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Aiming at the problem of pollution insulator discharge mode monitoring in high voltage line,
a new one-dimensional convolutional neural network structure (1D-CNN) was designed,
and a pollution insulator discharge mode monitoring method based on acoustic emission
signal and 1D-CNN was proposed. Firstly, the data was collected in laboratory of acoustic
emission signal under different discharge after sliding access way to expand the sample
quantity. Thereafter, the sample time and frequency domain was used along with a third
octave data as input, using convolution neural network to discharge signal samples
adaptive feature extraction and feature dimension reduction. Then, appropriate stride
convolution alternative pooling layer was used in order to reduce the training model
parameters and the amount of calculation. Finally, Softmax function was used to classify
the predicted results. The identified results show that the model can achieve a recognition
rate of more than 99.84%, which effectively solves the process of manual data
preprocessing in the traditional insulator pollution degree monitoring method.
Moreover, at the same time it can be effectively applied to the pollution insulator
discharge mode monitoring task.

Keywords: discharge of polluted insulator, convolutional neural network, acoustic emission signal, fault diagnosis,
deep learning

INTRODUCTION

Among the power system accidents that have occurred in my country in recent years, the insulator
pollution flashover accident is one of the main disasters. In the atmospheric environment, the
pollution in the air will adhere to the surface of the insulator and become damp, resulting in a
pollution flashover accident (Ahmadi-Joneidi et al., 2013; Wang et al., 2014), which seriously affects
the safe and smooth operation of the power grid and causes a lot of economic loss. The
contamination discharge of insulators is accompanied by the generation of acoustic signals, and
the intensity of the acoustic signals changes with the degree of discharge, which can better
characterize the external insulation state of the insulator under the current operating state
(Gencoglu and Cebeci, 2009; Su et al., 2009; Moula et al., 2013; Li et al., 2021b). Therefore, in
practical engineering, the state evaluation of the external insulation state of the insulator can be
realized by analyzing and processing the acoustic signals of the insulator discharge under different
pollution states.

Scholars at home and abroad have carried out a lot of explorations in the acquisition, denoising,
feature selection and extraction of the discharge acoustic signals of polluted insulators under
operating conditions, and the establishment of on-line diagnosis and prediction models for insulator
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pollution. Literature (Tian et al., 2016) believes that the insulator
pollution discharge consists of three stages, namely corona
discharge, partial discharge and arc discharge, and the
characteristics of the acoustic emission signal generated by the
discharge are obviously different. Reference Tian et al. (2015)
proposes to perform empirical mode decomposition on complex
acoustic emission signals, and adaptively decompose the original
acoustic signal into several components in different frequency
bands, that is, eigenmode components. The energy distribution is
compared and identified. In the literature (Wang and Nie, 2016),
by studying the time-frequency characteristics of acoustic signals
at different fouling degrees, it was found that the acoustic signal
contains four characteristic quantities in both the mean value in
the time domain and the spectral characteristics in the frequency
domain, and the four characteristic quantities, the mean value,
the maximum value, the standard deviation and the amplitude of
the real part of the FFT of the acoustic signal in the time domain,
were used for correlation analysis of the development process of
insulator fouling discharge. In the literature (Wang et al., 2021),
after manually simulating the effects of different soluble fouling
adhesion densities and gray densities on the acoustic emission
signals of glass insulators, a generalized regression neural
network-based insulator hazard prediction model was
established with the mean value of signal amplitude and the
area of the maximum IFT semi-perimeter envelope as the main
input feature quantities, and more accurate prediction results
were obtained. In order to improve the prediction accuracy, the
traditional machine learning classification method needs to
preprocess the data to extract the data features and select an
appropriate classification method.

