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Smart grids, the next generation of electricity systems, would be intelligent and self-aware
of physical and cyber activity in the control area. As a cyber-embedded infrastructure, it
must be capable of detecting cyberattacks and responding appropriately in a timely and
effective manner. This article tries to introduce an advanced and unique intrusion detection
model capable of classifying binary-class, trinary-class, and multiple-class CDs and
electrical network incidents for smart grids. It makes use of the gray wolf algorithm
(GWA) for evolving training of artificial neural networks (ANNs) as a successful machine
learning model for intrusion detection. In this way, the intrusion detection model’s weight
vectors are initialized and adjusted using the GWA in order to reach the smallest mean
square error possible. With the suggested evolving machine learning model, the issues of
cyberattacks, failure forecast, and failure diagnosing would be addressed in the smart grid
energy sector properly. Using a real dataset from the Mississippi State Laboratory in the
United States, the proposed model is illustrated and the experimental results are
explained. The proposed model is compared to some of the most widely used
classifiers in the area. The results show that the suggested intrusion detection model
outperforms other well-known models in this field.
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1 INTRODUCTION

A smart grid (SG) is a complicated system that combines processing technologies, modern
communication, and recognition in the current electrical grid. In the SG, intelligent control
applications are utilized, which necessitates the usage of error-free data of high quality, as well as
rapid and dependable performance (Mohamed et al., 2021a). While SGs are yet under
development, they present a risk of misoperation as vital infrastructure and a cyber–physical
system, which is the result of intruders injecting malicious or false data (Alnowibet et al., 2021). In
recent years, cybersecurity is an important concern faced by power system operators with the
advent of SG implementation at large scales. Increasingly, high-speed networks and critical
cyber–physical devices are being used now in power grids, making them vulnerable to attacks (Ma
et al., 2021). The large-scale energy systems generate high-volume, high-speed data that are
difficult for conventional attack detection systems to process. Cybersecurity systems still need to be
efficient and resilient to deal with such new threats and detect malicious data on the network
effectively (Chen et al., 2021). Cyberattacks (CAs) that target the electric grid belong typically to
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data intrusion attacks. Denial-of-service (DoS), load
redistribution (LR), and false data injection (FDI) attacks are
the three main forms of data intrusion attacks. Such attacks
allow CAs for manipulating data with which the power grid
manages and controls operations, disrupting the power system’s
safe operation, gaining financial benefit, and even destroying it
physically (Meng et al., 2021). Modern intrusion detection
systems (IDSs) rely heavily on the ability to detect and
separate abnormal data from normal data. IDSs maintain
data availability while maintaining the integrity and
confidentiality of networks from unauthorized access (Nazir
and Khan., 2021). Technically, IDS is based on the intrusion
detection model. Users and utilities may suffer important losses
as a result of unreliable or inadequate intrusion detection (Xue.,
2021). Intrusion detection models address engineering issues,
which are nonlinear, undefined, and accompanied by noise. It is
essential to implement an intrusion detection model that is
robust, reliable, and cost-efficient in order to resolve such
problems. In this way, an overview of recent investigations
on the improvement of intrusion-diagnosing models for
electrical grids has been provided in the rest.

Several procedures and countermeasures formalicious data attacks
on control centers are defined in Zhang et al. (2021). In order to obtain
small yet extremely damaging attacks, they proposed the minimum
residue energy heuristic (Zhang et al., 2021). Non-identifiable but
detectable attacks are examined in Varmaziari and Dehghani (2017)
and Cheng et al. (2019). The power flow layout using the supervisory
control and data acquisition (SCADA) communication framework
layout is integrated in Pan et al. (2018), and some algorithms in order
to improve attack detection and system security factors are examined.
Countermeasures vs. unobservable attacks are suggested in Dehghani
et al. (2020). PMUs are assumed to be sufficiently secure and known to
prevent attacks. Since CAs appear as a natural occurrence in the
process, they can be complicated and hard to distinguish malicious
from non-malicious data in communication systems. Chattopadhyay
et al. (2017) distinguished CAs and disturbances since the disruption
appear as the CA, and vice versa. This leads to incorrect classification,
inappropriate actions, and other problems for the power systems (Liu
et al., 2021). Power system disturbances can be categorized and
grouped by a number of data-mining techniques. When DoS
attacks are present, resilient cooperative event-triggered control and
scheduling have been taken into account (Cong et al., 2021).

