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In the process of traditional power load identification, the load information of V-I track is
missing, the image similarity of V-I track of some power loads is high and the recognition
effect is not good, and the training time of recognition model is too long. In view of the
abovementioned situation, this study proposes a power load recognition method based
on color image coding and the improved twin support vector machine (ITWSVM). First,
based on the traditional voltage–current gray trajectory method, the bilinear interpolation
technique is used to solve the pixel discontinuity problem effectively. Considering the
complementarity of features, the numerical features are embedded into the gray V-I
trajectory by constructing three channels, namely, current (R), voltage (G), and phase
(B), so the color V-I image with rich electrical features is obtained. Second, the two-
dimension Gabor wavelet is used to extract the texture features of the image, and the
dimension is reduced by means of local linear embedding (LLE). Finally, the artificial fish
swarm algorithm (AFSA) is used to optimize the twin support vector machine (TWSVM),
and the ITWSM is used to train the load recognition model, which greatly enhances the
model training speed. Experimental results show that the proposed color V-I image coding
method and the ITWSVM classification method, compared with the traditional V-I track
image construction method and image classification algorithm, improve the accuracy by
6.12% and reduce the model training time by 1071.23 s.

Keywords: nonintrusive load monitoring 1, V-I trajectory 2, color encoding 3, two-dimensional Gabor wavelet 4, local
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1 INTRODUCTION

NILM is the main tool to analyze the electrical behavior of residential users. It can collect, store, and
analyze important electrical information through the data acquisition and communication device
installed at the user’s power supply entrance. In this way, users can accurately perceive the running
state and energy consumption of each electrical equipment (Sun et al., 2017; Guo et al., 2021).
Compared with the traditional invasive monitoring device for the analysis of each electrical
equipment installation, NILM without further user internal can grasp the electricity situation of
all kinds of equipment, on the one hand; reduce the hardware investment, on the other hand; and also
remove the existing transformation and maintenance of electrical lines, to a great extent, to protect
the user’s privacy (Deng et al., 2020). NILM has a large number of applications in energy efficiency
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monitoring, fault diagnosis, load modeling, and demand response
(Wang and Liu, 2019). In particular, the energy consumption
information provided by NILM is of great value for users to
understand their own energy consumption structure and guide
them to use electricity reasonably, thus realizing energy saving
and loss reduction and reducing electricity costs (Zhou et al.,
2018; Sun et al., 2020). Therefore, NILM has received extensive
attention and strong support from the industry in recent years,
and significant progress has been made in related research (Cui
et al., 2020; Xiang et al., 2022).

The flow of NILM can be divided into data acquisition, feature
extraction, model training, and online recognition. Among them,
feature extraction and model training directly affect the accuracy
of the algorithm. Feature extraction refers to the use of digital
signal processing technology or circuit analysis theory to extract
valuable indicators from the collected electrical signals to
distinguish different types of electrical equipment. In
noninvasive load identification tasks, common load
characteristics include voltage and current waveform, current
harmonics (Cui et al., 2020), active and reactive power, V-I
trajectory (Liu et al., 2021; Xiang et al., 2022), instantaneous
power (Li et al., 2021), etc. Among them, V-I trajectory features
are characterized by high repeatability and strong stability (Gao
et al., 2016; Wu et al., 2020). However, traditional identification
methods are prone to misjudge different types of equipment with
highly overlapping load characteristics into the same category.

In order to reduce the category and number of misjudgment
and realize more efficient model training, new recognition
techniques still need to be developed. Scholars at home and
abroad have conducted a large number of in-depth studies on
V-I trajectory. Liu et al. (2020) extracted the binary V-I trajectory
contour to realize the full mining of trajectory shape features. Tu
et al. (2018) proposed for the first time to map V-I trajectories
into binary grid images, which reduced the computational cost.
Zhang et al. (2020) took the binary V-I track image as input to
transform the load identification problem into an image
classification problem. Due to the outstanding performance of
the artificial intelligence algorithm in the field of image
classification, the ant colony algorithm is introduced by Du
et al. (2016) to extract key features of the weighted pixelated
track image, which improves the accuracy of load recognition.
Niu et al. (2009) adopted the Fryze power theory to extract
reactive current from current, which increased the distinguishing
degree of current characteristics. Li et al. (2019) constructed the
voltage-reactive current trajectory on the basis of Fryze theory
and color-coded the trajectory to integrate other load
characteristics. However, its defect was that the trajectory
could not reflect the power of the device without combining
power characteristics. Wang et al. (2019a) and Chen et al. (2019)
used Gram matrix transformation and genetic algorithm,
respectively, for power feature fusion, which improves load
feature diversity. Although the V-I load identification model
and algorithm of trajectory is increasingly mature, there still
exists the following problems: trajectory image binary V-I can
only transfer trajectory shape information, in principle cannot
reflect the power, phase information, such as equipment, and
because there are many different kinds of electrical appliances

