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To reduce the operating cost and enhance the energy utilization efficiency of the integrated
energy system (IES), an economic dispatch algorithm is proposed based on finite-time
double-consensus. First, an economic dispatch model of IES under two modes of
operation, islanded and grid-connected, is constructed considering energy
transmission losses. After that, the optimal improved incremental cost and power
output allocation of the IES can be found out in finite time. The proposed algorithm
contains two finite-time consistency protocols simultaneously that can solve the optimal
values of the incremental cost of electricity and heat of integrated energy system, solving
the strong coupling problem of multi-energy systems. The proposed algorithm not only has
a faster convergence rate but also enables switching freely between the two operation
modes. In addition, a distributed method for quickly discovering the total system power
mismatch is proposed in the process of algorithm solving. The finite-time convergence of
the proposed algorithm is demonstrated. Finally, the IES simulation based on the IEEE 30-
node power system and the Bali 32-node thermal system is established. The analysis of
the simulation results shows that the algorithm proposed in this paper is effective.

Keywords: distributed economic dispatch, finite time, double-consensus algorithm, double modes of operation,
transmission loss, integrated energy system

1 INTRODUCTION

At present, the world is facing increasing pressure to save energy and protect the environment, and
how to reduce environmental pollution based on ensuring a continuous supply of energy is a
problem that countries have to consider (Yang and Su, 2021). Integrated energy system (IES) is a
significant way to consume various types of distributed renewable energy, which is important for
promoting the consumption of various types of renewable energy and establishing a new type of
green and low-carbon power system (Li et al., 2021). IES is a deep integration of multiple energy
sources and information technology that can promote the sustainable development of energy. With
the increasing demand for IES to replace conventional energy systems in recent years, the research on
various key technologies and theories about IES, such as dynamic modeling (Shen et al., 2020), multi-
energy flow calculation (Yao et al., 2021), optimal cooperative operation (Qin et al., 2020), energy
management (Li et al., 2020) and economic dispatch problem (EDP) (Lu et al., 2021; Liu et al., 2019),
is receiving widely concerned.

The EDP has always been a hot issue in power and energy system research, and this is no
exception in IES. Economic dispatch (ED) is a dispatching method to achieve the lowest cost through
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rational utilization of energy and equipment while satisfying
safety and energy quality. The EDP can be equated to the
planning problem of finding the minimum value of the cost
function while satisfying the capacity constraint of each unit and
the system power balance constraint. Traditional centralized
control algorithms have also been applied to solve EDPs, such
as model predictive control (Yu et al., 2019; Huang et al., 2021)
and deep reinforcement learning (Lin et al., 2020). The advantage
of centralized is reflected in the ease of unified management of
resources within the system. Still, there are drawbacks such as
high communication requirements, high computational load, and
vulnerability to attacks (Xu et al., 2015). To overcome the
shortcomings of centralized algorithms, distributed algorithms
and multi-agent technology have gradually received widespread
attention. Compared with centralized algorithms, distributed
algorithms require fewer communication resources and have
higher robustness and information security. Several distributed
algorithms have been proposed to solve the EDP, such as the
alternating direction multiplier method (Chen and Yang, 2018),
diffusion algorithm (Chen and Sayed, 2012) and consensus
algorithm (Binetti et al., 2014; Yang et al., 2017).

The consensus algorithm is used to achieve the economic
optimum of the whole system by iteratively converging the
incremental cost of each capacity unit to the consistency. Still,
a centralized controller is required in the initially designed
algorithm to calculate the total power deviation to ensure the
power balance (Pu et al., 2017). Due to the stochastic nature of
wind generation, its modeling should be different from
conventional units. The uncertainty of the wind turbine
output is considered in (Guo et al., 2016), and the power
balance is achieved based on projected gradient that gets rid of
the centralized control center. Saddle point dynamics is
introduced in the iterative process of the consensus algorithm
to search for an economically optimal solution in (Bai et al.,
2019), which achieves fully distributed. Considering that
communication delays always exist in real systems, the time-
varying delay is considered in (Huang et al., 2019). The algorithm
can still converge under certain communication delay conditions.
In modeling the EDP, the cost function of equipment output is
usually designed as a convex quadratic function to ensure the
speed and convergence of the algorithm. To make the algorithm
perform well even when the cost function is a general convex
function, a method based on secant approximation is proposed to
achieve efficient convergence (Zhong et al., 2021). (Chen et al.,
2017; Zaery et al., 2020) use finite-time consensus for solving the
EDP so that the algorithm converges in a determined finite time.
In addition, issues such as network loss compensation (Sun et al.,
2021) and information security encryption (Yan et al., 2021) have
been considered.