The precision and speed of the detection method can be
considerably affected by the size of the feature set for intrusion
detection applications. There is no guarantee that more features will
result in improving efficiency since more features would need more
memory, take longer time to process, and possibly have higher noise-
to-signal ratios. Feature selection has been shown to be critical to
faster intrusion detection in networks with a lot of information traffic
(Panthi, 2021). An intrusion detection model in Liang et al. (2020),
which uses feature selection as well, provided good detection
accuracy based on varied features. As compared to other feature
selection techniques, that model had great true-positive (TP) criteria
and small false-positive (FP) criteria. An artificial neural network
(ANN) has been widely applied in deep learning for its efficiency and
simplicity. In addition, this is used for intrusion detection in electrical
grids (Reddy et al., 2021). Currently, it is difficult to train an ANN

since conventional training algorithms face problem to deal with slow
convergence and local optima. In one recent trend, the ANNs are
trained by applying heuristic optimization methods based on
physical or biological principles for determining the most effective
weights and biases (Cui et al., 2020).

The present study proposes the use of ANN training with the
gray wolf algorithm (GWA) for creating an intrusion diagnosing
layout. GWA–ANN is the name for this model. In general, an
ANN structure and its arrangement of neurons are classified as
follows: self-organizing maps, feed-backward, and forward. The
multilayer perceptron (MLP), which can be the feed-forward
neural network (FFNN), uses the hidden layer to transform the
inputs into outputs. In this case, the network has been trained
using the back-propagation algorithm as the supervised learning
model. A GWA method, which is a powerful swarm-based
intelligent search approach (Qiao et al., 2021), has been
applied to identify attacks while overcoming the slow
convergence issue and “local minima” traps related to ANNs.
In general, GWA is well-known for its ability to determine the
identified surrounding area for the universal optimal and has
been considered to be very accurate and efficient for solving
optimization problems. A GWA algorithm is applied as a trainer
for FFNN for overcoming the challenges related to the learning
method. This can be a flexible and gradient-free method that
could prevent local optimum and has the ability to address many
optimization issues and outperform the other current
optimization methods to train MLPs. Based on the proven
outcomes from the research, this study uses the GWA for
training an ANN to detect cyber intrusions in SGs. In our
model, the GWA would minimize the mean square error
(MSE) and find the best weights for usage in the ANN. The
effectiveness of the GWA–ANN model is evaluated using diverse
statistical measures, like recall, F1 score precision, and accuracy.
A comparison is also made between the suggested GWA–ANN
model and other intrusion detection models that utilize the
databases of CAs in electrical grids held at Mississippi State
University (MSU). In the large-scale power system intrusion
datasets, it is shown that the GWA–ANN is able to produce
better perceptions for most cases and diagnose among diverse
categories of unknown entities.

Following are the sections of this study: The GWA–ANN-
based intrusion detection model is presented in section 2. The
power system structure and the datasets applied in this study are
described in section 3. Experimental outcomes are presented in
section 4 to show the algorithm’s effectiveness. Section 5 discusses
conclusions and future work.

2 INTRUSION DETECTION SYSTEM BASED
ON THE GRAY WOLF
ALGORITHM–ARTIFICIAL NEURAL
NETWORK

2.1 Artificial Neural Network
ANNs are well-known methods for classification, which
simulates the activity of biological neurons inside the brain
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(Lan et al., 2021). ANNs are different from conventional
classification techniques since they generate relationships
dynamically through training inputs, instead of relying on
predefined relationships (Zou et al., 2021). Training and
testing phases are included in the ANN classification method
(Kumar et al., 2018). The input weight summation has been
determined as follows:

Sj � ∑
m

i�1
Iiwjk + βj. (1)

Here, the input variable is shown by Ii; the linkage weight among
the input node i and the latent node j has been represented bywij;
and the latent node’s bias j is shown by βj. Every latent layer
node’s output has been determined by using the sigmoid
activation function described as follows:

fj � 1
1 + e−Sj

. (2)

The last output for every node k in the network’s output layer has
been determined as follows:

Ôk � ∑
h

j�1
fjwjk + βk. (3)

Here, the link weight among latent node j and the output node k
has been shown via wjk and the output node’s bias k is
represented by βk.

2.2 Gray Wolf Optimizer
The hunting behavior and leadership style of gray wolves have
been mimicked by GWO, a swarm-based optimization algorithm.
The mathematical formulation of GWO is described in Mirjalili
et al. (2020).