and working principle of the similarity between the different
kinds of load V-I trajectory characteristics of overlapping
phenomenon. Although the electrical information contained in
binary images is more comprehensive, the discontinuity of pixels
in V-I image construction will lead to the loss of a lot of useful
information, especially the traditional methods cannot fully
excavate the advanced features of images. Therefore, the
accuracy of load identification still has room for further
improvement.

Different from the abovementioned feature extraction and
recognition methods, a noninvasive load recognition method
based on image coding and the improved twin support vector
machine is proposed. This method combines digital features with
image features and exploits the outstanding advantages of the
improved twin support vector machine in image recognition field
to mine the important information contained in electrical signals
as much as possible. The main methods are as follows: first, based
on the grayscale V-I image, continuous V-I pixels are realized by
bilinear interpolation, and three channels, current (R), voltage
(G), and phase (B), are constructed by image coding technology
to form a continuous color image. Second, two-dimensional
Gabor wavelet (Wei et al., 2020) is used to effectively filter the
image data to obtain the key texture features of the color V-I
image, and LLE dimension reduction is carried out for multiple
texture features to reduce the huge amount of calculation caused
by high dimension. Third, the parameters of the TWSVM were
taken as the position information of artificial fish, and the
classification accuracy was taken as the objective function.
Then, the optimal location and optimal solution were updated
by foraging, clustering, trailing, and random behaviors of ant
colony, and the optimal parameters and optimal classification
accuracy were obtained at the end of iteration. The algorithm can
automatically determine the parameters of the TWSVM in the
training process, avoid the blindness of parameter selection, and
improve the classification performance of the TWSVM. The
characteristics of V-I images are classified by the ITWSVM,
the classification results of color V-I images are obtained, and
the corresponding electrical equipment classification is
completed. Finally, the effectiveness of the proposed method is
verified by using the PLAID public data set.

1.1 Continuous V-I Color Image Encoding of
Pixel Points
V-I trajectory is a two-dimensional image drawn by a series of
voltage and current sampling points in a steady period. For
most electrical equipment with different operating principles,
the V-I trajectory presents great differences in shape, so
various shape parameters (such as area, curvature, number
of self-intersection points, and circulation direction) can be
extracted from it and used as the basis to distinguish different
types of electrical equipment. It is difficult to extract shape
parameters, and the parameters after dimensionality reduction
cannot fully reflect their original information. Therefore, in
the study by Fan et al. (2020), the V-I track is mapped to a
binary gray image by using the gridding method while
preserving the shape information as much as possible, and

Frontiers in Energy Research | www.frontiersin.org July 2022 | Volume 10 | Article 9064582

Zhang et al. Nonintrusive Load Monitoring Method

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


the image is used for load identification directly. Compared
with the extraction of shape parameters, the process of
constructing the binary gray image is simpler. At the same
time, the retention of original information is higher, so the
accuracy of load identification is further improved.

1.2 Continuous V-I Image Mapping Method
Considering that the V-I image may have pixel discontinuity in
the process of mapping, it is not conducive to subsequent training
and recognition. Therefore, bilinear interpolation technology is
used to improve the traditional mapping method, and the specific
process is as follows:

1) A sampling system comprising current clamp, voltage probe,
and high-frequency oscilloscope is used to sample the voltage
and current waveform of electrical equipment at high
frequency, and M is volt-current sampling point
(Vm, Im), m � 1, 2, /, M.

2) Given a grid or image resolution ofN × N, if all sample points
are mapped to the grid, then the size of each cell (pixel
point) is ⎧⎪⎪⎪⎨⎪⎪⎪⎩

Δi � imax − imin

N

Δv � vmax − vmin

N

. (1)

In Eq. 1, imax and imin are the minimum and maximum values
of the current sampling value, respectively. vmax and vmin are the
minimum and maximum voltage sampling values, respectively.
Δi and Δv are the dimensions of each cell (pixel point).

