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With the acceleration of energy reform, photovoltaic, energy storage, electric vehicles, and
other new loads in low-voltage distribution networks have been rapidly developed.
However, the distribution network with distributed power supply has some problems,
such as imprecise power flow modeling and difficult coordination between various energy
sources and loads, which bring challenges to the online optimization of the distribution
network load curve. In this study, a multi-time scale online load optimal operation scheme
of the distribution network is proposed by using the Bayesian online learning method. This
scheme transforms the online power optimization of the distribution network into a Markov
decision process. The output time of different energy sources is different, and the load with
different user load characteristics is optimized. The scheme can track the state of the
distribution network in real time and make the optimization scheme of multi-energy output
online. Finally, an example is given to verify the effectiveness of the proposed method,
which has theoretical significance for promoting the diversified development of low-voltage
user-side load.

Keywords: online learning, user electrical characteristics, joint optimization, low voltage distribution system,
markov decision process

INTRODUCTION

With the rapid development of energy, a large number of photovoltaic (PV), electric vehicles (EV),
and energy storage systems appear in the low-voltage distribution system. The Photovoltaic cell is an
integral part of the main power supply, energy storage system as backup power supply, the
photovoltaic power output when there is strong electricity storage, for lack of photovoltaic
power generation, the energy storage discharge, and the load of power supply such as electric
cars. The energy storage system can alleviate the influence of the randomness and fluctuation of
photovoltaic power generation on the whole system operation. PV systems and energy storage
systems are preferentially used to charge EV loads, avoiding the strong impact on the power system
caused by EV loads directly connected to the large power grid. It can not only increase the
consumption of new energy but also use the energy storage system to cut peak load and fill the valley,
saving the cost of power distribution and capacity increase. The green operation mode of multi-load
coordinated support in a low-voltage distribution system has great development potential. Li et al.
(2022)and Xiong et al. (2020) proposed modeling and stability issues of voltage-source converter-
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dominated power systems. Cao et al. (2017) proposed a charging
station construction scheme that combines photovoltaic and
energy storage, namely, integrated optical storage and charging
power station. The main components of the system and how to
manage the power supply side of the system are introduced. Zhou
et al. (2016) and Wu et al. (2021) constructed the topological
structure of a single-bus DC microgrid containing distributed
photovoltaic, mixed energy storage, and EV loads from the
microlevel and proposed the hierarchical control strategy of
line voltage for coordinating the operation of microgrid. On
the basis of meeting the charging needs of EV users, Lu et al.
(2014) took residential charging stations as the research object
and established an optimization model aiming at minimizing the
peak–valley difference of load. Through the demand response
model, the optimized peak–flat–valley electricity price and the
corresponding user responsiveness are solved. Zhao et al. (2015)
proposed the optimal configuration of optical storage and grid-
connected microgrid considering demand side response. Yu et al.
(2017) proposed an optimization control model of microgrid with
electric vehicles based on the multi-agent method in automatic
demand response mode, aiming at the microgrid with distributed
power supply and energy storage system as the power side and
conventional load and electric vehicle load as the user side. Zhang
et al. (2021) proposed to use the hydrogen production system to
realize the optimal coordinated control of energy. Ren et al.
(2018) proposed an optimization method for multi-time scale
active and reactive power coordinated dispatching in an active
distribution network based on model predictive control; however,
there are many problems in the aforementionedmethods , such as
heavy computation, heavy reliance on prediction data, and
difficulty in online control. Therefore, it is necessary to
actively explore the collaborative optimization of optical
storage and charge in the low-voltage distribution system and
design a reasonable optimized operation and scheduling scheme,
which can not only meet the needs of the power grid but also
adapt to dynamic load change and achieve the maximum benefit
and efficiency.

Studies have shown that the learning algorithm can be used to
realize the learning optimization of part of the observable system,
independent of the predicted data, and the reward feedback
mechanism can realize the online optimization of the system.
F et al. (2020) proposed a conditional probability prediction
model by the dynamic Bayes method. R et al. (2020) designed
a distributed optimization method based on Q-learning
algorithm. The results showed that the reinforcement learning
algorithm can quickly adapt to the power grid tidal wave motion
in learning. However, traditional model-based algorithms need
constant adjustment during operation. L et al. (2016) proposed a
new algorithm with the combination of opposition learning and
adaptive cross-generation differential evolution algorithm.