However, most of the ED algorithms in the above literature are
only proposed for power systems. For IESs, there is less literature
on solving the EDP by consensus algorithms, and how to deal
with the coupling relationship among multiple energy sources is
one of the focuses of problem. A double-consensus algorithm is
proposed in (Sun et al., 2019) to construct two consistency
protocols in parallel to solve the strong coupling between
electric and heat and achieve the economic optimum of the

whole system. Based on (Sun et al., 2019), a distributed robust
algorithm capable of resisting network attacks is proposed
(Huang et al., 2022). The event-triggered mechanism is also
applied to the economic dispatch problem to reduce the
communication between agents (Li et al., 2019).

In summary, finite-time consensus allows the states of the agents
to converge quickly to consistency in finite time. Event-triggered
consensus (Chen et al., 2022) is to set the trigger function and trigger
conditions. The communication between the agents is generated only
when trigger conditions aremet, which has the advantage of reducing
the requirement for communication. The traditional consensus
(Hong et al., 2022) haven’t the advantages of both. To the
authors’ knowledge, the finite-time the consensus algorithm to
solve the EDP of IES has not been discussed in depth. Based on
the results obtained in the previous study, an ED strategy of IES is
proposed based on the finite-time double-consensus algorithm in this
paper, which can achieve economic optimality in both modes of
system operation in islanded and grid-connected. The main
contributions are as follows.

1) The ED strategy for IES is proposed based on the finite-time
double-consensus algorithm, which solves the strong coupling
problem among different energies by simultaneously
executing two consistency protocols to achieve economic
optimization. The proposed algorithm can achieve fast
convergence in a finite time while allowing free and
smooth switching between two modes of operation, that is,
grid-connected and islanded. A distributed method to
discover the total system power mismatch within finite step
iterations is proposed to achieve power supply and demand
balance during the algorithm execution.

2) The EDP model for IES considering transmission losses of
electric and thermal energy is constructed, which has two
modes of operation. The electric and thermal output coupling
of combined heat and power units (CHPs) is considered in the
model. And their operable domains are considered as output
constraints.

3) The Lyapunov function for improved incremental cost
deviation is constructed and the finite-time convergence of
the proposed algorithm is demonstrated by theoretical
analysis.

The rest of the paper is organized as follows: Preliminaries
introduces some basic knowledge of graph theory used in this
paper. Problem Formulation introduces the modeling of IES and
the optimal solution of the EDP. Finite-Time Double-Consensus
Algorithm proposes the finite-time double-consensus algorithm
to solve the EDP. Case Studies demonstrates the effectiveness of
the algorithm through data analysis of the constructed system.
Conclusion summarizes the conclusions and provides an outlook.

2 PRELIMINARIES

2.1 Graph Theory
For any IES containing n agents, its communication network
topology graph is generally represented by an undirected graph
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G � (V, E), where V � {1, 2, . . . , n} denotes the set of agents and
E ⊆ V × V denotes the set of edges between agents. The elements
(i, j) denote that agent i and j are interconnected and can
communicate and receive information from each other. If
there is a communication line between agent i and j, then
agent j is a neighbor of i. The set consisting of all neighbors
of agent i is denoted as {j ∈ V|(i, j) ∈ E}. The adjacency matrix
A � [aij] can represent the connectivity of G. For an undirected
graph, if there is a communication path between i and j, then
aij � aji � 1; otherwise aij � aji � 0. The diagonal element aii �
0 is defined. Let Di � ∑

j∈Ni

aij, then the diagonal matrix D �
diag(Di) is the degree matrix of G. Define the Laplacian
matrix of a graph G as L � D − A. An undirected graph G is
connected if there exists at least one path between any two agents.
For a connected graphG, its Laplacian matrix L has only one zero
eigenvalue, and the rest of the eigenvalues are greater than 0. A
sequential ordering of all its eigenvalues can be expressed as 0 �
λ1(L)< λ2(L)< . . . < λn(L).

3 PROBLEM FORMULATION

3.1 Integrated Energy System Modeling
Assume an IES with N agents, where the agents include power
generating units (PGUs), heat generating units (HGUs) and
CHPs. The IES is connected to the distribution network, and
the system receives exchange power from the distribution
network when operating in grid-connected mode. The
operating cost of each unit can be approximated as a convex
quadratic function of its output. The cost functions for different
types of units can be expressed as follows:

CP � ∑
i∈NP

CPi(PGi) � ∑
i∈NP

αPi + βPi
PGi + γPi

P2
Gi (1)

CC � ∑
i∈NC

CCi(PCi, QCi)
� ∑

i∈NC

αCi + βCi
PCi + γCi

P2
Ci
+ ζCi

QCi + ηCi
Q2

Ci
+ θCiPCiQCi (2)

CH � ∑
i∈NH

CHi(QHi) � ∑
i∈NH

αHi + βHi
QHi + γHi

Q2
Hi (3)

where CP, CC, and CH denote the total operating costs of PGUs,
CHPs, and HGUs, respectively;NP,NC, andNH denote the set of
PGUs, CHPs, and HGUs; CPi, CCi, and CHi denote the operating
costs of the i th PGU, CHP, and HGU. PGi and PCi denote the
power output of the i th PGU and CHP. QCi and QHi denote the
heat output of the i th CHP and HGU. αPi, βPi

, γPi
, αCi, βCi

, γCi
, ζCi

,
ηCi

, θCi, αHi, βHi
, and γHi

are the operating cost coefficients of the i
th PGU, CHP, and HGU, respectively.