3) According to Eq. 2, the distance between two adjacent
sampling points after mapping isDm(m � 1, 2, /, M). If
Dm > 1, it indicates that the distance between two points is
greater than the length or width of the cell, indicating
discontinuity. Interpolation is needed to complete the
interval between two points. For simplicity, bilinear
interpolation technology is adopted to realize the filling of
discontinuity points, as shown in Eq. 3 and Eq. 4. After filling,
the new set of sample points is denoted as (vj, ij), j �
1, 2, /, J.

Dm �
�����������������������(vm+1 − vm

Δv )2

+ (im+1 − im
Δi )2

√
. (2)

vm+k′ � vm + vm+1 − vm
Km + 1

k. (3)

im+k′ � im + im+1 − im
Km + 1

k. (4)

In the equations, Km � Dm is the number of interpolation
points to be supplemented between m and (m + 1) sampling
points. (vm+k′ , im+k′ ) is the k interpolation point of
filling, k � 1, 2, /, Km.

4) According to Eq. 5, the mapping coordinates of sample points
(vi, ij) are calculated as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
rj � ij − imin

Δi
cj � vj − vmin

Δv

. (5)

5) Construct a zero matrix with dimension N × N, and then
take out coordinates of all points one by one from the first
sample point, and set the elements of row rj and column cj in
the matrix to one until the last sample point. The obtained
matrix is the continuous coordinate matrix of pixel points.

According to the abovementioned method, the gray V-I image
of a fluorescent lamp device can be obtained, as shown in
Figure 1, with a resolution of 32 × 32. The V-I image
obtained by the traditional mapping method has the
phenomenon of pixel discontinuity, while the image obtained
by the method in this study does not have this problem. The
results demonstrate the effectiveness of the abovementioned
image construction method.

1.3 V-I Color Image Coding Method
According to the analysis in Section 2.1, voltage and current
signals of all kinds of electrical equipment are normalized in the
process of forming V-I images, and only 0 or one state tables are
used for each pixel point. As a result, the V-I image only retains
the shape characteristics of voltage–current signals but cannot
reflect the numerical differences between devices, especially the
numerical characteristics of average current, voltage, power, and
phase of devices. For example, the average current of the washing
machine and air conditioner is bigger, and the average current of
the equipment such as incandescent lamp and computer is lesser.
When normalized and mapped, all devices have current values of
0 or 1. Obviously, the gray V-I image has lost a lot of valuable
information, so it is difficult to improve the accuracy of load
recognition by relying on it alone. Therefore, it is necessary to
combine the gray V-I image with the numerical feature to
enhance the recognition ability of the algorithm by using the
complementarity between the two.

As mentioned earlier, the gray V-I image is a single-channel
two-dimensional pixel matrix. Each point in the matrix is 0 or 1,

FIGURE 1 | Binary V-I trajectory mapping for a fluorescent lamp.

Frontiers in Energy Research | www.frontiersin.org July 2022 | Volume 10 | Article 9064583

Zhang et al. Nonintrusive Load Monitoring Method

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


which, respectively, represents whether the point has a V-I
trajectory, while the size and direction of the trajectory and
other information cannot be reflected. In contrast, for a color
image, as shown in Figure 2, it is formed by the superposition of
three channels: current (R), voltage (G), and phase (B). Each
channel corresponds to a two-dimensional matrix, in which each
element can change continuously from 0 to 1. Color images
contain more information than gray images. If the numerical
information can be embedded into the RGB channel in
combination with the shape characteristics of the V-I track,
the gray V-I image can be transformed into the corresponding
color image. Using this image to classify will undoubtedly
improve the recognition accuracy of the whole algorithm.

The core of color image coding lies in the formation of R, G,
and B matrices. The numerical features such as current, voltage
(power), and phase are embedded into the corresponding
channels to form a color V-I image.

1) Initialize N ×N dimensional A, R, G,and B zero matrices.
2) According to (vj, ij) and Eq. 5, the frequency of occurrence of

each coordinate point A(rj, cj) is counted.
3) Construct the current R matrix. Sample points (vj, ij) are

taken out one by one, and elements in the R matrix are
calculated according to Eq. 6. After the calculation, calculate
the average value of each coordinate point according to Eq. 7.

