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The improvement of wind power prediction accuracy is beneficial to the effective
utilization of wind energy. An improved XGBoost algorithm via Bayesian hyperparameter
optimization (BH-XGBoost method) was proposed in this article, which is employed to
forecast the short-term wind power for wind farms. Compared to the XGBoost, SVM,
KELM, and LSTM, the results indicate that BH-XGBoost outperforms other methods in
all the cases. The BH-XGBoost method could yield a more minor estimated error than the
other methods, especially in the cases of wind ramp events caused by extreme weather
conditions and lowwind speed range. The comparison results led to the recommendation
that the BH-XGBoost method is an effective method to forecast the short-term wind
power for wind farms.

Keywords: wind power forecasting, Bayesian hyperparameters optimization, Xgboost algorithm, numerical
weather prediction, machine learning

1 INTRODUCTION

In recent years, as the pace of global carbon reduction has accelerated, China’s “carbon
neutrality” task has clarified the direction of China’s energy transition. It is imperative to
develop clean and sustainable renewable energy. As an efficient, non-polluting, zero-emission
renewable energy source, wind energy has become an important measure to solve the energy
crisis. However, wind’s intermittent and random nature causes uncertainty and instability
in wind power generation, which leads to difficulties in dispatching and low efficiency in
grid connection (Quan et al., 2019; Santhosh et al., 2020; Maldonado-Correa et al., 2021). Accurate
wind power forecast is beneficial to optimize the operation and dispatch of power systems, develop
reasonable control strategies, improve energy storage efficiency and maximize economic benefits
(Zhang et al., 2021, 2017). Therefore, timely and accurate wind forecasts are essential for the
safe operation of the grid and the planning of electricity market transactions (Wang et al., 2017;
Han et al., 2018).

For time scale, wind power forecast includes ultra-short-term, short-term, medium-term
and long-term power forecast (Tian, 2021). Ultra-short-term forecast is used to predict power
generation in the next few hours based on historical data, which is helpful for controlling
the daily operation of wind farm units. Short-term forecast is used to predict in advance
for several hours to several days, which is helpful for the rationality of the economic
system and maintenance of the wind turbine. The medium-long term forecast is used to
predict in advance for several days to several months,which is helpful for making quarterly
power generation plans for grid and wind farm construction (Ju et al., 2019; Li L. et al., 2020).
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Due to the uncertainty of the wind power system, the time
scale of the current wind power prediction results mostly focuses
on the short-term forecast (Tian, 2021). The physical, statistical,
artificial intelligence and ensemble methods are usually used to
forecast short-termwind power (Hanifi et al., 2020).The physical
model uses micro-scale meteorology and fluid mechanics to
convert the numerical weather forecast (NWP) data into wind
speed, and wind direction data at the height of the wind
turbine and finally matches the wind turbine power curve. The
prediction accuracy of the physical model mainly depends on
the accuracy of the numerical weather forecast (NWP) data
and the accuracy of the geographical environment around the
wind farm (Rodríguez et al., 2020). The statistical method is
based on historical wind power data through curve fitting and
parameterization methods to predict wind power. Hao (2019)
designed an extreme learning machine prediction method based
on variational mode decomposition feature extraction. The ELM
model is optimized with a multi-objective gray wolf optimizer
using historical wind power time series data as input. Finally, a
high-precisionwind power prediction time series hybridmodel is
obtained. Zameer et al. (2015) proposed a new short-term wind
power predictionmethod based on themachine learningmethod
(STWP). This method combines machine learning technology
with feature selection and regression. The proposed method
is a hybrid maximum likelihood model, which uses feature
selection through irrelevant and redundant filters, and then uses
a support vector regression machine for auxiliary prediction,
And finally realizes wind power forecasting. Sideratos and
Hatziargyriou (2020) proposed an improved radial basis function
neural network for wind power prediction. The method has
better results than others, but the iterative convergence process
is longer. Liu et al. (2018) proposed a short-term wind speed
and wind prediction model based on singular spectrum analysis
and Locality-sensitive Hashing (LSH). To deal with the high
volatility of the original time series, SSA is used to decompose
it into two components. The two components are reconstructed
in the phase space to obtain the average trend and fluctuation
components. Then, LSH is used to select similar segments of
the intermediate trend segment for local prediction, thereby
improving the accuracy and efficiency of prediction.

