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In recent years, data-driven methods have shown great potential for the practical
application of short-term voltage stability (STVS) assessment. However, most existing
research works overlook the problem of sample imbalance and overlap in STVS
assessment. To tackle this issue, a novel self-adaptive data-driven method for real-
time STVS is proposed in this study. First, min-redundancy and max-relevance
(mRMR) is employed for feature selection to reduce the computational burden. Taking
the key features as inputs, a cascaded LightGBM (CasLightGBM) model is constructed to
mine STVS informatization. Based on the LightGBM and cascaded structure,
CasLightGBM can enhance the assessment accuracy without sacrificing the
assessment earliness. Then, focal loss (FL) is embedded into both offline and online
phases of the CasLightGBM to mitigate the loss of accuracy caused by sample imbalance
and overlapping, thus deriving a highly comprehensive and reliable classification model for
real-time STVS assessment. Extensive numerical tests are conducted on the IEEE 118-
bus system, and the simulation results demonstrate that the proposed method
outperforms traditional algorithms and exhibits favorable robustness to measurement
noise.

Keywords: data-driven, sample imbalance, cascaded LightGBM, focal loss, short-term voltage stability assessment

INTRODUCTION

With the large-scale integration of renewable energy and the continuous growth of power consumption,
the secure and reliable operation of modern power systems is facing serious challenges (Li S. et al., 2021;
Li Z. et al., 2021; Ma et al., 2021). As a major threat to the stability of power systems, the consequence of
short-term voltage instability may result in voltage collapse and even widespread blackouts (Dong et al.,
2016; Zhu et al., 2020), such as the Athens blackout in 2004 (Vournas et al., 2006) and the South
Australia blackout in 2016 (Yan et al., 2018). Therefore, an accurate, real-time, and reliable evaluation
method for short-term voltage stability (STVS) is urgently required, which contributes to taking
remedial control actions in a timely manner to avoid potential accidents.

Traditionally, numerical analysis methods have been used for voltage stability assessments based
on time-domain simulations (TDS) and Lyapunov exponents. TDS can calculate a reliable solution,
but it relies on iteratively solving a large number of differential-algebraic equations, which is
computationally expensive and impractical for real-time STVS assessment. STVS analysis using the
Lyapunov exponent for a certain time window is proposed by Dasgupta et al. (2013). However, there
are still no effective methods to obtain accurate model parameters, which may suffer from numerical
problems in large-scale power systems.
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Recently, with the wide deployment of wide-area
measurements (WAMS), a huge amount of dynamics
monitoring data obtained from dispersive phasor measurement
units (PMUs) are available (De La Ree et al., 2010; Fernandes
et al., 2017; He et al., 2017). Owing to real-time PMU data, data-
driven machine learning (ML) methods can be adequately
leveraged to explore online STVS schemes. In Diao et al.
(2009) and Zhu et al. (2017), a decision tree (DT) has been
used for STVS assessment, and in Yang et al. (2018) a support
vector machine (SVM)–based method is applied for online STVS
analysis. Nevertheless, it is difficult for DT and SVM to fit
complex dynamic response functions with high accuracy due
to the simple network structure. To improve the generalization
ability, the works by Zhang et al. (2019a) and Zhang et al. (2019b)
present a hierarchical assessment approach using an ensemble of
extreme learning machines (ELMs) and artificial neural networks
(ANNs), respectively. The ensemble models improve the
prediction accuracy by integrating weak learners, but they are
prone to overfitting. In Rizvi et al.’s (2021) study, a new approach
based on a convolutional neural network (CNN) is introduced for
STVS assessment considering data anomalies and fault
localization. Moreover, the long-short-term-memory network
(LSTM) is used to extract voltage stability information from
the time-varying features in Zhang et al. (2021). Combined
with the spatial-temporal characteristics, the deep graph neural
network proposed by Luo et al. (2021) and Zhong et al. (2022) has
shown higher accuracy and better adaptability. The deep learning
algorithms in Luo et al. (2021), Rizvi et al. (2021), Zhang et al.
(2021), and Zhong et al. (2022) can establish an excellent
input–output mapping relationship, but problems such as
large demand for data samples and long training time remain
to be solved.

Moreover, the aforementioned typical ML-based STVS
assessment approaches have some severe limitations, for
example, they do not consider the impact of sample imbalance
on STVS feature learning. For practical large-scale power grids,
with the help of increasingly perfect relay protection devices, the
system can remain stable after most disturbances, and becomes
unstable only in the terrible rare scenarios. If not treated properly,
this phenomenon would dramatically deteriorate the model’s
attention to unstable samples. Consequently, the unstable
samples tend to be overlooked by the trained model and thus
misclassified. Meanwhile, misclassification of unstable scenarios
would lead to cascade faults or catastrophic voltage collapse
because appropriate emergency control measures cannot be
taken in time. Relatively speaking, misdetection of power
system stability is usually remediable with much less expense.
To modify the tendency of the ML-based model, a reconstruction
residual-based STVS assessment method is adopted by Yang et al.
(2020). This method uses LSTM and fully connected layers to
build an autoencoder, and then the reconstruction residual of the
autoencoder is utilized for indicating STVS, which is effective but
computationally complex. In addition, another crucial
imperfection is that the classification difficulty of samples in
overlapping regions is neglected. Similar to the sample imbalance
problem, this phenomenon would also damage the prediction
accuracy of the machine learning model.