R(rj, cj) � R(rj, cj) + f (ij). (6)

R(rj, cj) � R(rj, cj)
A(rj, cj). (7)

In Eq. 8, the equation is used to scale the current signal to
ensure that elements change continuously from 0 − 1. After
scaling, the current difference between different devices can be
maintained, and the current information of other devices will not
be drowned due to the excessive current of some devices.

f (ij) � 1

(1, e2ij). (8)

4) Construct voltage G matrix. Take out sample points (vj, ij)
one by one and calculate elements in G matrix according to
Eq. 9. After the calculation, calculate the average value of each
coordinate point according to Eq. 10.

G(rj, cj) � G(rj, cj) + vj
V
. (9)

G(rj, cj) � G(rj, cj)
A(rj, cj). (10)

Similarly,Vmaximizes the difference between the maximum and
minimum voltages of all devices. If power characteristics are used, vj
and V are replaced by power pj and P, respectively, where pj is
calculated by pj � vjij and P is the maximum power of all devices.

5) Construct the phase B matrix. Sample points (vj, ij) were
taken out one by one, and elements in B matrix were
calculated according to Eq. 11 and Eq. 12. After the
calculation, calculate the average value of each coordinate
point according to Eq. 12.

B(rj, cj) � B(rj, cj) + θj
2π

. (11)

θj �
⎧⎪⎨⎪⎩ δj,

π + δj,
2π + δj,

Δij ≥ 0, Δvj ≥ 0
Δij < 0, Δvj ∈∀
Δij ≥ 0, Δvj < 0

. (12)

B(rj, cj) � B(rj, cj)
A(rj, cj). (13)

In the equation, θj is the phase difference between adjacent
points, δj � arc tan(ΔvjΔij ), Δvj � vj+1 − vj, and Δij � ij+1 − ij,
δj ∈ [−π

2,
π
2].

After R, G, and B matrices are obtained, color V-I images can be
obtained by superposing them. According to the abovementioned
method, each channel matrix of fluorescent lamp equipment in
Figure 1 is constructed, and the results are shown in Figure 2. In
Figure 2, the inconsistent light and shade of pixel points in each
channel reflect the size and difference of the value (current, voltage,
and phase) represented by the point. Because of this difference, the
resultant color image can contain more information. To further
illustrate this problem, color V-I images of 11 categories of electrical
equipment randomly selected from the PLAID dataset are drawn, as
shown in Figure 3. Although most of the devices in the figure have
different V-I shapes, a few devices are similar, such as air
conditioners, electric fans, hair dryers, and incandescent lamps.
After careful observation, it can be found that there are obvious
differences in color distribution of V-I images in the abovementioned
four types of equipment. This is because the average current, phase,

FIGURE 2 | Image of each channel of a fluorescent lamp and the
synthesized V-I color image.
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and other numerical characteristics of the four types of equipment are
inconsistent, resulting in color difference in the corresponding
images.

2 FEATURE EXTRACTION ANDDIMENSION
REDUCTION OF V-I COLOR IMAGE
2.1 Two-Dimensional Gabor Wavelet
Feature Extraction
In order to extract V-I color image features, this study tries to use
two-dimensional Gabor wavelet to extract image texture features

and achieve more effective image key texture extraction.
Combining with LLE, feature dimension reduction can
alleviate feature redundancy and efficiency of high-
dimensional feature operation to a certain extent.

As a common tool of image-scale representation and feature
analysis, two-dimensional Gabor wavelet can easily realize image
scale change. For gray image z � (vj, ij), its filter expression (Li
et al., 2019) is as follows:

φα,β(z) �
����kα,β����
σ2

exp( −
����kα,β����2‖z‖2

2σ2
) · [exp(ikα,β) − (−σ2

2
)].
(14)

FIGURE 3 | Color V-I images of various electrical equipment.
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In Eq. 14, kα, β � (kβ cosφα, kβ sinφα) represents the
fundamental frequency vector; φα indicates the direction of kα, β;
kβ indicates the scale of kα, β, generally φα � πμ

8 , kβ � kmax
fβ , f � �

2
√

,
kmax � π

2, α and β are the direction and scale parameters of two-
dimensional Gabor wavelet transform, respectively; and σ represents
the filtering bandwidth. The main function of ‖kα, β‖σ2 is to compensate
the energy attenuation (Wang et al., 2019b) caused by sampling, and
‖kα, β‖ refers to the two-norm operation. Eq. 15 is divided according
to the real and imaginary parts (Moosaei et al., 2021).