2.2.1 Gray Wolf Optimizer Inspiration
A gray wolf’s behavior when hunting makes it one of the top
predators on the food chain. Figure 1 shows the four subgroups of
gray wolves based on their dominance, namely, alpha (α), beta (β),
delta (δ), and omega (ω). In the gray wolf pack hierarchy, the alpha
wolf occupies the top position because of its experience in deciding
on habitats and hunting prey for the pack. Beta wolves are found at
the second level of wolf packs. Beta wolves help the alpha wolf
manage the pack and perform other functions. In third in the pack
hierarchy, delta wolves serve mainly as a protector of the pack vs.
dangers and as a helper for weaker members. Omega wolves are the
remaining wolves in the pack, at the bottom of the pack’s hierarchy.
Because of its role to manage and maintain the gray wolf pack, the
social hierarchy of the pack is its basis. The social hierarchy also
aids in the pack’s ability to hunt prey systematically, in which, once
the prey is found, the alpha will lead the pack to track and encircle
it. Delta and beta are commanded for attacking the target by the
alpha wolf. As soon as the prey escapes, omega wolves will assist
delta and beta for catching target.

2.2.2 Gray Wolf Optimization Method
According to the hunting strategy in gray wolves, the GWO
algorithm search encircles and attacks prey. The GWO algorithm,

similar to other meta-heuristic layouts, begins via selecting a
random set of solutions (wolves). Every solution contains one
wolf position vectorX in a search space. VectorX′ s length shows
an issue dimension. For PSPSH, the length of vector X showing
the numbers of SAs m and their amounts show the beginning
time for every SA, so X2 � (Xz

1, X
z
2, . . . , X

z
m), in which Xz

i is a
set of SA i at zth iteration. In every iteration, the alpha wolf is the
optimal solution, while the beta and delta are the second and the
third, respectively. The rest of the solutions are assigned as omega
wolves. By encircling alpha, beta, and delta, the omega wolves will
assist them in hunting target with the following formulas:

d � ∣∣∣∣c ·Xp,z −Xz

∣∣∣∣, (4)
Xz+1 � Xp,z − μ · d, (5)
μ � 2 · b · r1 − b, (6)

c � 2 · r2. (7)
Here, prey position at zth iteration is shown by Xp,z, wolf position
at zth iteration is represented by Xz, wolf position at (z + 1)th
iteration is shown by Xz+1, μ and c represent two coefficient
vectors, b linearly reduces from 2 to 0 across the course of
iterations, and r1 and r2 represent two random vectors between
(0, 1). The GWO equation formulations have been revised to be
greatly reasonable, realistic, and not a conflict with the PSPSH
formula represented in Gosain and Sachdeva (2020).

The whole of the omega wolves solutions must be updated in
every iteration based on the three best solutions (viz., delta, alpha,
and beta delta solutions) applying these formulations as follows:

dα � |cα ·Xα −X|, (8)
dβ �

∣∣∣∣cβ ·Xβ −X
∣∣∣∣, (9)

dδ � |cδ ·Xδ −X|, (10)
X1

′ � Xα − μα · dα, (11)
X2

′ � Xβ − μβ · dβ. (12)
X3

′ � Xδ − μδ · dδ (13)

Xz+1 � X1
′ +X2

′ +X3
′

3
(14)

In GWO, exploration and exploitation can be effectively
balanced, while local optima stagnation can be avoided

FIGURE 1 | Levels of gray wolves packs.
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utilizing μ. GWO explores and exploits a quest space during
|μ|> 1 and |μ|< 1, respectively. Local search avoidance relies
primarily on the value of c, altering randomly throughout
iterations.

2.2.3 Gray Wolf Optimizer on the Basis of the Local
Search Algorithm Process
Recent optimization investigations have presented hybrid
optimization layouts for improving the efficiency of main
layouts and enhancing their outcomes (Al-Ghussain et al.,
2021a). This part proposes GWO–MCA, a hybrid algorithm

that combines GWO and local search algorithms (MCA).
GWO–MCA proposes for meeting the shortcomings for GWO
causing its optimal solution to be poor, like low accuracy and slow
convergence speed (Zhou and Lei, 2021). MCA has been applied
for its easy and quick search process without requiring the use of
equations. MCA is also one of the most widely used layouts
offered for dealing with CSPs like PSPSH.

