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The slip of the packer is the core part of the anchoring system. Unreasonable design of the
slip structure can easily cause damage to the anchor claw of the slip, unstable anchoring,
and even damage to the casing. At present, the main methods of slip anchoring
performance tests are indoor design and field tests, and slips with different structural
parameters need to be processed to verify their anchoring performance. In order to ensure
that the slips can play a good anchoring effect and reduce the damage to the casing, this
study uses a combination of finite element analysis, BP&NSGA-II, and indoor tests to study
the mechanical behavior of the slips during the anchoring process. A prediction model was
established to optimize the key parameters affecting anchoring performance, such as slip
angle, inclination angle, inner cone angle, the radius of curvature, and spacing. Indoor
experiments show that the prediction method can greatly improve the efficiency and
accuracy of the design and test the anchoring performance of slips.
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INTRODUCTION

In view of the nonlinearity and furrow phenomenon in the anchoring process of slips and casing, the
design method based on the experiment is mainly used to analyze the anchoring performance of slips
and casing. In the entire design process, structural design-test-optimize the structural parameters of
slips-test verification. This method not only exhibits a long design cycle but also exhibits a high
research and development cost.

Ma measured the internal stress and contact stress of slips and obtained the stress changes of slips
(Ma and Zhai, 2009). The simulation test research on packer slips was carried out and studied the
stress changes of slips (Yong, 2008). Li analyzed the occlusion of slips and casing and pointed out the
deformation law of slips (Tong and Qing-Xian, 2004). Next, Wang analyzed the stress conditions of
flukes and casing through photo elastic physics and numerical simulation, and the results showed
that the flukes exhibited uneven stress, which laid a foundation for subsequent structural
optimization (Wang and Zhu, 2008).

The BP neural network is a forward artificial neural network that is widely used at present.
Because the network demonstrates good associative memory and fault tolerance, it can quickly and
effectively reflect the complex and highly non-linear relationship between input and output in the
actual application process. Based on this, many scholars at home and abroad have carried out a lot of
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related scientific research (Lou and Yang, 1998a; Lee et al., 1999a).
At present, the main methods of slip anchoring performance tests
are indoor design and field tests, and slips with different
structural parameters need to be processed to verify their
anchoring performance. However, still, no report exists about
the use of this method to predict the performance of kava
anchoring.

This study will use the method of BP&NSGA-II (back
propagation and non-dominated sorting genetic algorithm) to
study the prediction method of slip anchoring mechanical
properties, in order to provide certain technical support for
the optimization design of downhole packer slips.

ESTABLISH THE STRUCTURAL MODEL OF
THE SLIP SYSTEM

The structure of the packer is more complicated, but the main
load transfer during the anchoring process is the cone, slips, slip
seat, and casing. In order to facilitate the analysis of the anchoring
performance of slips, the actual structure of the packer was
simplified, and a structural model of the slip system was
established. The structural model of the slip system is shown
in Figure 1, R is the radius of curvature of the slip anchor claw
(initial value is 62 mm), α is the inclination angle of the anchor
claw (the initial value is 60°), β is the anchor claw angle (the initial
value is 60°), and d is the distance between the anchor claws
(initial value) 8 mm), of which the inner diameter of the casing is
124.26 mm.

Next, as the calculation of the contact problem with the casing
during the slip anchoring process is more complicated, in order to
facilitate the calculation and analysis, the following points were
considered in the process of establishing the finite element model
of the slip system:

FIGURE 1 | Slip system structure model.

FIGURE 2 | The finite element model of the slip system.

FIGURE 3 | Schematic diagram of grid division.
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1) Since the slips are distributed in five equal parts on the surface
of the packer, the finite element model only takes 1/5 of the
structural model.

2) Since the center tube, the sleeve and other parts do not affect
the contact analysis between slips and casing, and the above
parts are ignored in the finite element model. The finite
element model of the slip system is shown in Figure 2.

3) Since all the components of the slip system are continuums,
SOLID95 elements are used for meshing. This element can get
the calculation result more accurately when it is subjected to
large deformation and large strain. Also, the grid division of
the slip system is shown in Figure 3.