A low-voltage distribution system is an important part of
electricity consumption. Because of the large quantity and wide
distribution of low-voltage power consumption, it is necessary to
standardize the data of low-voltage station areas. There has been a
lot written about user characteristics. In the low voltage
distribution system, customers have similar power
characteristics to adjacent. Zhao et al. (2020), put forward in

view of the low-pressure area of topology identification, showed
that under the same area the user has electric similarity. Luo et al.
(2016) provided effective data support for demand response such
as peak-time electricity price formulation, staggered peak
management, and load regulation. So this study, from the
perspective of power characteristics, studies new coordinated
control in the low voltage-power distribution system load,
using online Bayesian learning methods, under the time-
sharing electricity price, which is established aiming at the
peak–valley load cutting optimization model; the real-time
tracking online load distribution network, at the same time,
meets under the dynamic change of load distribution network
optimization, to implement the dynamic coordinated control of
the low-voltage power distribution system; the effectiveness of the
proposed strategy is demonstrated by applying it to a typical low-
voltage platform area.

MATHEMATIC MODEL

Photovoltaic Module
The generation power of the photovoltaic module at time t is
closely related to the illumination intensity, and its output
power is:

PPV � PSCC
�RAC

�RSTC
[1 + γT(Tct − Tstc)], (1)

where Pscc is the maximum output power of a photovoltaic
module, kW; �RAC is actual irradiance, kW/m2; �RsTc is
irradiance under standard test conditions; γT is the power
temperature coefficient; Tct is the actual operating temperature
of the PV module; and Tstc is the temperature of the PV module
under standard test conditions (temperature 25°C).

Energy Storage Battery
The state of charge (SOC) of the battery reflects the ratio of the
remaining power of the battery to the total capacity, and the
mathematical model of the charge and discharge state is:

SSOC(t + 1) �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(1 − α)SSOC(t) + PCηcΔt
Cbat

,

(1 − α)SSOC(t) + PCΔt
ηdCbat

,

(2)

where Ssoc(t + 1) and Ssoc(t) are the charged state of the battery at
the end of (t + 1) period and (t) period, respectively; α is the self-
discharge coefficient of the battery; Pc and Pd represent charging
power and discharging power, respectively; Δt represents time
intervals; and Cbat represents battery capacity.

Electric Vehicles
EVs play a very important role in environmental protection and
energy consumption reduction. They can be used not only as
charging load in the microgrid but also as a reserve power source
to release electric energy during peak load to maintain the energy
balance and power supply reliability of the grid. Referring to the
social survey data of family electric vehicle travel, it can be seen
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that the relationship between the driving distance and time of
family electric vehicle travel basically corresponds to the
lognormal distribution. Thus, the expression of its probability
density function can be obtained through the calculation as
follows:

f(x) � 1

2δ
���
2Π

√ exp[ − (ln x − μ)2
2δ2

], (3)

where μ means value, μ = 0.32; and δ means standard deviation,
δ = 0.88.

EVs in the peak load can release the power according to their
range and set the initial state of the power battery charged state to
the lowest power battery charged state. Assuming that the electric
car is charged at night, at the end of the trip, the power battery
charged state calculation as shown in the following type, orderly
in the electric vehicle charging and discharging mode, generally
chooses the load slack period:

gi(x) � 1 − Ei

ηiCEV,i
fi(x), (4)

where Ei represents the energy consumed per kilometer by the
electric car, ηi represents the discharge efficiency of each vehicle,
CEV,i represents the power battery capacity of each car, and fi(x)
represents the daily mileage of each car.

LOAD OPTIMIZATION MODEL BASED ON
THE ONLINE BAYESIAN LEARNING
METHOD
Description of the Project
In the distribution network with multiple new loads, the output
scheme of new loads is optimized with the goal of minimizing the
electricity cost of users under the time-sharing price. In addition,
real-time tracking of the distribution network status and updating
of the optimization scheme can be achieved in the case that new
load access of the system changes rapidly over time. Because
different load output and electricity price have different time
characteristics, this study designs a multi-time scale online
optimization scheme. According to different time intervals, the
day is divided into several periods, and the load output is
dynamically optimized according to the different time-shared
price in each period, so as to realize the dynamic cooperative
control of the low-voltage distribution system.