The A1 parameter has been used for equipping MCA at the
exploitation section of GWO. In GWO, the Al variable behaves
like the μ parameter; so if Al|> 1, then GWO explores the search,
and when Al|< 1, GWO exploits the search. Al is determined in
the following way:

Al � 2 × al × r1 − al. (15)
Here, r1 is chosen randomly between (0, 1], and a1 linearly
reduces from 2 to 0 during iterations according to Eq. 36.

al � 2 − (2 ×
itr

I
). (16)

Here, this indicates the present iteration and I represents the
iteration’s maximum number. The first step in the GWO–MCA
process is to initialize the CSP and GWO variables. Then, fitness
values are calculated for every solution. Furthermore,Xα,Xβ, and
Xδ are the three best solutions, respectively. The suggested
parameters, namely, r1, a1, and Al are calculated in the next
step. When |Al|< 1, so MCA would select one of the optimal
solutions (i.e.,Xα,Xβ, andXδ) randomly and try to minimize the

FIGURE 2 | Generic structure of the MLP.

FIGURE 3 | Training method of the MLP.

FIGURE 4 | GWA–ANN training scheme.
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FIGURE 5 | Power grid structure.

TABLE 1 | Problem kinds and case studies.

Kind of problem Trinary (15 datasets) Binary (15 datasets) Multiple (15 datasets)

Number of case studies CA 28 28 Each case study alone is an apart class
Normal - 9
Natural 8 -
No event 1 -
Total 37 37 37

TABLE 2 | Natural event case studies in MSU/ORNL information.

Case study tag

Usual occurrences (SLG: single line to ground fault) Fault occurs in L1 1 From 10%
To 19%

2 From 20%
To 79%

3 From 80%
To 90%

Fault occurs in L2 4 From 10%
To 19%

5 From 20%
To 79%

6 From 80%
To 90%

Usual occurrences (line maintenance) 13: L1
14: L2
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numbers of conflicts among the chosen solution parameters. The
MCA will choose and improve one of the three optimal solutions
because of their impacts on the other solutions. Furthermore, the
fitness amount of the new solutions is computed and assigned
again. Then, GWO updates Xα, Xβ, Xδ , and the rest of the

TABLE 3 | CA occurrence case studies for MSU/ORNL information.

Case study tag and CA kind

Data injection: SLG fault replay attack Fault occurs in L1 with tripping command 7 From 10%
To 19%

8 From 20%
To 79%

9 From 80%
To 90%

Fault occurs in L2 with tripping command 10 From 10%
To 19%

11 From 20%
To 79%

12 From 80%
To 90%

Tripping command injection in remote mode: command injection vs. relays Injected command 15 R1
16 R2
17 R3
18 R4
19 R1 and R2
20 R3 and R4

Fault occurs in L1 with R1 deactivated and fault 21 From 10%
To 19%

22 From 20%
To 90%

Fault occurs in L1 with R2 deactivated and fault 23 From 10%
To 49%

24 From 50%
To 70%

25 From 80%
To 90%

Fault occurs in L2 with R3 deactivated and fault 26 From 10%
To 19%

27 From 20%
To 49%

28 From 50%
To 90%

Fault occurs in L2 with R4 deactivated and fault 29 From 10%
To 79%

30 From 80%
To 90%

Relay adjustment alteration: deactivating relay action-2 relays deactivated and fault Fault occurs in L1 with R1 and R2 deactivated and fault 35 From 10%
To 49%

36 From 50%
To 90%

Fault occurs in L1 with R3 and R4 deactivated and fault 37 From 10%
To 49%

38 From 50%
To 90%

Relay adjustment alteration: deactivating relay action-2 relays deactivated and maintain the
line

Maintain L1 39 R1 and R2
deactivated

40 R1 and R2
deactivated

TABLE 4 | No occurrence case studies for MSU/ORNL information.

Case studies tag (sans occurrences)

41 Usual action and load alternations
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solutions for finding better solutions. Fitness values are calculated
and solutions are improved until the stop criterion is reached.

2.3 The Artificial Neural Network
Architecture
This study implements two MLP networks. There are three layers
in an MLP: the output, input, and latent layers. Figure 2 shows
the typical architecture for MLP methods. The numbers of input
node is m, the latent node’s number is h, and the output node’s
number is k. Various numbers have been given for binary
problems, trinary-class problems, and multiple-class problems.
Figure 3 shows the training method of the MLP. Inputs are taken
and outputs are generated according to the current weights and
biases. A loss function is used to compare the output from the
feed-forward route with the goal result. Next, the
Levenberg–Marquardt back-propagation method (Kaveh et al.,
2020) has been applied for updating the bias and weight for the
subsequent iteration in the conventional MLPmethod. A GWA is
used for updating the weights for the subsequent iteration for the
suggested MLP method.