According to the working environment of the packer, set the
boundary conditions of the finite element model as follows:

1) The movement of the cone can only be translated along the
axial direction, restricting its circumferential and radial
movement;

2) Symmetrical constraints are imposed on the circumference of
the side profile of the cone, slip seat, and casing;

3) The slip seat and the bottom surface of the casing are fully
restrained.

The load is applied, and a load of 120 kN is applied at the
anchor time based on field experience, so a normal load of 24 kN
is applied to the upper section of the cone. The Von Mises
equivalent stress distribution cloud diagrams of slips and casing
are obtained by calculation, as shown in Figures 4, 5.

According to the calculation results, the following conclusions
can be drawn:

1) The maximum contact pressure between slips and casing is
26.508 kN, which is likely to cause unstable anchoring of the
packer;

2) In the same anchor claw of the slip, the stress on both sides is
greater than the middle part;

3) In the axial section of slips, the upper-end anchor claw stress
in the same axial direction is greater than the lower end
anchor claw stress;

4) Slips and casing exhibit stress concentration, and both are
easily damaged.

The above conclusion shows that the contact pressure
distribution between slips and casing is unreasonable, and the
overall structure of slips needs to be optimized.

KEY DATA ANALYSIS BASED ON
ORTHOGONAL EXPERIMENTAL DESIGN
METHOD
According to the previous non-linear contact finite element
analysis of the structural parameters of the slips, the effect of
the key structural parameters of the slips on the performance is
understood; in the entire optimization design, the radius of
curvature of the slips, the overall cone angle, the anchor teeth,
the profile angle, the pitch of the anchor claws, and the overall
oblique angle of the anchor claws are designed to optimize the
design variables, and the maximum value of the contact pressure
between the slips and the casing and the uniform distribution of
the slip contact pressure is the optimization targets, that is, the
fitness value. Next, the slip prediction model established by the
neural network evaluates the maximum value and distribution of
contact pressure after contact analysis of each group of slip
structure parameters. In order to predict the
comprehensiveness and accuracy of the model, ensuring that
the sample space is comprehensive and uniform is necessary, and
the orthogonal experimental design method in the experimental
design method is used to select the experimental parameters
(Yang, 2001; Yan et al., 2003).

FIGURE 4 | KaVo Von Mises equipotency distribution cloud map.

FIGURE 5 | Von Mises isopotency distribution cloud diagram of casing.
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All sample points designed through orthogonal experiments
are numerically simulated using Abaqus software, and the
average and maximum contact stress values under different
combinations of structural parameters are analyzed. Use the
analyzed results to train the neural network and establish the
anchoring performance prediction model of slips.

In the structural optimization process of slips, the key points in
the optimization process are the selection of optimized
parameters and the use of the approximate model neural
network to evaluate the fitness value. The key points are
analyzed and discussed below.

1) Determine the optimization variable range of slip structure
parameters

In the entire optimization design, the radius of curvature of
slips, the overall taper angle of slips, the tooth profile angle of
slips, the spacing of slips, and the overall oblique angle of slips are
used as optimization design variables. The value ranges of the
variables of each optimized design are shown in Table 1.

2) Test design planning network sample space

Next, plan the network input sample space according to the
orthogonal experiment method in the experiment design. In
the structural optimization of slips, five optimization
variables are found, and each optimization variable takes
five values; 625 kinds of slips exist that need to be tested
and studied. This brings a great workload to both processing
tests and numerical simulations. In the multi-factor
experiment, the orthogonal experiment design method
refers to the use of all experimental data as the source, in
which some representative test points are selected for test
analysis, and the selected test points are required to be
“balanced and dispersed,” “tidy and comparable,”
“specialty. For the five-factor five-level orthogonal test
design method, the orthogonal table is 25 sets of test data,

which greatly reduces the difficulty of the test and can
effectively carry out the test analysis. Among them, the test
data of the orthogonal test design can be used as the training
set of the neural network, and the comprehensiveness and
uniformity of the sample space will greatly increase the
accuracy of the neural network prediction.