Online Bayesian Learning
Online learning is a model training method of machine learning.
It can adjust the model quickly in real time according to the
changes of online data, so that the model can reflect the changes
online in time and improve the accuracy of online prediction. The
goal of online learning is to minimize the loss of the entire
function. Online learning does not need to determine the training
data set in advance. The training data arrive one by one in the
training process. Every time a training sample comes, the model
will be iterated according to the loss function value, objective
function value, and gradient generated by the sample. The main

flow of online learning includes: the prediction results of the
model are presented to the user and then the feedback data of the
user are collected, which are used to train the model and form a
closed-loop system, as shown in Figure 1.

In a Bayesian neural network by using the Bayesian formula on
the prior probability and posterior probability, the relationship
between the prior probability and posterior probability, with the
initial set of standard normal distribution, can be found as a
posteriori probability as the independent variable changes, in
order to find out a posteriori probability, points to the
independent variable on the value space. In order to simplify
the process, MCMC (Markov Chains Monte Carlo) sampling is
considered here to approximate the integral of the denominator,
so that the posterior probability of the training set can be
calculated and the neural network model can be obtained.

The Bayesian method can naturally derive the training method
of online learning given the parameter in prior, calculate a
posteriori probability according to feedback, take it as the
prior probability of the next prediction, and then calculate a
posteriori probability according to feedback.

Objective Function
When the system is running islands, if the daily load curve of the
peak load is too big, it can lead to a line load increase. Considering
the randomness of the efforts of photovoltaic, PV power, and energy
storage discharge maximum constraints, the system stability and
reliability in operation possibly cannot meet the needs of all load
condition, thus appearing in the system suspend operation state.
When the peak–valley load difference is large, the operating cost of
the photovoltaic system and energy storage system in the low-voltage
distribution system will increase. Therefore, in order to avoid too
high peak value and too large peak–valley difference, this chapter
takes peak clipping and valley filling as the objective function. The
optimization time is 24 h in a day, and the decision variable is the
change of electricity price in each period. To be sure, the objective
function is calculated by using the load curve after collaborative
optimization, so it is simplified here. The modules involved in
collaborative control can be restricted by relevant constraints.
Then, the objective function can be expressed as:

C1 � min(maxET), (5)
C2 � min(max ET −min ET), (6)

where ET is the load after time-shared electricity price response.
The first objective function represents the minimum peak value of
system load, and the second objective function represents the

FIGURE 1 | Flow chart of online learning training.
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minimum peak–valley difference of intra-day load. The two goals
belong to the same latitude, so this chapter adopts the method of
the weight coefficient to transform the two goals into a single goal
problem. The objective function after transformation is:

C3 � λ1C1 + λ2C2, (7)
λ1 + λ2 � 1, (8)

where λ1 and λ2 are weight coefficients. Both goals reflect the
user’s impact on the system’s peak cutting and valley filling, so
they can both be set to 0.5.

Constraint Conditions
1) Customer satisfaction with electricity:

Customer satisfaction constraints:

α � 1 −
∑24
t�1
|ΔE(t)|

∑
t�1

24
E0(t)

, (9)

where ΔE(t) is the electric quantity change at moment t, E0(t) is
the electric quantity consumption at moment t before
implementing time-of-use electricity price, and A is the
minimum satisfaction value of the electricity consumption mode.

2) Continuity constraint of energy storage state of charge:

SOC(i) � SOC(i − 1) + [ηdPdis(i) − ηcPch(i)]Δt
Emax

, (10)

where ηc and ηd correspond to the charge–discharge efficiency of
BESS, respectively.

3) Charge/discharge state constraints:

Bdis(i) and Bch(i) are 0–1 variables, where 1 represents the
state of charge and 0 represents the state of discharge, satisfying
the constraint.