At the same time, each unit of the IES has to satisfy some
equality constraints and inequality constraints. The equality
constraints are electrical and thermal power balance constraints:

∑
i∈NP

PGi + ∑
i∈NC

PCi + PM − PL − Ploss � 0 (4)
∑
i∈NH

QHi + ∑
i∈NC

QCi − QL − Qloss � 0 (5)

where PL and QL denote the total power and thermal load
demand, and PM is the power obtained from the distribution
network under the grid-connected mode of system operation.
When the system is in islanded mode, PM � 0. Ploss and Qloss

denote the total transmission loss of electric and thermal power
generated by the transmission line and heating pipeline,
respectively. They are approximated as functions of the output
power, Ploss � ∑

i∈NP

BPiPGi + ∑
i∈NC

BCiPCi,

Qloss � ∑
i∈NH

BHiQHi + ∑
i∈NC

BCiQCi, BPi, BCi, and BHi are loss

coefficients.
The inequality constraints, that is, the power output limits of

PGUs and HGUs and the operable domain constraint of CHPs:

PGi
≤PGi ≤ �PGi (6)

Q
Hi
≤QHi ≤ �QHi (7)

The lower and upper limits of the electrical output of the i th
PGU are PGi

and �PGi, and the lower and upper limits of the
thermal output of the i th HGU areQ

Hi
and �QHi

, respectively. For
CHP, its electric and thermal output is bounded by its operable
domain, as shown in Figure 1. The boundary of this operable
region is specified in the form of a linear inequality (Soroudi,
2017):

PCi − PA
Ci
− (PB

Ci
− PA

Ci

QB
Ci
− QA

Ci

) × QCi ≤ 0 (8)

PCi − PB
Ci
− (PC

Ci
− PB

Ci

QC
Ci
− QB

Ci

) × (QCi − QB
Ci
)≥ 0 (9)

PCi − PC
Ci
− (PD

Ci
− PC

Ci

QD
Ci
− QC

Ci

) × (QCi − QC
Ci
)≥ 0 (10)

FIGURE 1 | Operable domain of CHP.
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PC
Ci
≤PCi ≤P

A
Ci

(11)
0≤QCi ≤Q

B
Ci

(12)
where PA

Ci
, PB

Ci
,PC

Ci
, PD

Ci
,QA

Ci
,QB

Ci
,QC

Ci
, andQD

Ci
are the coordinates

of the four vertices A, B, C, andD of the operable domain of the i
th CHP on the PC axis and the QC axis as shown in Figure 1.

3.2 Economic Dispatch Problem
The EDP of the IES is to distribute the output power of each unit
reasonably on the basis of ensuring power balance to minimize the
operating cost. The objective function of the EDP is defined as
follows:

min C � CP + CC + CH + μ0PM (13)
where C is the operating cost of the whole IES and μ0 is the
electricity price of the distribution network.

The equality constraints and inequality constraints are specified in
Eqs. 6–12 also need to be satisfied in solving the objective function.
When only the equality constraints are considered, the following
Lagrangian function can be constructed:

L � C + μP⎛⎝PL + Ploss − ∑
i∈NP

PGi − ∑
i∈NC

PCi − PM
⎞⎠ + μH⎛⎝QL + Qloss

− ∑
i∈NH

QHi − ∑
i∈NC

QCi
⎞⎠ (14)

whereL is the Lagrangian function and μP, μH are the Lagrangian
multipliers corresponding to the electrical and thermal power,
respectively. The optimal solution of the system can be obtained
by finding the partial derivatives from the Karush-Kuhn-Tucker
(KKT) condition as

zL
zPGi

� 2γPi
PGi + βPi

+ μP(BPi − 1) � 0 (15)
zL
zPCi

� 2γCi
PCi + βCi

+ θCiQCi + μP(BCPi − 1) � 0 (16)
zL
zQCi

� 2ηCi
QCi + ζCi

+ θCiPCi + μH(BCHi − 1) � 0 (17)
zL
zQHi

� 2γHi
QHi + βHi

+ μH(BHi − 1) � 0 (18)
zL
zPM

� μ0 − μP � 0 (19)
zL
zμP

� PL + Ploss − ∑
i∈NP

PGi − ∑
i∈NC

PCi − PM � 0 (20)
zL
zμH

� QL + Qloss − ∑
i∈NH

QHi − ∑
i∈NC

QCi � 0 (21)