2.4 The Proposed Gray Wolf
Algorithm–Artificial Neural Network
An ANN is trained to organize CAs from usual occurrences in the
energy systems using the GWA here. The GWA–ANN first
initializes every search agent for optimizing a candidate neural
network (NN). There are vectors of weights and biases in an
MLP network indicating the relations among the input and
hidden layers, and also between the hidden and the output layers
(Qiao et al., 2021). Equation 17 illustrates the whole number of bias
and weight parameters in MLP networks to be optimized using the
GWA.Here, the whole number of input nodes is shown by q and the
whole number of neurons in the hidden layer is represented by p.

V � pq + 2p + 1. (17)
By using the MLP method’s MSE as a fitness function, the

search agents (whales) can determine a difference among the
predicted and actual classes. Equation 18 illustrates MSE, in
whichOi represents the real output for input instance i, Ôi shows
the estimated output for input instance i, and n represents the
numbers of instances.

MSE � ∑n
i�1(Oi − Ôi)2

n
. (18)

MATLAB R2018a was used to implement the GWA trainer for
the experiments. Normalization would be crucial for an MLP if
dataset attributes have multiple ranges (Qiao et al., 2021). The
min–max normalization is shown in Eq. 19.

u′ � u − umin

umax − umin
. (19)

Here, u′ shows the normalized value of u between [umin, umax].
A flowchart of the GWA-ANN training method is shown in

Figure 4. Once importing the data, data cleansing is used forT
A
B
LE

5
|F

ea
tu
re
s
in

th
e
da

ta
se
ts
.

C
ha

ra
ct
er
is
tic

s
an

d
si
g
na

l
re
fe
re
nc

es

N
o
.

1
2

3
4

5
6

7
8

9
10

R
el
ay

1
R
1-
P
A
1:
V
H

R
1-
P
M
1:
V

R
1-
P
A
2:
V
H

R
1-
P
M
2:
V

R
1-
P
A
3:
V
H

R
1-
P
A
3:
V

R
1-
P
A
4:
IH

R
1-
P
M
4:

I
R
1-
P
A
5:
IH

R
1-
P
A
5:

I
2

R
2-
P
A
1:
V
H

R
2-
P
M
1:
V

R
2-
P
A
2:
V
H

R
2-
P
M
2:
V

R
2-
P
A
3:
V
H

R
2-
P
A
3:
V
H

R
2-
P
A
4:
IH

R
2-
P
M
4:

I
R
2-
P
A
5:
IH

R
2-
P
A
5:

I
3

R
3-
P
A
1:
V
H

R
3-
P
M
1:
V

R
3-
P
A
2:
V
H

R
3-
P
M
2:
V

R
3-
P
A
3:
V
H

R
3-
P
A
3:
V
H

R
3-
P
A
4:
IH

R
2-
P
M
4:

I
R
3-
P
A
5:
IH

R
3-
P
A
5:

I
4

R
4-
P
A
1:
V
H

R
4-
P
M
1:
V

R
4-
P
A
2:
V
H

R
4-
P
M
2:
V

R
4-
P
A
3:
V
H

R
4-
P
A
3:
V
H

R
4-
P
A
4:
IH

R
4-
P
M
4:

I
R
4-
P
A
5:
IH

R
4-
P
A
5:

I
In
te
gr
at
ed

re
la
y

an
d
P
M
U

S
no

rt
_l
og

1
S
no

rt
_l
og

2
S
no

rt
_l
og

3
S
no

rt
_l
og

4
R
el
ay
1_

lo
g

R
el
ay
2_

lo
g

R
el
ay
3_

lo
g

R
el
ay
4_

lo
g

C
on

tr
ol
_p

an
el
_l
og

1
C
on

tr
ol
_p

an
el
_l
og

2

N
o

11
12

13
14

15
16

17
18

19
20

R
el
ay

1
R
1-
P
A
6:
IH

R
1-
P
M
6:

