the communication order is randomized to a certain degree because
there is not a synchronous clock bus line. For comparing with the
traditional distributed algorithm, we give a distributed Newton
algorithm result. Most data and models for the distributed Newton
algorithm are the same as that in RDETA, while the gas production
cost function is different becausewithout the changing price of gas, the
traditional algorithm cannot run. The cost function is as follows:

CDGP
i,t � aDGPi,t GDGP2

i,t + bDGPi,t GDGP
i,t + cDGPi,t

To differentiate, that device is called DGP in the distributed
Newton algorithm but called EGG in RDETA.

Figures 8–10 are the power-heat-gas mismatch. The Zeno
coefficient is the decrease times of the Newton downhill factor.
The traditional Newton distributed algorithm goes by 43 times of
iteration with global communication to make all types of energy
mismatch less than500kw. However, RDETA adopts four times of
iterations with regional communication (the communication
workload of regional communication is one-sixth to that of

global communication because there are six sides in the graph
of EI in this study.) to make all types of energy match zero.
Therefore, RDETA adopts a workload 64.5 times less than that of
the traditional distributed algorithm to realize a better energy
management result than that in the traditional distributed
algorithm. Compared with traditional centralized algorithms,
communicating and computing pressure of the control center
about RDETA is much less. Figure 11 is the times of
communicating and computing pressure of the control center
between traditional centralized algorithms and RDETA. As you
can see, the communicating and computing pressure times
between them are growing sharply with the growth of we-
energy numbers. So RDETA is much more suitable for the
large EI with lots of we-energies than traditional centralized
algorithms.

Figure 12 is the we-energy framework. Figure 13 is the EI
framework. There are five we-energies in EI in this article. The
price of gas is 8 cents per kwh . The price of coal is 6 cents per kwh .
sg for power and gas is0.1 times the initial measure value. k − 1
means the initial condition.Δr is all 2. I is all 4. sg of the energy load is
0.1 times its initial value. Other data is in the following big table. Some
data is the same in CCHP and GCHP, so we only introduce it once.
The heat load does not change the whole time.

CONCLUSION

In this study, an innovative asynchronous communication energy
management framework without iterations has been introduced for
the future EI. Along with five we-energies, the EI system can better
address the features and requirements of EI in a way with much less
workload. By the combination of distributed algorithms and
centralized algorithms and the partial differential equations, the
cost of RDETA greatly decreases and its performance of that is
obviously increased. Simulation results and theoretical
identifications have demonstrated the effectiveness of it. However,
cyber attacks and nonconvex issues are out of consideration in this
study. So they need to address this in future work.
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