For these series of problems, this paper considers Deep
learning techniques to solve them. In recent years, many
scholars have applied deep learning to the field of fault
diagnosis and achieved very good results (Dong et al., 2014;
Banik et al., 2016; Li et al., 2020; Yang et al., 2022a). Among
them, recurrent neural networks (RNN) and convolutional
neural networks (CNN) are widely used, and convolutional
neural networks have been used by many scholars to build fault
diagnosis models based on the feature processing of fault
signal-time spectrograms due to their powerful processing
ability of two-dimensional images (Li et al., 2019; Li et al.,
2021a; Li et al., 2021b). Li et al. (2021c), proposed the bilinear
transformation, effective data decomposition techniques,
long-short-term-memory recurrent neural networks (LSTM-
RNNs), and error decomposition correction methods. In the
proposed approach, the angular wind direction data is firstly
transformed into time-series to accommodate the full range of
yaw motion. Then, the continuous transformed series are
decomposed into a group of subseries using a novel
decomposition technique. Moreover, Li et al. (2021d)
utilized a data-driven approach for condition monitoring of
generator bearings using temporal temperature data. During
the analysis, four algorithms, the support vector regression
machine, neural network, extreme learning machine, and the
deep belief network are applied to model the bearing behavior.
Comparative analysis of the models has demonstrated that the
deep belief network is most accurate. It has been observed that

the bearing failure is preceded by a change in the prediction
error of bearing temperature. Convolutional neural networks
tend to achieve recognition rates of more than 99% in the
direction of fault diagnosis, but the current research in the
direction of insulator fouling monitoring usually only uses
traditional machine learning classification. Therefore, this
paper proposes a one-dimensional CNN-based fouled
insulator discharge pattern recognition algorithm, which
does not require complex and time-consuming manual
feature extraction, but simply takes the un-preprocessed
time-frequency discharge signal as input, and the model
uses the powerful feature learning capability of CNN to
directly train the input signal as learning samples, and
completes adaptive feature learning by combining with fully
connected layers to realize the model for insulator fouling
degree. The model uses the powerful feature learning
capability of CNN to directly use the input signal as the
learning sample for training, and completes the adaptive
feature learning in combination with the fully connected
layer to realize the model’s demand for insulator fouling
degree monitoring, and gets good results after experimental
verification.

CONVOLUTIONAL NEURAL NETWORKS

Convolutional Neural Network Operations
CNNs usually include an input layer, a convolutional layer, a
pooling layer, a fully connected layer and an output layer
(Bashivan et al., 2015; Ye et al., 2021; Zhang L. et al., 2021). The
convolutional layer and adjacent layers use local links and
weight sharing to perform operations, while the pooling layer
can also largely reduce the dimensionality of the input to
prevent overfitting of the model during training and
improve the generalization of the model. The pooling layer
can also largely reduce the input dimension, prevent
overfitting of the model during training, and improve the
generalization capability of the model. The model uses
alternating convolutional and pooling layers to extract
features from the input data, and the learning ability of the
CNN reliably increases with the number of layers of the
network. The convolution operation procedure (Sajjad et al.,
2019; Zhang et al., 2022) is illustrated as below.

y(l+1)
i (j) � Kl

i p Xl(j) + bli (1)
In the formula: Kl

i and bli is the weight and bias of the i
convolution kernel in the l layer; Xl(j) is the local region in the l
layer; yl+1

i (j) is the input of the first neuron in the result of the j
convolution kernel operation in the l + 1 layer.

The activation function is set after the convolutional layer, and
when the data is extracted by features, the activation function can
increase its nonlinear factor. In this paper, the LeakyReLU
function (Zhang W. et al., 2021) is used. The LeakyReLU
function solves the neuron death problem by giving all
negative values of the inputs a slope greater than 0. The
schematic diagram of LeakyReLU is as follows
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al+1i (j) � max(0, yl+1
i (j)) + leak p min(0, yl+1

i (j)) (2)
Among them, yl+1

i (j) indicates the output value of the
convolution operation, and al+1i (j) denotes the activation value
of yl+1

i (j).
The pooling layer usually acts after the convolution layer to

reduce the feature dimensionality and prevent overfitting. The
pooling layer consists of two types of pooling, maximum pooling
and average pooling, where the maximum pooling equation is as
follows.

pl+1
i (j) � max

(j − 1)W + 1≤ t≤ jWl
i
{qli(t)} (3)

In the formula: ql+1i (t) denotes the value of the t neuron in the i
feature out of the l layer, t ∈ [(j − 1)W + 1, jW],W indicates the
width of the pooling area, p(l+1)

i (j) denotes the value of the j
neuron in the i feature of the l + 1 layer.