Next, according to the characteristics of slip structure
parameters, the five-factor and five-level test plan of slips
ware established through the orthogonal experiment
method. The factor level table of slips is shown in Table 2,
and the design scheme of the L25 (55) orthogonal table test is
shown in Table 3.

TABLE 1 | Value ranges of the optimized variables of slips.

Optimization variable Value ranges

Rk 58 ~ 62
αk 16° ~ 20°

βk 55° ~ 75°

dk 5.5 ~ 7.5 mm
γk 0° ~ 4°

TABLE 2 | Factors and their level value table.

Optimization variable Five levels

Rk 58 59 60 61 62
αk 16 17 18 19 20
βk 55 60 65 70 75
dk 5.5 6 6.5 7 7.5
γk 0 1 2 3 4

TABLE 3 | L25 (55) orthogonal table.

Number Rk αk βk dk γk

1 58 16 55 5.5 0
2 58 17 60 6 1
3 58 18 65 6.5 2
4 58 19 70 7 3
5 58 20 75 7.5 4
6 59 16 60 6.5 1
7 59 17 65 7 2
8 59 18 70 7.5 0
9 59 19 75 5.5 1
10 59 20 55 6 2
11 60 16 65 7.5 1
12 60 17 70 5.5 2
13 60 18 75 6 3
14 60 19 55 6.5 4
15 60 20 60 7 0
16 60 16 70 6 4
17 60 17 75 6.5 0
18 60 18 55 7 1
19 60 19 60 7.5 2
20 60 20 65 5.5 3
21 61 16 75 7 2
22 61 17 55 7.5 3
23 61 18 60 5.5 4
24 61 19 65 6 0
25 61 20 70 6.5 1

FIGURE 6 | Topological structure of BP neural network slip performance
prediction model.
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ESTABLISH A SLIP PERFORMANCE
PREDICTION MODEL BASED ON BP
NEURAL NETWORK
1) Analysis of prediction model topology

N, the entire optimization design, the slip radius of
curvature Rk, the overall cone angle of slips αk, the shape
angle of slips anchor claw βk, the spacing of slips anchor claw
dk, and the overall oblique angle of slips anchor claw γk are
used as the optimization design variables. With contact
pressure and mean value distribution as output variables,
the input layer exhibits five neuron inputs, and the output
layer exhibits a structure of two neurons. The entire network
uses a typical three-layer structure, in which the hidden layer
selects 11 node neurons. The input layer and the hidden layer
of the BP network use the tansig function as the transfer, and
the purelin between the hidden layer and the output layer is
used as the transfer (Lou and Yang, 1998b; Lee et al., 1999b),
Figure 6 for the structure.

2) Normalization of input and output parameters

The input and output parameters of the neural network
must be normalized. Since the normalized range of input and
output parameters determines the training effect of the neural
network, generally, the larger the normalized range of input
and output parameters, the faster the final convergence speed.
Next, the input and output parameters are normalized
according to Formula (1).

x
Λ � x − xmin

xmax − xmin
(1)

xmin is the minimum value of the sample point; xmax is the
maximum value of the sample point.

3) Training BP neural network

Since the function trainlm is a combination of the gradient
method and the Gauss-Newton method, the function trainlm is
selected to train the network. According to the error of the output
result and reduce the error function value, this training method

can dynamically analyze the convergence direction of the
iteration. In the entire BP neural network training, the
number of training steps is set to 2,000, and the final target
error of the network is set to 0.00001. The training process is
shown in Figure 7.

Through the comparative analysis of the numerical simulation
results and the prediction results of the BP neural network
prediction model, as shown in Figure 8, it can be seen that
the prediction model deviation is 5.5%, to meet the engineering
requirements.

SLIP STRUCTURE OPTIMIZATION BASED
ON NSGA-II OPTIMIZATION PROGRAM

Using Matlab language, a multi-objective optimization
program for the key components of slips is compiled,
namely the following: the NSGA-II optimization program
(Lou and Yang, 1998a; Lee et al., 1999a; Tong and Qing-
Xian, 2004; Yu et al., 2008; Wang and Zhu, 2008; Zhang,
2009a; Zhang, 2009b; Zhang et al., 2019).