Re(φα,β(z)) � ����kα,β����
σ2

exp( −
����kα,β����2‖z‖2

2σ2
) · [cos(ikα,β) − exp(−σ2

2
)].
(15)

lm(φα,β(z)) � ����kα,β����
σ2

exp( −
����kα,β����2‖z‖2

2σ2
) · [sin(ikα,β)]. (16)

When two-dimensional Gabor wavelet is carried out, in order
to obtain comprehensive image data without loss, it is necessary
to set the main parameters α, β, and σ of two-dimensional Gabor
wavelet reasonably.

2.2 LLE Dimension Reduction
The dimension of the image features obtained by Gabor filtering
is high. Considering the problem of feature redundancy and the
efficiency of high-dimensional feature operation and storage, it is
necessary to effectively reduce the dimension of the image
features. The following is a mathematical description of LLE
dimension reduction. To achieve dimension reduction for m
sample points, suppose that sample xi can be obtained from
its adjacent samples xj, xk, and xl through linear operation
(Gupta and Gupta, 2021).

xi � ωijxj + ωikxk + ωilxl . (17)
In Eq. 17, ωij, ωik, and ωil are the linear coefficients of sample

xi and its adjacent samples xj, xk, and xl, respectively.
In the actual operation, multiple adjacent samples can be

selected for xi. Let the set comprising k neighbor samples of
xi be Qi. In order to maintain the previous linear relationship of
sample points after dimensionality reduction, its objective
function is Eq. 18 [26].

min∑m
i�1

����������xi − ∑
j ∈ Qi

ωijxj

����������
2

. (18)

Suppose Cjk � (xi − xj)T(xi − xk), then

ωij �
∑k∈Qi

C−1
jk∑l, s∈Qi
C−1

ls

. (19)

In Eq. 19, Cls � (xi − xl)T(xi − xs).
LLE can keep ωij unchanged in the dimensionality reduction

process, so according to ωij, the sample set after dimensionality
reduction can be solved (Li and Ding, 2019).

min∑m
i�1

����������zi − ∑
j∈Qi

ωijzj

����������
2

. (20)

In Eq. 20, zi is the value of xi after dimensionality reduction.
By solving the eigenvector corresponding to the eigenvalue of Z,
the dimensionality reduction set Z � [z1, z2, /, zm] can be
obtained.

3 AFSA OPTIMIZE TWSVM

3.1 TWSVM
The TWSVM uses two hyperplanes for classification. The
number of samples of the two types is m1 and m2 and the
dimension is n. The mathematical representation of the two
hyperplanes of the TWSVM is Eq. 21 (Shao et al., 2013).

K(xT, CT)ω(1) + b(1) � 0;K(xT,CT)ω(2) + b(2) � 0. (21)
In Eq. 21, K is the kernel function, C � [A;B] represents all

training samples,ωi(i � 1, 2) is the normal vector of the classified
hyperplane, and bi(i � 1, 2) is the bias. Let A ∈ Rm1×n, B ∈ Rm2×n,
A � (x(1)

1 , x(1)
2 , /, x(1)

m1
)T, and B � (x(2)

1 , x(2)
2 ,/, x(2)

m1
)T, then

the solution of the two hyperplanes can be converted to Eq.
22 and Eq. 23 (Gupta and Gupta, 2021).

TWSVM1:

min
ω(1) ,b(1)

1
2
(Aω(1) + e1b

(1))T(Aω(1) + e1b
(1)) + c1e

T
2 ξ limx→∞

.

s.t. − (Bω(1) + e2b
(1)) + ξ ≥ e2, ξ ≥ 0. (22)

TWSVM2:

min
ω(2) ,b(2)

1
2
(Bω(12) + e2b

(2))T(Bω(2) + e1b
(2)) + c2e

T
1η.

s.t. − (Aω(2) + e1b
(2)) + η≥ e1, η≥ 0. (23)

In the equations, ξ and η are slack variables,
e1 � (1, 1, /, 1)T ∈ Rm1 , e2 � (1, 1, /, 1)T ∈ Rm2 , and c1
and c2 are the penalty parameters.