The Softmax classifier is most widely used in the output
classification operation of the output layer (Zhao et al., 2017;
Yang, 2021). The process is to output the logits values obtained
from the convolution layer as a probability distribution and then
perform pattern recognition, and the Softmax function operates
as follows.

f(zj) � ezj

∑n
ke

zk
(4)

In the above stated formula: j is some classification in k; zj is
the value of the category.

Principle of One-Dimensional Convolutional
Neural Network
The one-dimensional convolutional neural network can
perform feature recognition on the part of the data
sequence, use the convolution kernel to perform input
transformation on the input sequence segment, and make
the sequence features of a part of the sequence which can
be saved in other locations of the sequence, making the one-
dimensional convolutional neural network. The processing
principle for different positions of the sequence is invariant
(for time shift) (Toyoda and Wu, 2019; Madhiarasan, 2020; Le
et al., 2021; Yang et al., 2021; Laghridat et al., 2022). One-
dimensional convolution can extract partial sequence
segments from time series and through the interaction of
convolution and pooling, adaptive line feature extraction
and dimensionality reduction are performed on the data.

ONE-DIMENSIONAL CONVOLUTIONAL
NEURAL NETWORK INSULATOR
MONITORING MODEL
1D-CNN Model Overview
The transition coupling of different discharge stages of dirty
insulators makes the discharge acoustic signals of dirty
insulators uncertain, complex and big data. Because the

core of the discharge pattern recognition of dirty insulators
is to distinguish the pattern expression in the specific discharge
signal under different discharge patterns so as to realize the
recognition of the discharge pattern. The advantage of the
recognition method based on CNN algorithm lies in the
feature extraction and classification of massive data.

Therefore, this paper proposes a discharge mode
monitoring algorithm for dirty insulators based on one-
dimensional convolutional neural network. It consists of a
convolution layer and an output layer. The convolution layer
implements the adaptive feature extraction operation on the
discharge signal data, and the nonlinear robust feature with the
gradually decreasing matrix width is obtained through the
convolution operation. Unlike 2D-CNN processing image
data, the pooling layer does not compress the convolutional
data ideally. Therefore, this paper does not use the pooling
layer, but uses stridden convolution with a suitable number of
steps in the convolutional layer instead of the pooling layer to
perform the compression operation. The output layer is
composed of a fully connected layer, and every two
connected layers are connected by a finite number of
neurons, and the number of nodes is the same as the
number of discharge types.

The cross-entropy loss function is used in the training process
of the model, and the Adam optimizer (Nie et al., 2016; Wu et al.,
2020; Anjaiah et al., 2022; Yang et al., 2022b) with fast
convergence speed and stable convergence process is used to
optimize the model based on gradient descent. At the same time,
the model uses the Softmax function to output the cross-entropy
between the probability distribution of the acoustic emission
signal type and the probability distribution of the discharge
type of the dirty insulator as the cost function. The formula
for calculating cross entropy is stated below.

H(p, q) � −∑
x
p(x)lnq(x) (5)

In the formula: p(x) is the probability distribution of different
discharge patterns; q(x) is the probability distribution of the
model output prediction results.

Data Pre-Processing
The data pre-processing mainly includes: data enhancement of
the raw acoustic signal data using data window sliding fetch,
generation of training and test sample sets, labeling of discharge
types, and introduction of the 1/3 octave concept to amplify the
differential features of different discharge mode signals in the
high or low frequency bands.

The process of network training in Deep learning requires
sufficient data samples, and the experimental data used in this
paper are limited, in order to expand the number of samples
while preserving the correlation between adjacent timing
signals of the same discharge signal. In this paper, a sliding
window fetching method is proposed to divide the data into
small samples to achieve the enhancement of the number of
data samples.

Different from other models that only use signal time-
frequency features as model input, this paper introduces the
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concept of octave. There are two main ways of expressing
frequency. One is equal-width frequency range, which means
that the coordinate difference between adjacent frequencies on
the X-axis is constant. The other is octave, which means that the
ratio of adjacent frequency coordinates on the X-axis is a fixed
constant. Generally speaking, when we analyze the spectral
characteristics of the signal, we do not study all the
frequencies in the signal one by one, but the octave is to
divide the signal into frequency bands to display the sound
pressure levels of different frequency bands of the signal data.
Since the gap between the discharge signals of different pollution
levels often exists in the high frequency or low frequency band,
this paper uses the 1/3 octave amplitude feature as a feature input
of the model and the 1/3 octave frequency of the three discharge
modes is used.