1) Optimize variable initialization

First, use the initialization function Initialize_variable to
encode the optimization variables in real numbers and get the
initial population optimized by the optimization variables. In this
article, real-number coding is used to facilitate the optimization
of variables in a large-space evolutionary search under a large
range of values. After real-number coding is used for the five
structural parameter variables that affect the performance of slips,
Initialize_variable generates N initial populations of individuals,
that is, the initial population matrix F that generates slip structure
variables is shown in Formula (1). Next, the first column of the
matrix is that the radius of curvature of slips is Rk, the second
column is that the overall cone angle of slips is αk, the third
column is that the slips anchor tooth profile angle is βk, and the
fourth column is that the slips and the anchor claw spacing is dk.
The overall oblique angle of the fifth row of slips anchor claws
is γk.

FIGURE 7 | Convergence speed during model training.
FIGURE 8 | Comparison of numerical simulation and neural. network
prediction of slip anchoring performance.
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F′′ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11, x12, x13, x14, x15

. . .
xi1, xi2, xi3, xi4, xi5

. . .
xn1, xn2, xn3, xn4, xn5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

2) Obtain fitness value

To perform the survival of the fittest in the population, the
evolution process of the population in the genetic algorithm
analyzes and calculates the fitness function value. In this study,
a prediction model of key parameters of kava anchoring
performance based on the BP neural network is established
to calculate the fitness value, and the function
Evaluate_objective is used to obtain the fitness value (Lee
et al., 1999b; Yu et al., 2008).

To obtain a new matrix F, the performance corresponding to
each individual is added to the optimized variable population
matrix, as shown in Formula (2). The first four columns in F are
the individual vectors in the group, and the last two columns are
the fitness values corresponding to each individual, the values of
which can be obtained by network prediction. Suppose
individuals are found in the group, therefore, F is a matrix of
N*6, as shown in Eq. 3.

F �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11, x12, x13, x14, x15, x16,
. . .
xi1, xi2, xi3, xi4, xi5, xi6,
. . .
xn1, xn2, xn3, xn4, xn5, xn6,

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

3) Non-dominant ranking

Use the function Fast_nondominated_sort to perform non-
dominated sorting on optimization variables.

As mentioned above, the vector corresponding to the
individual in Formula (2) is defined as F′′, and the vector
corresponding to the fitness value is defined as F′. Each
individual i in F′′ exhibits two parameters, which we define as
Ni and Si. Among them, Ni is the number of other individuals
that can dominate individual i in the population, and Si is the set
of solution individuals dominated by individual i.

In the sorting process, first, all individuals with Ni � 0 are
stored in the set Fi′; then, for each individual j in Fi′, examine the
set of individuals Si dominated by it and calculate the nk of each
individual k in Si Subtract 1 processing, that is, the number of
individuals that dominate the solution of individual k is reduced
by one. When nk − 1 is 0, store individual k in another set H;
finally, as the first-level non-dominated individual set Fi′, the
same non-dominated order irank for each individual in the set,
and continue with H. Next, do the above-mentioned grading
operation, assign the non-dominated order corresponding to the
processing process, until all individuals reach the grading, and
finally get a non-dominated sorted F matrix. The computational
complexity of non-dominated sorting in this sorting process is
represented by O(mN2), where m is the number of objective
functions, and N is the population size.

After the above sorting is completed, F is sorted according to
the Crowding_distance_assignment function, to obtain a matrix
F in which all individuals have been sorted.

4) Genetic manipulation

Use the function Genetic_operatorto, perform the genetic
evolution operation of selection, crossover, and mutation on the
matrix F after sorting. The selection operation of population
individuals is evaluated based on the fitness values of
individuals in the population, and the individuals with high
fitness values in the population are selected and inherited into
the next-generation population. That is, randomly select m
individuals from the sorted matrix F and sort them according
to the size of the fitness value. Among them, the individual with the
highest fitness is inherited by the next generation. Set the randomly
selected number m to half of the population number, that is,
m � N/2. After N selection and sorting, the next-generation
population with N individuals is obtained.