The test sample belongs to whichever hyperplane it is near, if x
is in the r class, where r ∈ {1, 2}, such as Eq. 24.

K(xT,CT)ω(r) + b(r) � min
i�1,2

∣∣∣∣K(xT,CT)ωi + b(r)
∣∣∣∣. (24)

3.2 AFSA
The artificial fish swarm algorithm is an optimization algorithm
based on swarm intelligence, which is inspired by the behavior of
fish. In the AFSA, each AF adjusts its behavior according to its
current state and the state of the surrounding environment.
During each iteration, the AF updated themselves through
four behaviors: foraging, clustering, tailgating, and randomness
(Wu et al., 2007).

Suppose Xi � (x1, x2, /, xn ) is the current state of the
artificial fish AFi, Yi � f(Xi) is the fitness function of Xi,
Visual is the field of vision of the artificial fish, try number is
the maximum number of foraging attempts, δ is the crowding
factor, Step represents the step length of artificial fish, and nf
indicates the number of artificial fish in the field of view. For the
artificial fish AFi, a random state Xj in its field of vision can be
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represented by Eq. 25, where it is a random number between
0 and 1. When the update condition is met, AFi updates its status
with Eq. 26.

Xj � Xi + Visual · Rand(). (25)
Xt+1

i � Xt
i +

Xj − Xt
i����Xj − Xt
i

���� Step · Rand(). (26)

The four behaviors of artificial fish are described as follows:

1) Foraging behavior:AFi randomly selects a state within its field
of vision withXj if, in the case of the maxima problem,Yi <Yj

(which is Yi >Yj in the case of minima and can be converted
between them)moves one step towardXj according to Eq. 26.
Otherwise, the state Xj is randomly selected again to
determine whether the requirement Yi <Yj is met. If the
requirements are still not met after try number times of
repeated attempts, the random behavior is performed.

2) Swarm behavior: Assuming Xc is the central position in the
field of vision, if Yc >Yi and

Yc
nf
> δ · Yi, it indicates that the

partner center has more food and is not crowded and then
moves one step toward Xc according to Eq. 26; otherwise,
foraging behavior is performed.

3) Rear-end behavior: Assume that Xb is the best position found
in the field of vision. If Yb

nf
> δ · Yi indicates that Xb has more

food and is not crowded, it moves further in the direction of
Xb according to Eq. 26; otherwise, foraging behavior is
performed.

4) Random behavior: AFi randomly selects a position in its field
of vision and then moves one step in that direction, which is a
missing behavior of foraging behavior.

These four behaviors switch between each other under
different conditions, and the artificial fish will choose the
appropriate behavior to find the location of the better solution.

3.3 TWSVM Improved Based on the AFSA
The core idea of the ITWSVM is to find the optimal parameters of
the TWSVM through the AFSA. The position Xi �
(x1, x2, /, xn) of artificial fish AFi corresponds to a set of
parameters of the TWSVM. The position is a vector whose
dimension represents the number of parameters. The objective
function of the TWSVM is the classification accuracy of the
TWSVM, and the best position found by the AFSA is the best
parameter of the TWSVM.

The algorithm steps of the ITWSVM are as follows:

1) Initial settings include artificial fish swarm size N, maximum
number of iterations K, initial position of each artificial fish,
step size Step, field of vision Visual, number of attempts
try number, crowding factor δ, and parameter upper and
lower limits of the TWSVM.

2) Taking the position of artificial fish as a parameter, the
classification accuracy of the twin support vector machine
was calculated, and the classification accuracy was optimized
as the objective function. The fitness value of each artificial

fish was obtained, and the optimal position of artificial fish in
the whole bureau was recorded.

3) Each artificial fish performed swarm and tail chasing
behaviors and judged whether the individual had
improved. If it is improved, a better behavior is selected;
otherwise, the foraging behavior is performed.

4) Perform the action of artificial fish selection and update the
position of each artificial fish.

5) Update the status of the globally optimal artificial fish.
6) Judge whether the maximum number of iterations is reached.

If so, output the optimal solution and the corresponding

FIGURE 4 | Flow chart of the AFSA–TWSVM algorithm.
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parameter combination; otherwise, increase the number of
iterations by one and jump to two).

The flow chart of the ITWSVM is shown in Figure 4, through
which the process of the algorithm proposed in this study can be
seen intuitively.