The abovemethods, mainly from the perspective of clustering,
combination, deep neural network, and other considerations,
improve wind power prediction accuracy. The choice of
hyperparameters in the algorithm is also crucial. The same
algorithm with different datasets and different hyperparameters
can have additional prediction precision. Therefore, this
article proposed a new short-term wind power forecast
mehtod named BH-XGBoost, which sets up Hyper-parameter
optimization during the model training process to optimize
and improve the performance of XGBoost (Yang et al., 2019;
Zheng and Wu, 2019). Finally, BH-XGBoost is verified through
wind farm turbine data and numerical weather forecast
data.

The remainder of this article is arranged as follows. Section 2
introduced the dataset used in this study. Section 3 described the
method of BH-XGBoost. Results and discussion in Section 4 and
conclusion in Section 5.

2 DATA

2.1 Wind Farm Data
In order to verify the effectiveness of the proposed method, the
real data of a wind farm is employed to test the BH-XGBoost
method.The target wind farm locates on the east coast of Jiangsu
province in China (as shown in Figure 1). The wind farm data
includes the historical wind power of each wind farm and wind
speed from SCADA system of the wind turbines, and all the data
were subjected to strict quality control. The target wind farm has
100 wind turbines with 2 MW rated power, and the hub height of
the wind turbine is 100 m. The frequency of the power and wind
data collection is 15 min fromOctober 2020 to December 2021.

2.2 Numerical Weather Forecast Data
In this study, Numerical weather forecasting (NWP) is employed
to provide weather data for the next 1–3 days. NWP is based on
the actual conditions of the atmosphere. Given initial conditions
and boundary conditions, numerical calculations are carried out
by large-scale computers, and atmospheric motion equations
are solved numerically. The atmospheric state at the initial time
is known to predict the initial state of the future moment.
The numerical weather prediction system is based on Weather
Research and Forecast (WRF), a mesoscale weather model. It
mainly realizes a small area weather forecast with a resolution of
fewer than 10 km and a time scale of 3 days. The WRF model
has advanced data assimilation technology, powerful nesting
capabilities, and advanced physical processes. High-quality NWP
data can improve the forecast accuracy of the short-term wind
power prediction greatly. The NWP data of the target wind farm
is from the China Meteorological Administration (CMA), which
is updated twice a day with a temporal resolution of 15 min, the
spatial resolution is 1.0 km × 1.0 km, and for a predicted length
of 144 h. The output of the NWP elements includes wind speed
(m/s), temperature (°C), relative humidity (%), and pressure
(hPa). Figure 2 is the basic flow chart of the WRF model for this
research.

3 METHODS
3.1 XGBoost Algorithm
The XGBoost algorithm (eXtreme Gradient Boosting) is
optimized and improved based on the gradient progressive
regression tree algorithm. Once it appeared, it has received
widespread attention for its excellent learning effect and efficient
training model speed (Kumar et al., 2020; Phan et al., 2020). The
algorithm can effectively construct a boosting tree and perform
parallel operations while effectively using the multi-threading of
the CPU.This algorithm has achieved excellent results in Kaggle’s
Higgs sub-signal recognition competition and has been widely
concerned. Its core is to pre-order all features and enhances
classification trees and decision trees. XGBoost is an integrated
model consisting of k decision trees, the predicted value is
calculated from:

̂yi =
k

∑
t=1

ft (xi) , (1)
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FIGURE 1 | The location of the target wind farm.

FIGURE 2 | The flow chart of WRF model.

̂yi is the predicted value of xi. ft represents a decision tree, and
ft(xi) is the predicted value of ft given xi. Then the loss function L
can be expressed in terms of predicted value ̂yi and true values yi:

L =
n

∑
i=1

l (yi, ̂yi) . (2)

To avoid overfitting and improve the model’s generalization
ability, the regular term Ω is usually added to the equation. The
loss function can be rewritten as Eq. 3, and the regular termΩ( ft)
define as Eq. 4, where T denotes the number of leaf nodes and

wjrefers to the weight of the jth leaf node.

Obj =
n

∑
i=1

l ( ̂yi,yi) +
k

∑
t=1

Ω(ft) , (3)

Ω(ft) = γT +
1
2
λ

T

∑
j=1

w2
j . (4)

XGBoost uses a forward addition strategy where each time
the model adds a decision tree, it learns a new function and its
coefficients to fit the residuals of the last step of the prediction.
Therefore, using the model at step t as an example, the prediction
for the ith sample xi is as Eq. 5 and the object function of step t is
as Eq. 6.