The improved incremental cost of each unit is defined as

μPPi
� zCPi

zPGi

· 1

(1 − zPloss

zPGi

) (22)

μCPi
� zCCi

zPCi

· 1

(1 − zPloss

zPCi

) (23)

μCHi
� zCCi

zQCi

· 1

(1 − zQloss

zQCi

) (24)

μHHi
� zCHi

zQHi

· 1

(1 − zQloss

zQHi

) (25)

From Eqs. 15–21, according to the equal micro-incremental
rate criterion, when the cost consumed per unit of active
power generated by each unit is the same, that is, when the
improved incremental cost μP or μH of each unit reaches the
consistent values μpP and μpH, the overall operating cost of IES
takes a minimal value. It achieves the goal of economically
optimal dispatch of the system. If the system is operated in
grid-connected mode, according to Eq. 19, the improved
incremental cost μP of the system should converge to the
electricity price μ0, then we have

{ μPP1
� μPP2

� . . . � μPPi
� μCP1

� . . . � μCPi
� μpP, islandedmode

μPP1
� μPP2

� . . . � μPPi
� μCP1

� . . . � μCPi
� μ0, grid − connectedmode

(26)
μHH1

� μHH2
� . . . � μHHi

� μCH1
� . . . � μCHi

� μpH (27)
If the inequality constraint of the objective function is

considered, the maximum output power can only reach its
upper limit and the minimum can only reach its lower limit.
In the case of satisfying this condition, the results of Eqs.
15–18 can be transformed, and the optimal solution of the
improved incremental cost also needs to satisfy the following
relation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2γPi
PGi + βPi

1 − BPi

> μpP, PGi � PGi

2γPi
PGi + βPi

1 − BPi

� μpP, PGi
<PGi < �PGi

2γPi
PGi + βPi

1 − BPi

< μpP, PGi � �PGi

(28)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2γCi
PCi + βCi

+ θCiQCi

1 − BCPi

> μpP, PCi � PCi

2γCi
PCi + βCi

+ θCiQCi

1 − BCPi

� μpP, PCi
<PCi < �PCi

2γCi
PCi + βCi

+ θCiQCi

1 − BCPi

< μpP, PCi � �PCi

(29)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2ηCi
QCi + ζCi

+ θCiPCi

1 − BCHi

> μpH, QCi � Q
Ci

2ηCi
QCi + ζCi

+ θCiPCi

1 − BCHi

� μpH, QCi
<QCi < �QCi

2ηCi
QCi + ζCi

+ θCiPCi

1 − BCHi

< μpH, QCi � �QCi

(30)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2γHi
QHi + βHi

1 − BHi

> μpH, QHi � Q
Hi

2γHi
QHi + βHi

1 − BHi

� μpH, QHi
≤QHi ≤ �QHi

2γHi
QHi + βHi

1 − BHi

< μpH, QHi � �QHi

(31)

Based on the equal micro-incremental rate criterion, the
optimal incremental cost of IES can be determined
iteratively. A traditional centralized control strategy can
achieve this control goal by collecting information from all
agents in the system integrated through a control center to
calculate the optimal solution to the EDP. However,
distributed generators are becoming more and more
widely put into use, and centralized control is
challenging to meet the demand. How to solve μpP and μpH
and achieve the optimal power distribution of IES by
distributed methods is what will be discussed in the next
section of this paper.

4 FINITE-TIME DOUBLE-CONSENSUS
ALGORITHM

To overcome the disadvantages of centralized control,
distributed ED algorithms based on incremental cost
consistency have been proposed. Each agent only needs to
obtain the parameters and states of local and neighbors.
There are two main structures of consensus algorithms for
solving the EDP. 1) The algorithm proposed by (Pu et al.,
2017) requires a central controller to collect the output power
information of all agents to obtain the total output power and
calculate the total power mismatch to pass to the leader for
feedback regulation. It cannot guarantee the power balance if
the central controller fails. 2) The algorithm proposed by
(Chen and Li, 2021) estimates the power mismatch value of
the local agents by each agent in the process of iteration.
Finally, the power mismatch estimation value of each agent
converges to 0, and the system reaches power balance. This
method removes the centralized control center but slows
down the algorithm’s convergence, which is not conducive
to the EDP that requires high convergence speed.

Based on the above algorithms, a distributed ED strategy
for IES based on the finite-time double-consensus algorithm
is proposed in this paper. The proposed algorithm uses a
distributed approach to obtain the total power mismatch and

make the improved incremental cost converge to the
consistency in finite time, which not only effectively
accelerates the convergence speed but also solves the
problem of electrical and thermal coupling. At the same
time, free switching between two operation modes is also
allowed.