3.4 Experimental Results and Analysis
In order to prove the effectiveness of the ITWSVM proposed
in this study after dimension reduction by LLE, twin support
vector machines based on artificial fish swarm algorithm
(AFSA–TWSVM) (Li and Ding, 2019) without LLE
dimension reduction, twin support vector machines based

on particle swarm optimization (PSO–TWSVM) (Shao et al.,
2013), twin support vector machines based on fruit fly
optimization algorithm (FOA–TWSVM) (Ding et al., 2016),
twin support vector machines based on genetic algorithm
(GA–TWSVM) (Wang et al., 2013), and twin support
vector machines based on glowworm swarm optimization
algorithm (GSO–TWSVM) (Ding et al., 2017) were selected
as comparative experiments to compare. Considering the
rapid development of deep learning in recent years and the
excellent performance of the convolutional neural network
(CNN) in image classification, this study takes it as a
comparative experiment. The V-I color images in section
2 were input into the VGGNet-16 model (Simonyan and

TABLE 1 | Comparison of optimization results of different algorithms.

Algorithm c1/c2 σ Optimal fitness value/% Average parameter optimization
time/s

LEE + AFSA–TWSVM 3.185/1.836 0.011 83.721% 469.613
AFSA–TWSVM 0.703/0.945 0.238 81.846 1238.492
PSO–TWSVM 1.256/0.691 0.037 80.692 1446.382
GA–TWSVM 1.158/0.765 0.287 79.879 1005.354
GSO–TWSVM 2.837/1.961 0.341 80.463 1025.320
FOA–TWSVM 0.509/1.452 0.290 79.912 1130.665

FIGURE 5 | Optimization process curve of different algorithm parameters.
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Zisserman, 2014) and Fast R-CNN model (Girshick, 2015) for
training, and the results were compared.

3.5 The Data Set
The PLAID common data set is used to test the load
identification algorithm. The data set comprises voltage
and current operation sampling data of 235 electrical
equipment in 11 categories of 55 households, with a

sampling frequency of 30 kHz and a total sample number
of 1074 groups. Considering that the large difference in
sample numbers of various electrical equipment in the
PLAID data set, it is easy to lead to poor recognition effect
of some equipment. For this reason, the synthetic minority
over-sampling technique (SMOTE) was used to synthesize
and expand a few samples, and the number of expanded
samples was 1925. A total of 220 samples (20 samples for

FIGURE 6 | ROC curves of different algorithms.

TABLE 2 | Comparison of performance indexes of different algorithms.

Algorithm Accuracy/% F1 score AUC/% Running time/s

LEE + AFSA–TWSVM 86.73 92.41 79.54 792.91
AFSA–TWSVM 82.65 89.74 68.05 1649.17
PSO–TWSVM 82.65 89.87 71.10 1864.14
GA–TWSVM 81.63 89.57 64.90 1516.87
GSO–TWSVM 81.63 89.25 74.86 1462.97
FOA–TWSVM 83.67 90.79 60.73 1576.49
VGGNet-16 80.61 86.64 65.09 12791.64
Fast R-CNN 83.67 89.97 72.63 11683.87
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each type of equipment) were randomly selected to form the
test set, and the remaining 1705 samples were used as the
training set.

3.6 Evaluation Functions
For binary classification problems, receiver operating
characteristic (ROC) and confusion matrix are important
performance indicators for classifier comparison (Zhu and
Tang, 2004). Four basic indicators of confusion matrix can be
obtained by using the classification results of the test set: true
positive (TP), false positive (FP), false negative (FN), and true
negative (TN). Based on the abovementioned four basic
indicators, the harmonic mean F1 score of accuracy,
precision, and recall can be calculated using Eqs. 27,28,29,
and30.

Accuracy � TP + TN
TP + FP + TN + FN

× 100%. (27)

Precision � TP
TP + FP

× 100%. (28)

Recall � TP
TP + FN

× 100%. (29)

F1score � 2 × Precision × Recall
Precision + Recall

× 100%. (30)

The ordinate of the ROC curve is true positive rate (TPR),
which is the true positive rate, and the ordinate is false positive
rate (FPR), which is the false positive rate. TPR and FPR can be
obtained by using the basic indicators in the confusion matrix,
such as Eq. 31 and Eq. 32.