One-Dimensional Convolutional Neural
Network Intelligent Monitoring Process
The proposed one-dimensional convolutional neural network
fouling insulator discharge pattern monitoring process is
shown in Figure 1. The original data signal collected from
the experiment is augmented by the sliding window method
for the number of samples and divided into training set and
test set; the one-dimensional convolutional neural network
model is established on Pytorch version 1.11.0, and the model

is trained by gradient descent using mini batch after inputting
sample data from the training set, where the hyperparameter of
batch size is 64. The accuracy and loss function curves of the
training set and test set are recorded and the predicted
discharge pattern is output after the model is completed
training. The accuracy and loss function curves of the
training set and test set are recorded and the predicted
signal discharge patterns are output, and finally the model
performance is evaluated visually using the t-distribution
Stochastic Neight-bor Embedding (t-SNE) and the test set
confusion matrix.

FOULED INSULATOR DISCHARGE
PATTERN MONITORING EXPERIMENT

Experimental Design and Data Description
In order to verify the effect of the monitoring model proposed in
this paper, a large number of discharge tests of fouled insulators
were conducted in the high-voltage test chamber, mainly
collecting sound data of corona discharge, surface discharge
and breakdown arc discharge of insulators when fouled
insulators were subjected to processing frequency or shock
voltage, and recording the corresponding discharge
phenomena. The test equipment includes: frequency voltage
generator, shock voltage generator, oscilloscope, sound
acquisition device and various types of fouling production
tools (brush, sodium chloride, diatomaceous earth, test, spray
pot and pure water).

In this experiment, the sound signals of 2 wet porcelain
insulators with different degrees of fouling discharging at 10
different locations were collected and the equivalent attached
salt densities was used to measure the degree of fouling of
insulators. Each insulator specimen was coated with sodium
chloride and diatomaceous earth, after calculated weighing,
plus an appropriate amount of distilled water, and mixed
thoroughly in a porcelain bowl. In order to increase the
degree of adhesion an appropriate amount of dextrin could
be added, and finally evenly applied to the surface of the
insulator with a brush. The fouled insulator specimens
made in this way can be tested without sampling, and this
easy-to-operate pollution method is mostly used in China.
Since sodium chloride is water-absorbent, it can be fully dried
before weighing, and then weighed with a balance to ensure the
experimental accuracy.

The ratio of gray density to salt density of the actual
operating insulators varies greatly, and the actual local
accumulation of dirt, the gray to salt ratio is taken as 5:1.

FIGURE 1 | Fouled insulator discharge mode monitoring process.

TABLE 1 | 1D-CNN algorithm and other algorithms accuracy comparison table.

No. Algorithm Accuracy

1 Artificial features +XGBoost 87.5%
2 FFT+1/3 Octave +BPNN 94.5%
3 FFT+1D-CNN 96.82%
4 FFT+1/3 Octave +1D-CNN 99.84%
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Under this gray to salt ratio, the mass of salt and ash to be
painted on the whole insulator surface with different attached
salt density is shown in Table 1 below. The above-mentioned
stain coated in porcelain insulator 2 pieces as a group, apply
the industrial frequency voltage, the amplitude is the rated
voltage of insulator string, record the industrial frequency
voltage experiment results, then use the voltage reduction
method, time 2 min each time, determine the flashover
voltage, record the discharge sound.