4.1 Total Power Mismatch Discovery
Note that the output power information of each unit is
available only to the local node and its neighbors.
Determining the total power mismatch of the system in a
distributed manner is the first problem to be dealt with.
Define the net output power of each unit as

PS
Gi
� PGi − BPiPGi � (1 − BPi)PGi (32)

PS
Ci
� PCi − BCPiPCi � (1 − BCPi)PCi (33)

QS
Ci
� QCi − BCHiQGi � (1 − BCHi)QCi (34)

QS
Hi

� QHi − BHiQHi � (1 − BHi)QHi (35)
where PS

Gi
, PS

Ci
, QS

Ci
, and QS

Hi
denote the net output power of

the i th PGU, CHP, and HGU, respectively, which can be
calculated directly at the local agent and sent to neighbors.
The Laplacian matrices defining the communication
topologies of the power and thermal networks are L̂ and ~L,
and the adjacency matrices are Â � [âij] and ~A � [~aij],
respectively. To ensure that the iterations converge in a
finite number of steps, the weight factor update formula for
agent i can be chosen as (Kibangou, 2012)

wij(k) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
λk+1(L), jϵNi

1 − Di

λk+1(L), j � i, k � 1, 2,/, m

0, otherwise

(36)

where λk+1(L) represents the eigenvalue of the Laplacian
matrix L, which is mentioned at the end of Section 2.1.
From Eq. 36, the weight factor matrices of the power and
thermal networks are obtained as Ŵ(k) � [ŵij(k)] and
~W(k) � [ ~wij(k)], and then the total power output discovery
algorithm is designed as follows:

PS
t(k + 1) � Ŵ(k)PS

t(k) (37)
QS

t(k + 1) � ~W(k)QS
t(k) (38)

where, PS
t � [PS

Gi,t
, PS

Ci,t
]T represents the vector of net electric

output, and QS
t � [QS

Hi,t
, QS

Ci,t
]T represents the vector of net

thermal output. After iteration, the state of each agent will
converge to the average of the initial state of each agent.
Assuming that the numbers of agents of both electric and heat
network are known as nP and nQ, the algorithm converges after
nP − 1 and nQ − 1 iterations. The total net electric and thermal
output of the system is
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Ptotal(t) � nPP
S
t(nP) (39)

Qtotal(t) � nQQ
S
t(nQ) (40)

where PS(nP) and QS(nQ) are the convergence values of the
algorithm after nP − 1 and nQ − 1 iterations. The total power
mismatch can be expressed as

ΔP(t) � PL − Ptotal(t) (41)
ΔQ(t) � QL − Qtotal(t) (42)

This power mismatch will be used as a feedback quantity when
solving for the optimal improved incremental cost μpP and μpH to
achieve power balance.

4.2 Optimal Incremental Cost and Output
Solution
The agent connected to the distribution network is selected as the
leader of the power network to communicate with the
distribution network to receive electric price information and
connection status information. The finite-time double-consensus
algorithm for solving the improved incremental cost is designed
as follows:

_μP � αP⎡⎢⎢⎣ ∑
jϵNi

âijsig(μPj
(t) − μPi

(t))m

+ bĝisig(μ0 − μPi
(t))m

+c · εP · ΔP(t)⎤⎥⎥⎦ (43)

_μH � αH⎡⎢⎢⎣ ∑
jϵNi

~aijsig(μHj
(t) − μHi

(t))m

+ εH · ΔQ(t)⎤⎥⎥⎦ (44)

where αP and αH are control gains, sig(x)m � sgn(x) · |x|m,
0<m< 1, if agent i is connected to the leader, then ĝi � 1;
otherwise ĝi � 0. b � 1, c � 0 means the system is in grid-
connected mode, when operating in islanded mode then
b � 0, c � 1. This signal change can be transferred from the
distribution network to the leader. εP and εH are power
regulation coefficients.

Lemma 1 (Wang and Xiao, 2010): Let ϑ1, ϑ2,/, ϑn ≥ 0 and
0< d≤ 1, then we have

∑n
i�1
ϑdi ≥⎛⎝∑n

i�1
ϑi⎞⎠

d

(45)

Lemma 2 (Zhang et al., 2012): Let G � diag(gi), for an
undirected connected graph with Laplacian matrix with the
following properties:

1)x is a column vector composed of state variables of each
agent with xT(L + G)x � 1

2∑n
i,j�1aij(xj − xi)2 +∑n

i�1gi(xi)2.
2)xT(L + G)x≥ λ2xTx, where λ2 is the second smallest
eigenvalue of the matrix (L + G) and λ2 > 0.