The selected individuals are uniformly crossed, that is, by
exchanging each gene of the two selected individuals in the
population. After the exchange, two completely new individuals
will be formed.

At random select two bodies from the population
Fi}(xi1, xi2, xi3, xi4), Fj}(xj1, xj2, xj3, xj4); randomly generate
the mask wordW � ω1 . . .ωi . . .ω4, i ∈ (1, 4), and its length is the
same as Fi} and Fj}. When ωi � 0 appears, the gene value of
individual Fi} and Fj} at position i will not be exchanged, keeping
the original Stateful. When ωi � 0, the gene value of individuals Fi}
andFj} at position i are inherited from each other; that is, two brand
new individuals Fi} and Fj} are generated.

Next, generating new individuals through mutation is also the
main step of evolutionary genetic algorithms. Use uniform variation
to select uniformly distributed random numbers within a specified
range to replace individual values at various locations. For example,
when an individual Fi}(x1 . . .xk . . .x4) is mutated at xk, the value
range of themutation point is set to |Uk

min,U
k
max|, andxk is uniformly

mutated, obtain the following: x′k � Uk
min + r(Uk

max − Uk
min), where

r is a random number with a uniform probability distribution from
0 to 1, and the new individual aftermutation isFi}(x1 . . .xk′ . . .x4).
The selection of selection, crossover, and mutation parameters in
genetic operations are shown in Table 4.

5) Population substitution

Learn from the elite strategy, use the substitution function to
expand the sample, and more and better good parents will be
found in the next generation, and the parents and offspring will
be merged as a new population after expansion. The parent

TABLE 4 | NSGA-Ⅱ operating parameters in the optimization of slip structure.

Parameter Value

crowd 400
Pc 0.8
Pm 0.1
Number of iterations 100
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population and the offspring population are integrated
through the non-dominated sorting function
Fast_nondominated_sort and crowding_distance_assignment
to generate an intermediate_chromosome containing 2N
individuals, sorting them to the top N individuals. As the
subgroup after replacement.

By completing the initialization of optimization variables,
obtaining fitness values, non-dominant sorting, genetic
operations, and population substitution, the optimization
design program will determine the end criterion. When the
optimal design procedure reaches the maximum number of
iteration steps, the optimization is terminated.

6) Optimization results

After a multi-objective and multi-parameter optimization
program based on NSGA-II, the optimization analysis
results of the key parameters of the slip setting are shown
in Table 5:

Using Abaqus software for numerical simulation calculation
(Malinov and Sha, 2004; Weidong et al., 2004; Bhadeshia et al.,
2009; Sun et al., 2010; Liu et al., 2016), the results show that the
contact stress between the optimized slip and the casing is
increased by 79%, and the numerical simulation calculation
results show that the optimized structural parameters of the
method improve the anchoring performance. The contact

TABLE 5 | Comparison of initial design and optimal design.

Design Rk/mm γk/(°) βk/(°) αk dk/mm Contact
force

between
slips

and casing/kN

Slip
maximum
Von Mises
stress/MPa

Maximum
Von Mises

stress
of casing/MPa

Initial design 58 0 55 16 5.5 25.343 279.238 102.956
Optimal design 60.8 0.6 65.4 18.5 6.2 48.719 501.481 261.932

FIGURE 9 | KaVo Von Mises stress distribution cloud diagram.

FIGURE 10 | Von Mises stress distribution cloud diagram of casing.

FIGURE 11 | Schematic diagram of the overall test of the anchoring
performance of the packer and slips.

FIGURE 12 | Slip anchoring performance and the overall sealing test
device of the packer.
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stress cloud diagram after slip optimization is shown in Figure 9,
and the contact stress cloud diagram of the casings in contact is
shown in Figure 10.

INDOOR TEST OF SLIP ANCHORING
PERFORMANCE WITH PACKER AS
CARRIER
1) Test purpose

Simulating the actual conditions of the underground, the slips
were installed on the packer for indoor tests, and the slip
performance setting test was performed indoors to compare
the anchoring performance of slips before and after the
optimization of the slip structure. The schematic diagram is
shown as Figures 11, 12.