̂yti = ̂y
t−1
i + ft (xi) , (5)

Obj(t) =
n

∑
i=1

L(yi, ̂yt−1 + ft (xi)) +Ω(ft) . (6)

Use Taylor expansion to expand the above equation:

Obj(t) ≈
n

∑
i=1
[L(yi, ̂yt−1) + gift (xi) +

1
2
hif

2
t (xi)] +Ω(ft) . (7)

Among them, gi represents the first derivative of L(yi, ̂y
t−1) to

̂yt−1, and hi represents the second derivative of (yi, ̂yt−1) to ̂yt−1. In
addition, you can merge the same function values on the same
leaf node. So the final deduced result is:

wj = −
Gj

Hj + λ
. (8)
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Therefore, substituting wj into the objective function is
simplified as:

Obj(t) = −1
2

T

∑
j=1

G2
j

HJ + λ
+ γT +C. (9)

The above equation simplifies the objective function. It is
evident that XGBoost can customize the objective function,
use only the first derivative and the second derivative in the
calculation process, and obtain the simplified equation. XGBoost
parameter selection is significant. Table 1 shows the specific
parameter types of the XGBoost algorithm (Zheng et al., 2017;
Li K. et al., 2020).

The parameters max_depth and learing_rate will determine
the performance of the XGBoost algorithm model.

3.2 Hyper-Parameter Principle
Hyper-parameter is the frame parameters in the machine
learning model. The hyper-parameters are the number of classes
in the clustering method, the number of topics in the topic
model, etc.Machine learning algorithmshave beenwidely used in
various fields. Its hyper-parameter must be adjusted to adapt the
machine learning model to different problems (Zhou et al., 2017;
Huang et al., 2021).

In this article, Bayesian hyper-parameter optimization is
selected. The goal of network learning is to determine the
mapping y = f(x,θ), y is the output, x is the input vector, and
the vector determines the size of the mapping. The main idea of
Bayesian optimization is adjusting the hyper-parameter of a given
model to establish a probability model of the objective function.
Using the acquisition function to perform an effective search
before selecting the optimal hyper-parameter set and selecting
the optimal hyper-parameter set (Wang et al., 2021). Taking the
hyper-parameter θ in GBRT as a point in the multidimensional
space for optimization, the hyper-parameter θ that minimizes the
loss function value f(θ) can be found in the set A ∈ Xd, as shown
in the following equation:

θ∗ = arg min
θ∈A

f (θ) . (10)

There is no prior knowledge about the structure of
UNKNOWN, it is assumed that the noise in the observation
is:

y (θ) = f (θ) + ε, and ε∼N (0,σ2
noise ) . (11)

The Bayesian framework includes two basic options. First,
a prior function p( f|D) (called a hypothesis function) must
be selected to represent the hypothesis of the function to
be optimized. Secondly, the posterior model establishes the
acquisition function to determine the next test point.

The Bayesian framework uses hypothesis function p( f|D) to
build an objective function model based on the observed data
sampleD. Based on the current p( f|D)model,Themodel chooses
between optimization and development (Kotthoff et al., 2019).
The main distinction of the Bayesian optimization model is the
difference in surrogate functions, which generally include Tree
Parzen Estimator (TPE), Random Forest, and Gaussian Process
(Yoo, 2019).

3.3 BH-XGBoost Method
In this study, the hyperparameters of the XGBoost are optimized
via Bayesian theory for the short-term wind power forecast.
Figure 3 shows the workflow of the newmethod (BH-XGBoost).
Before training, define the search space of each hyper-parameters
based on XGBoost. The init hyper-parameters values from the
search space are chosen randomly for the first iteration.

After the first iteration, the metric results, such as MAE,
MSRE, etc., will be input to the hyper-parameters algorithm.
The bayesian algorithm integrates the history-measured results
and searches space, and outputs each hyper-parameters value.
The algorithm will kick off a new iteration while receiving the
new hyper-parameters values. The algorithm will stop until the
validation error is less than the threshold we set.

4 RESULTS AND DISCUSSION

4.1 Hyper-Parameter Optimization
This article defines the four seasons based on month, Jan. for
spring, Apr. for summer, Jul. for Autumn, and Oct. for Winter.
The data of the first 10 days from each month are selected as the

FIGURE 3 | The workflow chart of BH-XGBoost.

TABLE 1 | XGBoost various parameters.