Lemma 3 (Wang and Xiao, 2010): If there exists a continuous
positive definite function V(x) of the system, if it satisfies the

existence of positive numbers c> 0 with α ∈ (0, 1) and an open
neighborhood V ⊆ D containing the origin, such that

_V(x) + cV(x)α ≤ 0 (46)
then the origin is the finite-time stable equilibrium point of the
system. V(x) reaches 0 in finite time as follows:

T(x)≤ V(x)1−α
c(1 − α) (47)

Theorem 1: For an undirected connected graph G, the
algorithms in Eqs. 43, 44 can converge in finite steps.

Proof: Taking Eq. 43 as an example, define the amount of
deviation of the improved incremental cost as δPi(t) � μPi

(t) −
μ0 such that the deviation vector
δP(t) � [δP1(t), δP2(t),/, δPn(t)], and since μ0 is time-
invariant, _δPi(t) � _μPi(t). The following Lyapunov function is
chosen as

V(t) � 1
2
∑n
i�1
δ2Pi(t) (48)

Taking the differential of V(t), then there is

_V(t) � ∑n
i�1
δPi _δPi

� ∑n
i�1
δPi∑n

j�1
âijsig(δPj − δPi)m − ĝisig(δPi)m

� −1
2
⎡⎢⎢⎣∑n
i,j�1

âij(δPj − δPi)sig(δPj − δPi)m +∑n
i�1
2ĝiδPisig(δPi)m⎤⎥⎥⎦

� −1
2
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣∑n
i,j�1

(â 2
1+m
ij sig(δPj − δPi)2)1+m

2 +∑n
i�1
(2ĝ 2

1+m
i sig(δPi)2)1+m

2 ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(49)

According to Lemma 1, it follows that

_V(t)≤ − 1
2
⎡⎢⎢⎣∑n
i,j�1

(â 2
1+m
ij sig(δPj − δPi)2) +∑n

i�1
(2ĝ 2

1+m
i sig(δPi)2)⎤⎥⎥⎦

1+m
2

(50)
Let aij � â

2
1+m
ij and gi � ĝ

2
1+m
i , which is obtained from Lemma 2

_V(t)≤ − 1
2
[2λ2δTPδP]1+m2

≤ − 1
2
[4λ2V(t)]1+m2

(51)

Let c′ � 1
2(4λ2)

1+m
2 , we can get _V + c′V1+m

2 ≤ 0. Then according to
Lemma 3, the error of the improved incremental cost can

converge to 0 in finite time T≤ 2V
1−m
2 (0)

c′(1−m) .
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Finally, the output power is solved according to the improved
incremental cost.When considering the system inequality constraints
shown in Eqs. 6–12, the output power of each unit can be
expressed as

PGi(t) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PGi
,

(1 − BPi)μPi
− βPi

2γPi

<PGi

(1 − BPi)μPi
− βPi

2γPi

, PGi
<
(1 − BPi)μPi

− βPi

2γPi

< �PGi

�PGi,
(1 − BPi)μPi

− βPi

2γPi

> �PGi

(52)

PCi(t) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PCi
,

(1 − BCPi)μPi
− βCi

− θCiQCi

2γCi

<PGi

(1 − BCPi)μPi
− βCi

− θCiQCi

2γCi

, PGi
<
(1 − BCPi)μPi

− βCi
− θCiQCi

2γCi

< �PGi

�PCi ,
(1 − BCPi)μPi

− βCi
− θCiQCi

2γCi

> �PGi

(53)

QCi(t) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q
Ci
,

(1 − BCHi )μHi
− ζCi

− θCiPCi

2ηCi

<Q
Ci

(1 − BCHi )μHi
− ζCi

− θCiPCi

2ηCi

, Q
Ci

<
(1 − BCHi )μHi

− ζCi
− θCiPCi

2ηCi

< �QCi

�QCi
,

(1 − BCHi)μHi
− ζCi

− θCiPCi

2ηCi

> �QCi

(54)

QHi(t) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q
Hi
,

(1 − BHi)μHi
− βHi

2γHi

<Q
Hi

(1 − BHi)μHi
− βHi

2γHi

, Q
Hi

<
(1 − BHi)μHi

− βHi

2γHi

< �QHi

�QHi
,

(1 − BHi)μHi
− βHi

2γHi

> �QHi

(55)
The output power of each unit can be determined based on

the improved incremental cost. If the output power exceeds
the limit, it is optimized to the limit of the output power. If
the system works in grid-connected mode, P(t) does not need
to be involved as a feedback quantity in solving μpP, and the
power mismatch is compensated by the exchange power of
the distribution network.