I
R
1-
P
A
7:
V
H

R
1-
P
A
7:
V

R
1-
P
A
8:
V
H

R
1-
P
M
8:
V

R
1-
P
A
9:
V
H

R
1-
P
M
9:
V

R
1-
P
A
10

:IH
R
1-
P
M
10

:
I

2
R
2-
P
A
6:
IH

R
2-
P
M
6:

I
R
2-
P
A
7:
V
H

R
2-
P
A
7:
V

R
2-
P
A
8:
V
H

R
2-
P
M
8:
V

R
2-
P
A
9:
V
H

R
2-
P
M
9:
V

R
2-
P
A
10

:IH
R
2-
P
M
10

:
I

3
R
3-
P
A
6:
IH

R
3-
P
M
6:

I
R
3-
P
A
7:
V
H

R
3-
P
A
7:
V

R
3-
P
A
8:
V
H

R
3-
P
M
8:
V

R
3-
P
A
9:
V
H

R
3-
P
M
9:
V

R
3-
P
A
10

:IH
R
3-
P
M
10

:
I

4
R
4-
P
A
6:
IH

R
4-
P
M
6:

I
R
4-
P
A
7:
V
H

R
4-
P
A
7:
V

R
4-
P
A
8:
V
H

R
4-
P
M
8:
V

R
4-
P
A
9:
V
H

R
4-
P
M
9:
V

R
4-
P
A
10

:IH
R
4-
P
M
10

:
I

In
te
gr
at
ed

re
la
y

an
d
P
M
U

C
on

tr
ol
_p

an
el
_l
og

3
C
on

tr
ol
_p

an
el
_l
og

4

N
o

21
22

23
24

25
26

27
28

29
R
el
ay

1
R
1-
P
A
11

:IH
R
1-
P
M
11

:
I

R
1-
P
A
12

:IH
R
1-
P
M
12

:
I

R
1:

F
R
1:

D
F

R
1-
P
A
:Z

R
1-
P
A
:Z
H

R
1:

S
2

R
2-
P
A
11

:IH
R
2-
P
M
11

:
I

R
2-
P
A
12

:IH
R
2-
P
M
12

:
I

R
2:

F
R
2:

D
F

R
2-
P
A
:Z

R
2-
P
A
:Z
H

R
2:

S
3

R
3-
P
A
11

:IH
R
3-
P
M
11

:
I

R
3-
P
A
12

:IH
R
3-
P
M
12

:
I

R
3:

F
R
3:

D
F

R
3-
P
A
:Z

R
3-
P
A
:Z
H

R
3:

S
4

R
4-
P
A
11

:IH
R
4-
P
M
11

:
I

R
4-
P
A
12

:IH
R
4-
P
M
12

:
I

R
4:

F
R
4:

D
F

R
4-
P
A
:Z

R
4-
P
A
:Z
H

R
4:

S

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 9033707

Yu et al. Detection System for Smart Grids Cyber Security

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


preprocessing it. Prior to using the GWA–ANN to classify the
data, the data have been normalized, and feature selection has
been performed for determining the number of input features.
Next, Gaussian random distribution is used for dividing the
datasets into subgroups, 20 percentage for testing, 80
percentage for confirmation (16 percentage), and 64
percentage training that can be according to the most usual
ANN research action. GWA–ANN classification has been
combined with feature selection (dimension reduction).
With the aim of determining the accuracy of the model, the
testing data have been employed to feed the classification of an

ANN layout with optimum bias and weight achieved from the
training step.

GWA–ANN can be effective at avoiding local optima. For the
suggested model, this would make it easier to find the best MLP’s
bias and weight related to great accuracy and great performance
(Qiao et al., 2021).

3 POWER GRID STRUCTURE AND
EXPLANATIONS OF THE DATASET

3.1 Description of the Power Grid
This study’s power system structure is illustrated in Figure 5. This
system includes two generators, G1 and G2, three bus bars B1 via B3,
two transmission lines, L1 and L2, and four circuit breakers, CB1 via
CB4 that have been controlled via four relays, R1 via R4. A substation
switch and a router connect those relays to the SCADAs. Distance
protection schemes are used by the relays for tripping the breakers on
diagnosed error and fault, regardless of whether the fault is actual or
not since they do not have any internal validation to determine
whether the fault is real or not. These intelligent relays can also be
controlled manually by operators so that breakers can be manually
tripped by relays (Wang et al., 2021; Zeng et al., 2021). These scenarios
suppose that attackers have already accessed a substation’s grid and
have been able to access to the switch of substation’s commands, as
illustrated in the figure. Electricity is distributed to various equipment
by means of the power distribution center (PDC). There are many
smart electronic tools, like the control panel, Syslog, and Snort at the
bottom of the figure that can monitor the whole grid.