The acoustic emission signals of three discharge states,
namely corona, surface discharge and arc, were collected at
a sampling frequency of 131072 HZ. 655360 data points were
included for the corona and surface discharge states, and
1,048,000 data points were included for the arc discharge
state. After a simple frequency domain analysis, it was
found that the sampling frequency was too high and the
actual main frequency was very low. So sparse sampling was
performed, i.e., every 100 data points were sampled once. Each
data is sampled by sliding window sampling method with 1024
data points as a sample and 50 data points as a step to achieve
sample set expansion, and for each insulator fouling discharge
mode 80% of the data set is randomly selected for training and
20% of the data set is used for testing. Therefore, the sparsely
sampled and expanded data set consists of 4930 training

samples and 1266 test samples, and the category labels are
set to 0, 1, and 2. The input to the convolution layer of each
model is the time-domain signal of one sample plus the
Fourier-transformed frequency-domain signal splicing
matrix (2 × 1024), and the 1/3-octave amplitude features of
the sample are spliced with the convolution output feature
matrix and input to the full connected layer for training. The
size and number of convolutional kernels in the four
convolutional layers of the network model are set to 16 × 1,
16 × 1, 8 × 1, 8 × 1 and 16, 16, 8 and 8, respectively, and the
convolutional kernel step size is set to 2. Data normalization is
performed using Batch Normalization and supplemented with
padding as input mapping.

Analysis of Experimental Results
The output size of each network layer of the 1D-CNN model
proposed in this paper is shown in Figure 2. The variation of
the accuracy of the 1D-CNN algorithm with the number of
iterations analyzed are the recognition rate and loss function
value of the fouled insulator discharge state of the test set
samples, respectively. As the number of iterations increases,
the accuracy of the test set output of the model also gradually
increases and the value of the loss function gradually decreases.
After iteration, the accuracy of the test set reaches 99.84% and
is similar to that of the training set, and there is no overfitting
phenomenon.

In this paper, the performance of the 1D-CNN algorithm
for data processing was also visualized and analyzed. In this
paper, the t-distribution domain embedding algorithm was
used to visualize and analyze the features of the fouled
insulator discharge signal after convolution with different
convolution layers in a 2-D distribution, as shown in
Figure 3.

In order to better evaluate the recognition effect of the model,
this paper also used the validation set to input into the trained
convolutional neural network model for simulation validation,
where the accuracy of the surface discharge state in the data
samples of fouled insulators reached 100%, and the accuracy of
the corona discharge and arc discharge states also reached 99.13%
and 99.6%, respectively.

To compare the classification effectiveness of the
algorithms studied in this paper with manually extracted
features plus machine learning classification algorithms and
other Deep learning algorithms, XGBoost, Back Propagation
Neural Network (BPNN) and 1D-CNN algorithms were
selected for comparison through experiments. XGBoost and
BP are common algorithms in machine learning and Deep
learning, respectively. Among them, XGBoost algorithm is to
classify the statistical features of the time-frequency domain
of the discharge signal, and BPNN is to input the time-
frequency and 1/3 octave data into the BP network for
classification, both of which are commonly used
classification algorithms. The final accuracy obtained by
experimentally comparing the three discharge pattern
recognition algorithms is shown in Table 1.

FIGURE 2 | 1D-CNN output size of each network layer.
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CONCLUSION

In this paper, we proposed an algorithm of fouling insulator
discharge pattern recognition based on acoustic signal and 1D-
CNN for fouling insulator discharge pattern monitoring model.
And the experiments were designed to collect the acoustic
emission signal data of fouled insulator discharge under
different modes, and the practicality and accuracy of this
model were verified by using this as a sample simulation. It
solves the complexity of the previous manual production of
features, and becomes a new direction to solve the problem of
insulator fouling degree monitoring.

The main contributions of this study are.

(1) A novel one-dimensional convolutional neural network
structure (1D-CNN) was designed, and an insulator
fouling detection model based on acoustic signals and 1D-
CNN was proposed, which enabled the model to adaptively
extract and classify features from time-frequency signal data
and obtained a high recognition accuracy.

(2) In the case of limited data, the sliding window method was
used to divide the data for fetching, and the concept of 1/3

octave range was introduced to optimize the training process
of the model.

(3) The performance of the convolutional layer in the 1D-CNN
algorithm was visualized using the t-SNE visualization
algorithm, and the intrinsic mechanism of the 1D-CNN
algorithm was explored.

(4) Through comparison tests with the traditional XGBoost and
BPNN algorithms, the superiority of the proposed model in
terms of accuracy was verified, and it could be effectively used
for the early warning of fouling insulator flicker.
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