According to the above-proposed algorithm, the steps for
solving the EDP of the IES are shown in Figure 2, and the
corresponding steps are described as follows:

Step 1 Each agent updates the information of itself and
neighbors through the communication network, constructs
the topology of the IES, and sets the Laplacian matrix of the
topology diagram of the electric and heat network.
Step 2 Calculating the initial values of the improved
incremental cost and net output power according to Eqs.
22–25, Eqs. 32–35, and determining the initial state
variables of each agent.
Step 3 Calculating the total power mismatch value based on
the power output of each agent. Updating improved
incremental cost state variables according to the power
mismatch.
Step 4 Calculating the output power of each unit based on the
improved incremental cost. The power exchanged with the
distribution network needs to be calculated if operating in
grid-connected mode, but not if in islanded mode.
Step 5 Calculating the electric and thermal improved
incremental cost errors, and if the errors satisfy the
convergence accuracy ε, output the optimal solution for
each unit’s output; if not, repeat Step 3.

5 CASE STUDIES

5.1 Simulation Setup
To test the effectiveness of the proposed algorithm, a 30–32 nodes
IES is built for simulation and analysis. The IES is improved by
coupling the IEEE 30-node electric system with the Bali 32-node

FIGURE 2 | The ED solution process of IES.
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thermal system (Liu et al., 2016), and its communication topology
is shown in Figure 3.

Agents one to four represent PGUs, agent 5 represents CHP,
and agents six to eight represent HGUs. The dashed lines in the
figure represent the communication lines among each agent. The
communication line exists between agent 1 and the distribution
network, which can receive the electricity price sent by the
distribution network. The parameters of each distributed unit
in the system are set as shown in Table 1. The upper and lower
output limits of each PGU and HGU are 80 kW and 200 kW. The
coordinates of the four vertices of the operational domain of the
CHP are (0, 220), (180, 170), (165, 70), and (0, 85). The
communication interval among agents is 0.05 s. The model is
programmed and solved using the MATLAB 2021a simulation
platform.

5.2 Effectiveness Analysis
5.2.1 Analysis of Effectiveness in Islanded Operation
Mode
This subsection will verify the effectiveness of the algorithm in
islanded operation mode. The system is set in islanded operation
mode, and the total electrical power demand PL and the total
thermal power demand QL are set to 500kW and 550 kW in the
initial state. The initial values of each unit output are
PG1 � 75kW, PG2 � 95kW, PG3 � 115kW, PG4 � 128kW,
PCi � 87kW, QH1 � 155kW, QH2 � 170kW, QH3 � 95kW,

FIGURE 3 | The schematic of 30–32 nodes IES.

TABLE 1 | Cost factor parameters for each unit.

Agent βi γi ζ i ηi θi Bi

1 17.8 0.062 — — — 0.042
2 15.4 0.058 — — — 0.060
3 18.5 0.063 — — — 0.045
4 19.3 0.047 — — — 0.055
5 16.5 0.043 8.7 0.035 0.039 0.040
6 12.3 0.037 — — — 0.035
7 10.7 0.044 — — — 0.036
8 10.6 0.039 — — — 0.031

FIGURE 4 | Total output power iterative process. (A) Electrical power
output. (B) Thermal power output.
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FIGURE 5 | Algorithm results in islanded operation mode. (A) Improved
incremental cost. (B) Power output of each unit. (C) Electrical and thermal
power mismatch.

FIGURE 6 | Algorithm results in grid-connected operation mode. (A)
Improved incremental cost. (B) Power output of each unit. (C) Electrical and
thermal power mismatch.
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QC1 � 130kW. First, we verify the effectiveness and convergence
speed of algorithms in Eqs. 43, 44. As shown in Figure 4, the
electric and thermal outputs converge to their initial state
averages of �P � 100kW and �Q � 137.5kW after several steps of
iteration. This demonstrates that the algorithm can accurately
estimate the total electric and thermal outputs of the whole
system in a distributed manner.

After that, the effectiveness of the proposed finite-time double-
consensus algorithm is verified. The operation results are shown
in Figure 5. Figure 5A shows the iterative process of improved
incremental cost. Figure 5B and Figure 5C show the
corresponding output and power mismatch of each unit,
respectively. As can be obtained from the figures, the power
and thermal improved incremental cost converge to the optimal
values of 31.0 cent/kWh and 22.91 cent/kWh at t � 1.2s, and the
output of each unit is PG1 � 100.19kW, PG2 � 126.02kW,
PG3 � 92.29kW, PG4 � 112.53kW, PC1 � 94.85kW,
QH1 � 137.42kW, QH2 � 134.24kW, QH3 � 153.49kW,
QC1 � 145.02kW. The power mismatch of the system is 0. At
t � 2s, PL and QL change to 600kW and 480kW. After
recalculation, the power and heat improved incremental costs
converge to the new optimal values. At t � 4s PL and QL change
to 520kW and 620kW, the algorithm can converge to the new
optimal value again. When the load demand changes and the
algorithm is activated for regulation, the power mismatch of the
system fluctuates briefly and finally converges to 0. The system
achieves power balance and economic optimum.