3.2 Datasets and Attack Case Studies
The GWA–ANN is evaluated using the CAs in SG datasets in the
ORNL and MSU (Morrison et al., 2021). The types of issues and the
segments of case studies are shown in Table 1. A total of 45 diverse
datasets are available. In total, there are 15 binary, multiple, and
trinary-class datasets. There are no two datasets that can be identical.
There are over 5,000 samples in every dataset. The samples correspond
to one of the 37 occurrence scenarios. As an example, one trinary-class

TABLE 6 | Symbols applied in the names of characteristics.

Symbols and descriptions

PA1-PA3 In (A, B, C) sequence Phase angle Voltage signal
PM1-PM3 Magnitude
PA4-PA6 Phase angle Current signal
PM1-PM9 Magnitude
PA7-PA9 In (+, -, 0) sequence Phase angle Voltage signal
PM7-PM9 Magnitude
PA10-PA12 Phase angle Current signal
PM10-PM12 Magnitude
F Relay Frequency Frequency
DF Delta frequency
Z Impedance Impedance
ZH High impedance
S Status flag
Snort log Binary 0 or 1
Relay log
Control panel log

TABLE 7 | Matrix of confusion.

Genuine class Predicated class

Normal Normal CA
TN FP

CA FN TP

FIGURE 6 | Convergence curve of the ANN accuracy during the GWA-tuning process.
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FIGURE 7 | Training error histogram, confirmation, and testing with the GWA–ANN.

FIGURE 8 | Accuracy across 15 multiple-class, 15 trinary-class, and 15
binary datasets.

FIGURE 9 | Precision across 15 multiple-class, 15 trinary-class, and 15
binary datasets.

FIGURE 10 | Recall across 15 multiple-class, 15 trinary-class, and 15
binary datasets.

FIGURE 11 | F1 score across 15 binary, 15 trinary-class, and
15 multiple-class datasets.
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datasets contains 5,236 observations, consisting of 292 sans
occurrences, 3,713 attack, and 1,212 natural observations
(Mohamed et al., 2021b). This scenario employed in Kumar et al.
(2018) is similar to what is employed here; 1,212 natural similar to
Kumar et al. (2018), attack scenarios like short circuits, input of remote
command, andmaintenance of line, relay adjusting changes, and FDIs
are considered. Among the 37 event scenarios in binary datasets, 28
are CAs case studies and nine are usual operation case studies. There
are 28 and seven CAs and usual case studies, and one case study sans
occurrence for trinary-class datasets. All the 37 case studies in a
multiple-class dataset is a class on its own.

A comprehensive list of 37 case studies (one sans occurrence,
28 CAs, and eight normal) is presented in Table 2, Table 3,
Table 4 in the MSU/ORNL dataset.

There are 129 columns in each dataset, including 128
properties columns and one class tag column. The short
names for the properties have been shown in Table 5. All 128
features are generated by four PMUs. PMUs or synchrophasors
measure electrical waves from an electrical network utilizing a
common time resource for synchronization. The measurements

of four PMUs are shown in the first four columns, eachmeasuring
29 relay features. Twelve extra properties from the control panel,
Snort, and relay logs are included in the last column.

Table 6 lists the symbols employed in the feature names. As an
instance, (R2-PM2:V) (in column Relay 2 and row #4) denotes
Relay 2’s Phase B voltage magnitude as determined using PMU
R2, while (R3-PA:ZH) (in column Relay 3 and row #28) denotes
Relay 3’s impedance angle as determined using PMU R3.

Each of the 45 datasets contains around 650,000 data points
(5,000 rows by 129 columns), and the 45 datasets contain an
overall of 29 × 106 data spots.

4 EXPLANATIONS AND OUTCOMES OF
EXPERIMENTS

Our research sets the maximum number of iterations to 100 and the
numbers of quest units to 50. The parameters listed here are typical for
the GWA, and they work perfectly in most cases. Preprocessing and
the feature selection lead to the selection of 76, 92, and 92 properties

FIGURE 12 | Mean precision amounts of diverse classifiers of the 45
datasets.

FIGURE 13 | Average precision amounts of diverse classifiers of the 45
datasets.

FIGURE 14 | Mean recall amounts of diverse classifiers of the 45
datasets.