2) Test principle (HOPPERSTAD et al., 2003; Gao et al., 2012;
Zhang et al., 2007)

The packer is fed into a casing with a diameter of 124 mm. The
casing simulates a downhole casing. For the convenience of
observation, the casing is divided into two sections. Next, the
packer is placed on the disassembly rack. The axial load is applied

by an axial loader, and the field test is simulated under indoor
conditions.

3) Test device

Disassembly frame (Figures 12, 13), packer prototype, high-
pressure pump, high-pressure hose, joints, etc.

4) Test method

According to the structural parameters of the slip initial design
(No. 1 slip) and the optimal design (No. 2 slip), two sets of
different slips were processed for indoor testing.

Assemble the packer compression plug, change button, packer,
and anchor seal connection, slowly feed the combination into the
casing sub-section in the horizontal direction, and push it together
with the packer rubber cylinder and slips into the casing.

The packer is placed on the unloading machine following the
casing, pressurized outside the pipe in the experimental wellbore,
and axially loaded 70 KN to set the packer. After the setting is
completed, pressure is applied to the upper and lower pressure
ports to verify the seal and record the test data.

5) Test parameters

The Figure 13 is the schematic diagram of axial loading. The
test process adopts the method of increasing the pressure step by
step, and the test is divided into four stages:

Stage 1: Pressure is 20 MPa, stabilized for 30 min; Phase 2:
Pressure of 30 MPa, stabilization for 30 min; Phase 3: Pressure
75 MPa, stabilized for 30 min; Stage 4: Pressure 105 MPa,
stabilized for 48 h.

5) Test results

Figure 14 is shown the wear condition of No. 1 slip group. The
experimental results show that the slips in Group 1 (Figure 14) are
seriously damaged. Next, when the packer receives an axial load of
30MPa, it starts to move. When the axial load reaches 105MPa, the
final axial displacement is 300 mm. The slip anchoring performance
and the design requirements are not met.

FIGURE 15 | Wear condition of No. 2 slip group.

FIGURE 14 | Wear condition of No. 1 slip group.

FIGURE 13 | Schematic diagram of axial loading.
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Figure 15 is the wear condition of No. 2 slip group, the axial load
reaches 105MPa, and the pressure is stabilized for 48 h without
pressure drop. The packer did not leak during the actual sealing
process, indicating that under the action of axial pressure load, the
upper and lower slips can achieve uniform occlusion of the casing
wall after effective cracking. After the packer is successfully set, the
test is over. The slips demonstrate no axial displacement, and the
slips basically demonstrate no abrasion. The anchoring performance
of the slips is good and meets the design requirements.

CONCLUSION

1) In this study, by determining the slip structure parameters to
optimize the variable range and the network sample space, the
orthogonal experiment method is used to establish a test plan.
Based on a large number of slip contact analysis results as the
neural network training sample points, a BP neural network-
based prediction model of slip anchoring performance realizes
the scientific optimization of slip anchoring performance
prediction.

2) This study uses the BP neural network to test the parameters
outside the training sample space, which verifies that the BP
neural network prediction model established in this article
demonstrates a certain generalization ability. By comparing
and analyzing the results predicted by numerical simulation
and BP neural network prediction model, the error meets the
requirements of the project.

3) The anchoring performance test results based on slip
optimization and the initial structure show that a big gap
exists between the slips of the initial structure and the slips
optimized by the BP&NSGA-Ⅱ method in terms of anchoring
performance. As far as the anchoring performance of slips is
concerned, the test results are in good agreement with the
numerical simulation results.

4) Experiments verified that the prediction method
demonstrates the advantages of good fault tolerance and
strong versatility and can effectively optimize the anchoring
performance and structural parameters of slips. At the same
time, applying the BP&NSGA-Ⅱ method to the field of
mechanical design can significantly shorten the equipment
design cycle, improve efficiency, and greatly reduce equipment
R&D costs.
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