TPR � TP
TP + FN

× 100%. (31)

FPR � FP
FP + TN

× 100%. (32)

3.7 Analysis
In order to ensure the fairness of algorithm comparison, V-I
color track images drawn by the PLAID dataset are used as
samples. The maximum number of iterations is 100 because
the running period of each intelligent optimization algorithm
is different. Each algorithm can only be tested three times, and
(c1, c2, σ) of the optimal fitness is taken as the optimal
parameter of the TWSVM. Table 1 shows the optimal
parameter (c1, c2, σ) found by different algorithms and the
optimal fitness value corresponding to the optimal parameter.
Figure 5 shows the curve of LLE + ITWSVM, ITWSVM, PSO-
TWSVM, GA-TWSVM, GSO-TWSVM, and FOA-TWSVM
parameter optimization process. In the experiment, the
optimal parameter (c1, c2, σ) obtained by parameter
optimization was used as the final TWSVM parameter, and
the TWSVM model was established on all the training sets for
testing.

Figure 6 shows the ROC curves of eleven algorithms. AUC
(area under curve) is defined as the area enclosed by the ROC
curve and the coordinate axis. AUC provides a digital basis for
performance comparison of classification algorithms. To

calculate the AUC, only the area under the ROC curve
needs to be obtained. Table 2 shows the comparison of the
eight algorithms in the four performance indicators of
accuracy, F1 score, AUC, and algorithm running time (the
running time of TWSVM algorithms includes parameter
optimization time) in the test set.

According to Table 2 and Figure 6, LLE + ITWSVM
proposed in this study can find the optimal parameters of
the TWSVM faster with fewer iterations. According to
Table 2, the proposed LLE + ITWSVM achieves optimal
results in the three performance indicators of accuracy,
F1 score, and AUC. Meanwhile, the proposed algorithm
has the shortest running time and the best real-time
performance. It can also be seen from Table 2 that
although the Fast R-CNN algorithm achieves a good
classification effect, the algorithm is time-consuming
because it uses the selective search method to extract
candidate regions and there are many redundant
operations. All performance indicators of the VGGNET-16
deep convolutional neural network are close to that of the
ITWSVM algorithm. In addition, the VGGNET-16 algorithm
runs for a long time due to the large amount of computation
in the convolutional layer of VGGNET-16 and the larger
number of parameters compared with the LLE + ITWSVM
algorithm.

Among the six algorithms based on the TWSVM, the
proposed LLE + ITWSVM algorithm has the shortest
operation time and the best classification performance
index. This is mainly due to the dimensionality reduction
of V-I color image by LLE, and the calculation of the
algorithm after dimensionality reduction is greatly reduced.
In addition, the AFSA improved by the TWSVM can jump out
of the local optimal solution at a faster speed and find the
global optimal parameters suitable for the TWSVM. It solves
the problems of TWSVM parameter selection difficulty and
parameter optimization algorithm time-consuming in image
recognition.

4 CONCLUSION

Due to the lack of load information of the V-I track in the
traditional power load identification process, some power load
features overlap and it is difficult to perform equipment
identification. The identification model training time is too
long. This study presents an intelligent sensing method of
power load based on color coding and improved TWSVM. In
this method, continuous V-I pixels are realized by bilinear
interpolation technology, and the numerical characteristics
such as current, voltage, and phase are embedded into the
V-I trajectory in the form of different channels so as to form a
high-resolution color V-I image. The two-dimensional Gabor
wavelet is used to extract image features, and the feature
vectors obtained by LLE dimensionality reduction are used
for recognition. In addition, an image recognition method
based on the AFSA–TWSVM is proposed. This method uses
the AFSA algorithm to find the optimal parameters of the
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TWSVM, which improves the convergence speed and
recognition rate of the TWSVM algorithm and overcomes
the shortcomings of previous optimization algorithms such
as slow convergence speed and easy to fall into local optimal. It
provides a new and effective method for the application of
TWSVM in V-I color image recognition. Compared with some
advanced algorithms, the accuracy of load identification and
the speed of model training can be significantly improved by
the proposed method, which proves the superiority of the
proposed method.

The identification effect of the proposed method for multistate
loads needs to be further improved, and a more advanced
identification model needs to be built. At the same time, the
practical application is still faced with the lack of the domestic
data set, high cost of high-frequency sampling, and low
universality of the recognition model. Therefore, NILM
technology needs further research.
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