Bdis(i) + Bch(i)≤ 1. (11)

4) Energy storage charge/discharge constraints:

During the operation of BESS, the power of each charge/
discharge should not exceed its rated value, and the total
discharge power should not exceed the rated power capacity of
the energy storage:

{ 0≤Pdis(i)≤Bdis(i)Pmax,
0≤Pch(i)≤Bch(i)Pmax.

(12)

5) Limit the total amount of battery charges and discharges

The life of the energy storage battery is mainly affected by
the charge and discharge state transition, that is, the charge
and discharge times of energy storage. According to relevant
studies, energy storage life is closely related to the total amount
of charge and discharge in a day. Therefore, in order to reduce
the number of charge and discharge times of household energy
storage, the total amount of charge and discharge in a day is
constrained.

∑m
t�1
Qc(t)≤Qmax, (13)

where Qmax is the biggest power.

CASE ANALYSIS

Parameter Settings
In this study, according to the reference that users in the same
low-voltage station area have similar electrical characteristics,
users with similar electrical characteristics in a low-voltage station
area are directly selected as the typical scenario in this case.
Moreover, different time-shared price users have different power
consumption characteristics, and the user load curve will also be
different. Here, industrial users are taken as an example, and the
load curve is as follows: the PV curve of the area is shown in
Figure 2, and the time-of-use electricity price table is shown in
Table 1.

It is assumed that the actual price of electricity before the
implementation of time-of-use electricity is 0.56 yuan/KWH.
Since this study is only for research and analysis, the value of
the elasticity coefficient matrix of electricity price in reference
(Yu et al., 2017) is directly taken, as shown in the following
formula:

M � ⎡⎢⎢⎢⎢⎢⎣−0.087 0.0502 0.0201
0.0912 −0.0526 0.0211
0.0915 0.0528 −0.0211

⎤⎥⎥⎥⎥⎥⎦. (14)

FIGURE 2 | The PV curve of the area.

TABLE 1 | Time-shared electricity price.

Peak period 8–12 and
17–21

Parity period 12–17 and
21–24

Off-peak period 0–8

1.0347 0.6068 0.2589
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The demand response charging electricity price is set, the
user’s peak electricity price is 0.35 yuan/KWH, the normal
electricity price is 0.85 yuan/KWH, and the parameters
required by the energy storage system are shown in Table 1.

The genetic algorithm was used to solve the model. The
number of population was set at 100, the maximum genetic
algebra was set at 500, the crossover rate was 0.8, and the
mutation rate was 0.05. The proportional coefficient was set
at 0.25, and the result of selecting the minimum objective
function value after multiple calculations was the final
result.

The model established in this study is a mixed-integer
programming model, which uses the commercial solution
CPLEX12.8 to solve and uses MATLAB by Yong (2016) for
graph drawing and data analysis.

Operation Result
The optimization results are shown in Figure 3. According to the
analysis of the calculation results, the user’s load in multiple time
scales will change with the change of the new load, and the load curve
and peak–valley difference will also change accordingly without being
affected by other constraints. By comparing the load curves obtained
by online learning and offline learning, it can be found that when
online learning is not adopted, the load curve obtained by users under
the objective function has little change; but when online learning is
adopted, the load curve obtained by users under the objective
function is relatively smooth, and the effect of peak clipping and
valley filling ismore obvious. It shows that themodel in this study can
realize the coordination of various new loads, get a better
optimization effect, and effectively improve the economy of the
power grid operation.

CONCLUSION

In the new multi-load low-voltage distribution system, the goal of
peak cutting and valley filling is realized through the cooperative
management and control of user load on a multi-time scale. At
the same time, online Bayesian learning can track the distribution
network in real time, adapt to the change of new load,
dynamically adjust the load distribution, and realize the
optimal collaborative optimization strategy. The
aforementioned example verifies the effectiveness of the strategy.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

Manuscript writing: JZ and JL; data collection: XJ and XX;
content and format correction: ZD and KS. All authors have
read and agreed to the published version of the manuscript.

FUNDING

This study received funding from the Collective Enterprise
Science and Technology Project of State Grid Zhejiang Electric
Power Co., Ltd.(HZJTKJ2021-14).

FIGURE 3 | Load contrast diagram.
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