5.2.2 Analysis of Effectiveness in Grid-Connected
Operation Mode
The system is set in grid-connected operation mode. The
distribution network electricity price μ0 is set to 36 cent/kWh,
and the total electric power demand PL and total thermal power
demand QL are 760kW and 530kW. The algorithm operation
results are shown in Figure 6. According to the findings in
Section 3.2, when the IES is operated in grid-connected mode,
its power improved incremental cost should converge to the
distribution network electricity price. The output of each unit is
shown in Figure 6B as PG1 � 140.43kW, PG2 � 169.05kW,
PG3 � 131.89kW, PG4 � 165.61kW, PC1 � 169.08kW,
QH1 � 142.72kW, QH2 � 139.71kW, QH3 � 158.55kW,
QC1 � 109.28kW, in addition to the electric power from the
distribution network PM � 21.78kW. At t � 4s, PL and QL

change to 790kW and 590kW, while μP remains constant at
the convergence value of 36 cent/kWh, and the output of the
PGUs remains unchanged. The variation of the electric power
obtained from the distribution network is PM � 60.53kW. When
the algorithm starts, the thermal power deviation fluctuates and
gradually converges to 0, but the electric power mismatch is
always 0. This is because the electric power mismatch is always
compensated by the distribution network in the grid-
connected mode.

5.2.3 Operational State Switching Verification
This subsection will focus on testing whether the proposed
algorithm can perform free switching between the two
operation modes to cope with sudden distribution network

faults and reconnection after fault repair. At the initial
moment, the system is set in islanded mode with total
electrical power demand PL and total thermal power
demand QL of 780 and 530 kW. The algorithm results are

FIGURE 7 | Algorithm results when operation mode switching. (A)
Improved incremental cost. (B) Power output of each unit. (C) Electrical and
thermal power mismatch.
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shown in Figure 7. The system operates in islanded mode, so
the power exchanged with the distribution network is 0.

At t � 2s, the distribution network is reconnected, and the
system switches to grid-connected mode to continue
operation. μP is regulated and finally converges to 36 cent/
kWh, and the electrical output is updated to PG1 � 140.51kW,
PG2 � 169.15kW, PG3 � 132.02kW, PG4 � 165.77kW, and
PC1 � 169.30kW, while the power to be obtained from the
distribution network PM � 41.11kW. Since the total electrical

and thermal power demand of the system is the same as
before, the value of μH and the heat output of each unit
remain essentially unchanged. As can be obtained in
Figure 7C, the deviation of the electric power caused by the
change of the improved incremental cost is compensated on the
power provided by the distribution network when the operation
mode is switched. The deviation of the thermal power only shows
small fluctuations and recovers quickly. This proves that the
algorithm is still effective when the operation state of the system
is switched and does not cause large fluctuations of the power
deviation. The proposed algorithm has a “plug-and-play” feature.

5.2.4 Comparison Analysis With Other Algorithms
Finally, the algorithm proposed in this paper is compared with
those in other existing papers in the same simulation scenario.
Table 2 shows the comparative analysis with the three
algorithms in three existing papers. All three papers also
solve the EDP by the incremental cost iterative method. The
advantages of the algorithm proposed in this paper is shown in
Table 2. In addition, Figure 8 shows the convergence speed of this
paper compared with the algorithm proposed in (Chen and Li,
2021) in solving the EDP of the same system. With the same
parameters and initial values of each agent, the proposed algorithm
converges at about t � 1s, while the algorithm in (Chen and Li,
2021) takes about t � 3s to converge. The algorithm proposed in
this paper tends to have a faster convergence rate than the
algorithm in (Chen and Li, 2021).

6 CONCLUSION

In this article, a distributed algorithm is proposed for solving
the EDP of IES, which can obtain the optimal solution in a
finite time and can switch smoothly between two operation
modes. Firstly, the ED model is developed for IES under two
operation modes considering transmission losses. Then, a
finite-time double-consensus algorithm is proposed to solve
the coupling problem among multiple energies and achieve
the economic optimum of the system in finite time. Finally, a
simulation study is conducted for the case. Several
experiments indicate that the proposed algorithm is
effective in two operation modes and has the advantage
of fast convergence. The research is essential to enhance
economic efficiency and improve the energy utilization
of IES.

In the upcoming research work, based on the results
obtained from the above studies, the energy types of IES,

TABLE 2 | Comparison of algorithms proposed in related literature.

This Article Zaery et al. (2020) Pu et al. (2017) Chen and Li, (2021)

Finite-time convergence √ √ — —

No centralized control center √ √ — √
Satisfy the equality constraint √ — √ √
Expanding to IES √ — — —

Consider two modes of operation √ — — √

FIGURE 8 | Comparison of the convergence speed of the two
algorithms. (A) The algorithm proposed in this paper. (B) The algorithm
proposed in (Chen and Li, 2021).
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such as gas and cold, can be further expanded. In addition,
communication delay and cyber-attacks need to be
considered when designing control strategies to enhance
their robustness.
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