Parameter Effect Parameter Value Setting

max_depth Control overfitting Given the depth of the tree, the default is 3
learing_rate Symbolic model generalization ability The weight/learning rate of the model produced in each iteration. The default is 0.1
n_estimators Control the scale of random forest algorithm The number of submodels, the default is 100
n_jobs Number of CPUs called by the algorithm Select the number of linear parallel construction Xgboost models, the default is 1
reg_alpha Convergence rate of control algorithm L1 is the weight of the regular term, the default is 0
reg_alpha Convergence rate of control algorithm L2 is the weight of the regular term, the default is 1
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TABLE 2 | XGBoost various parameters.

Hyperparameter Jan. Apr. Jul. Oct.

max_depth 5 8 7 6
learing_rate 0.153 0.158 0.136 0.174
n_estimators 98 97 96 103
min_child_weight 7.52 8.76 9.43 8.65

test dataset and the remaining data as the training dataset for
nextmonth.TheBayesian hyper-parameter optimizationmethod
is employed to determine the optimal XGBoost parameters.
Different data sets have different selection parameters. XGBoost
simplifies the model due to the addition of regularization
items. At the same time, it combines the actual situation with
proper pruning in the later stage, which further improves the
model’s efficiency to obtain the best value. While improving
the accuracy, XGBoost uses the CPU’s multi-threading to carry
out parallel calculations during the application process, which
significantly reduces the training time.However, the shortcoming
of XGBoost is that it must traverse the entire training set in
each iteration cycle. In the pre-sorting step, XGBoost retains the
eigenvalues of the training dataset while retaining the evaluation
results of the eigenvalues. Hyperparameter optimization searches
effectively via selecting the optimal hyperparameter set and
optimizing the XGBoost algorithm’s parameters as points in
the multidimensional space to achieve the optimal effect of the
model. In this paper, Bayesian hyper-parameter optimization
is used to improve XGBoost. The input function is XGBoost
hyperparameters, such as max_depth (range from 3 to 30),
learing_rate (range from 0.1 to 0.15), and n_estimators (range
from 100 to 1,000). The output model uses the root mean
square error to solve the objective function and cross-validate.
Table 2 lists the best parameters of the model for each month.
The optimized parameters obtained in the default range are
also different. The four data sets have no significant differences
in sub-models and the maximum depth. There are differences
in other model parameters. In addition, due to the various
constraints between the hyperparameters, the model error will
also increase as the number of adjustment parameters becomes
larger.Therefore, the other model hyperparameters are randomly
selected in this article.

4.2 Sensitivity Analysis for Different Cases
In order to evaluate the new method, XGBoost, SVM, KELM,
ELM, and LSTM are employed to compare the performance of
BH-XGBoost. Table 3 shows the comparison results of different
methods. Table 3 shows that the proposed method is more
accurate than other methods. Table 3 describes the distribution
of the three metrics for different methods and months. It
illustrates that the root means square error (RMSE) obtained by
BH-XGBoost is 21% lower than others for Jan. All the results of
RMSE from other methods are around 11.7. Especially in Jul. and
Oct., the proposed method is considerably better than the other
methods. Also, the same results can be seen from MAE and R-
square for all the cases.The results demonstrate that the proposed
method is superior to the traditional machine learning methods
for all the months.

TABLE 3 | The performance of different methods for three metrics.

Method Metric Jan. Apr. Jul. Oct.

BH-XGBoost RMSE (MW) 9.29 12.45 8.99 8.66
MAE (MW) 6.52 9.95 9.32 8.06
R-square 0.64 0.73 0.68 0.80

XGBoost RMSE (MW) 11.76 15.17 10.01 11.02
MAE (MW) 8.93 12.66 11.15 10.89
R-square 0.63 0.54 0.61 0.50

SVM RMSE (MW) 11.74 17.16 12.51 12.02
MAE (MW) 9.02 15.22 12.00 11.89
R-square 0.59 0.42 0.50 0.61

KELM RMSE (MW) 11.77 17.06 18.75 19.52
MAE (MW) 9.01 13.99 13.20 12.42
R-square 0.58 0.46 0.62 0.53

LSTM RMSE (MW) 11.74 17.09 18.72 16.89
MAE (MW) 9.02 14.03 15.36 14.95
R-square 0.58 0.48 0.58 0.62

Figure 4 compares the forecast results of the differentmethods
for different cases. Figure 4 (a)-(d) show that the BH-XGBoost
method obviously outperformance the other methods for all the
cases. The forecast results curve of BH-XGBoost is the closest
to the observed curve, especially in the highlighted region 1
of the callout. As the highlighted region 2 of Figure 4 (b),(d)
shows, the results demonstrate that the BH-XGBoost method
is superior to the other methods when the wind speed changes
drastically and significantly. The BH-XGBoost method can be
well adapted to both short-term wind power and ramp events
caused by extreme weather conditions. Also, in the highlighted
region 3 of the callout of Figure 4 (a),(c), notice that the
performance of the BH-XGBoost method is better than the
performance of othermethods over the lowwind speed.Thus, the
proposed method can effectively provide wind energy utilization
via the results of efficient wind power forecasting for all the
cases.