FIGURE 15 | Mean F1 score amounts of diverse classifiers of the 45
datasets.
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from the 128 properties for binary, trinary, and multiplex-class issues.
In other words, these three kinds of problems have MLP network
architectures of 76-20-1, 92-20-1, and 92-20-1, respectively. Part 4.1
describes the model training and validation method utilizing Dataset
15 binary classification problem. As previously described in Part 4.1,
Part 4.2 displays the outcomes for all 45 datasets and issue kinds.

4.1 Pattern Training and Verification
The efficiency of the suggested GWA–ANNmodel will be measured
by recall, F1 score precision, and accuracy. The binary classification
confusion matrix of this suggested pattern has been presented in
Table 7. Outcomes of actual (rows) and predicted (columns) classes
are included in the matrix. TP indicates a real CA occurrence that is
indicated as an CA; TN (true negative) indicates the usual
occurrence that is indicated as usual; FP indicates a usual
occurrence that is indicated as the CA, and FN (false negative)
indicates a real CA that is indicated as the usual occurrence.

Eqs. 20–23 summarize the recall, F1 score precision, and
accuracy from Table.7. The accuracy, represented in Eq. 20,
generally calculates when the classifier can be right (Al-Ghussain
et al., 2021b; Al-Ghussain et al., 2022). Precision, described in Eq.
21, calculates that whenever the classifier predicts the CA, when it
can be right. Recall, described in Eq. 22, calculates that when a CA
really happens, how often it can be indicated accurately. F1 score,
described in Eq. 23, combines precision and recall.

Accuracy � TP + TN

TP + FP + FN + TN
, (20)

Precision � TP

TP + FP
, (21)

Recall � TP

TP + FN
, (22)

F1 Score � 2 ×
Precision × Recall

Precision + Recall
. (23)

The accuracy curve of convergence throughout the
adjusting method for the ANN via GWA employing Dataset
15 binary classification issue is shown in Figure 6. Based on the
figure, increasing the number of iterations slowly raises the
accuracy of the model. Beginning from 64 number of iteration,
the accuracy has jumped up and rapidly stabilized at
approximately 99%.

Figure 7 illustrates the histogram’s error with 20 bins representing
training, confirmation, and error of trials for Dataset 15 binary
classification. This figure illustrates how the trained pattern can fit
the dataset. The majority of errors have been concentrated in the tiny
area near zero, with 0.02592 being the most prominent error.

4.2 Trail Outcomes for the Mississippi State
University/ORNL Datum
These classification outcomes in this subsection are based on all
45 MSU/ORNL datasets. Figures 8–11 show the classification

outcomes from this suggested pattern for trinary-class, multiple-
class, and binary issues regarding recall, F1 score precision, and
accuracy.

Figures 12–15 have compared the mean amounts for the
recall, F1 score, precision, and accuracy for the 45 datasets
utilizing typically employed classifiers for the research, like the
OneR, JRip, AdaBoost + JRip, SVM (Panthi, 2021), and NN with
no GWA. According to the figure, GWA–ANN performs better
than other algorithms for most applications.

5 CONCLUSION

Detecting suspicious or anomalous events with a very high
speed and accuracy is essential for a reliable SG operation and
management. As power systems are highly dependent on cyber
infrastructure, cybersecurity is a significant problem. This
infrastructure is necessary to distribute and process huge
amounts of real-time data produced throughout system
operation. This study overcomes several weaknesses
associated with conventional algorithms on the basis of
ANNs, like the trapping of local minima. This study uses
the GWA-ANN model for classifying the CAs and detecting
failures in the electrical grid by applying the MSU/ORNL
datasets at diverse difficulty levels (binary, trinary-class, and
multiple-class). The GWA is used to train the ANN for
achieving the best bias and weight with minimum MSE in
the classification task. The efficiency of the suggested GWA-
ANN is evaluated applying different standard metrics, like F1

score recall, precision, and accuracy. Experiments
demonstrated that the suggested method is capable of
detecting the CA data in electrical systems efficiently.
Compared to other classification methods, like OneR, JRip,
AdaBoost + JRip, SVM, and NN (with not GWA), the GWA-
ANN is superior due to its powerful capability to explore and
prevent local optimization. A periodic update of the suggested
model is possible. In the event that an unidentified event has
been later confirmed as a CA by humans, it must achieve the
confirmed tag and has been added to the library of training and
be employed to detect potential CAs in the future.
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