Figure 5 illustrates the regression between observed and
forecast power data for two special cases: Figure 5A for wind
speed changes drastically, Figure 5B for low wind speed. Using
the proposed method, the slope of the regression line has
tiny gaps against the observations, which is better than the
other methods (Figure 5A). Both in Figure 5A and Figure 5B,
the SVM, ELM and XGBoost methods almost have the same
performance. InFigure 5B, the slope of the regression for theBH-
XGBoostmethod is not as good as the performance in Figure 5A,
but considerably better than the other methods. This method is
reasonable because the BH-XGBoost method has the advantages
of optimal parameters, which can better simulate wind turbines’
power generation law.

In this article, the residual boxplot is employed to analyze
the center position and degree of dispersion of the residual
result obtained by the different methods against the observation.
Figure 6A-(d) illustrate that the residual box of BH-XGBoost
outperforms others, especially in Figure 6B while the median
line is infinitely close to 0. And the performance of SVM, ELM
and XGBoost are similar to each other, which also can be proved
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FIGURE 4 | Examples of performance of the different methods for different cases: (A) Jan., (B) Apr., (C) Jul., (D) Oct.

FIGURE 5 | Comparison of observed to forecast power data for different methods over two special cases: (A) over wind speed changes drastically, (B) over low
wind speed.

to form the distribution of outliers in Figure 6D. More, the
residuals of the proposed method are most concentrated among
all the methods as the width of the residual box is the smallest.
From Figure 6A-(d), the forecast results are generally higher
than the observations. The reason is that there are power cuts
and maintenance in the actual process of wind farm power

generation. From the distribution of outliers, the proposed
method also seems to perform better. In Figure 6A, (b), (d), the
outliers that deviate from the maximum and minimum values
are more homogeneous against the other methods. Noticed that
all the outliers are below the minimum values in Figure 6C. A
possible explanation for these is that the target farm is located in
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FIGURE 6 | The residual boxplot of the result obtained by the different methods against the observation for different cases: (A) Jan., (B) Apr., (C)Jul., (D)Oct.

FIGURE 7 | The residual distribution of the different methods for different cases: (A–E) for Jan., (F–J) for Apr., (K–O) for Jul., (P–T) for Oct.
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the eastern coastal area of Chins, which is affected by the western
Pacific Subtropical High in summer. In summer, the wind speed
of the wind farm shows irregular and violent changes in the low
wind speed range.

In order to verify the advantage of the proposed method,
Figure 7 presents the residual distribution of the different
methods for four different months. For all the cases, the kurtosis
of the distribution curve for BH-XGBoost is lower than the other
curves, and all the skewness of distribution curves is relatively
positive. In Figures 7F,K, the residual distribution obtained by
BH-XGBoost conforms to the normal distribution which means
that the proposed algorithm has better robustness.

5 CONCLUSION

A new short-term wind power forecast method based on
XGBoost is explored in this article.The proposedmethod utilizes
a Bayesian optimization hyperparameter, which can create the
best-fit regression between the wind speed from WRF and the
power from the target wind farm. To evaluate the new method,
SVM, ELM, XGBoost and LSTM are employed to compare the
performance of BH-XGBoost. For the case study results, the
BH-XGBoost was significantly better than other methods. This
method is reasonable because BH-XGBoost, as hyperparameter
optimization based on Bayesian, yields the best-fit regression
while othermethods do not optimize hyperparameters according
to the characteristics of the target wind farm.

Compared with other methods, the proposed method can
effectively improve the accuracy of wind power forecasting
especially in the cases of wind ramp events caused by extreme
weather conditions and low wind speed ranges. For all the
cases, the results of the RMSE, MAE and R-square show that
the proposed method outperforms other methods. As expected,

when the physics are spatially coherent, the methods work
well, but when local spatiotemporal scale strong convective
weather conditions dominate, the methods do not work.
Thus, in future research, we will improve and test the BH-
XGBoost method over more data and regions by integrating
more meteorological elements, mainly when extreme events
occur.
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