Given all the aforementioned concerns, this study proposes a
self-adaptive data-driven method to improve the
comprehensiveness and reliability of STVS assessments. It
mitigates computational burden by a cascaded LightGBM
(CasLightGBM) and introduces the focal loss (FL) (Lin et al.,
2020) as a new loss function in the CasLightGBM training to
modify attention for imbalanced samples and overlapping
samples. In addition, min-redundancy and max-relevance
(mRMR) is employed for feature selection, so as to reduce the
computational burden. The main contributions and merits of this
study include the following.

1) A novel data-driven approach based on the CasLightGBM is
constructed for STVS assessment. Based on LightGBM and
cascaded structure, CasLightGBM can enhance the
assessment accuracy without sacrificing the assessment
earliness.

2) In order to modify the incorrect tendency of the model in the
training phases, FL is introduced to improve CasLightGBM,
so the accuracy loss caused by sample imbalance and overlap
can be mitigated.

3) The proposed method is validated on the IEEE 118-bus
system and compared against other ML models. The
simulation results demonstrate that the proposed method
outperforms traditional algorithms and exhibits favorable
robustness to measurement noise.

PROBLEM DESCRIPTION

Short-Term Voltage Stability
Short-term voltage stability refers to the ability of the power
system to rapidly recover an acceptable voltage level after a large
disturbance (Kundur et al., 2004; Glavic et al., 2012). The typical
post-disturbance voltage trajectories are illustrated in Figure 1
and Figure 2. In the stable scenario, the voltages of all buses can
recover to an acceptable level (i.e., no less than 0.90 p.u voltage
levels) after the disturbance is cleared (Zhang et al., 2019c; Ren
et al., 2020; Zhu et al., 2021). In contrast, if any bus voltage
remains at a low level or voltage collapses within a short-term
time period, the power system is considered to be unstable, which
may lead to cascading failures or even large-scale blackouts.

Original Features
The input features determine the upper limit of machine learning
evaluation performance. The richer the voltage steady status
information contained in the input features, the more
conducive it is to machine learning to accurately characterize
complex power system dynamic response functions. Therefore,
the original input characteristics should fully reflect the operating
state of the power system and include the key factors affecting the
transient voltage stability. For short-term voltage instability, the
main reason is the insufficient dynamic reactive power support
capability of the power system. In addition, active power is also
associated with voltage instability (Liu et al., 2017; Vanfretti and
Arava, 2020). According to Liu et al. (2017), Vanfretti and Arava
(2020), and Zhu et al. (2021), the important influence variables
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(shown in Table 1) that are available in PMU are selected to form
the initial feature vectors.

SHORT-TERM VOLTAGE STABILITY
ASSESSMENT BASED ON CASLIGHTGBM

CasLightGBM
LightGBM is an algorithm framework based on the gradient
boosting decision tree (GBDT) (Ke et al., 2017), which
approximates the final model by integrating the CART
regression tree. We assumed that a given dataset is D = {(xi,
yi)|i = 1, 2,..., n}, where there are n samples, and each sample xi has

m features. In the iteration of LightGBM, it is supposed there are
T regression trees used to build the model.

fT(x) � ∑T
t�1
ft(x), ft ∈ Θ, (1)

where ft is the tth regression tree and Θ is the set space of all trees.
LightGBM uses the Newton method to quickly approximate

the objective function, and trains the model in the additive form
to get:

fT(x) � ∑n
i�1
(gift(xi) + 1

2
hif

2
t(xi)), (2)

where gi and hi are the first-order and second-order values of the
loss function, respectively.

During the training process, LightGBM speeds up the
establishment of each decision tree through the histogram
algorithm and the leaf-wise strategy with depth limitation,
thereby effectively shortening the training time. In order to
further improve the ability of LightGBM to characterize high-
dimensional and strong nonlinear complex power system
functions, and to realize the layer-by-layer expression learning

FIGURE 1 | Example of stable scenario.

FIGURE 2 | Example of unstable scenario.

TABLE 1 | Original features of TVSA.

No. Feature description No. Feature description

1 Node voltage amplitude 5 Load reactive power
2 Generator active power 6 Branch active power flow
3 Generator reactive power 7 Branch reactive power flow
4 Load active power
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of input features, this study constructs the cascaded LightGBM by
referring to the deep forest framework (Zhou and Feng, 2017).
Deep forest achieves the multi-layer expression effect of the deep
learning structure through the layer-by-layer series random
forest, and has high computing efficiency, which provides a
new idea for further improving the prediction accuracy of the
model. LightGBM has lower memory consumption and better
generalization ability than random forest. Therefore, this study
utilizes CasLightGBM to replace the cascading forest structure, as
shown in Figure 3.

The cascade layer of CasLightGBM is composed of four
different LightGBM learners. During the establishment of
CasLightGBM, the geometric mean (Gmean) is adopted as the
indicator to judge whether the cascade layers need to be added,
and it is given by Eq. 3:

Gmean � �����������
TPR × TNR

√
, (3)

where TPR is the percentage of stable samples that are correctly
classified and TNR is the percentage of unstable samples that are
correctly classified.

When CasLightGBM expands a new cascade layer, it is judged
whether the calculated Gmean of the current layer is greater than
that of the previous layer, and the cascade layer will continue to
expand if the requirement is met.

Focal Loss Function
For binary classification tasks, the loss function of the model
usually chooses the cross-entropy (CE) function:

CE(p, y) � { −lgp y � 1
−lg(1 − p) y � 0

, (4)

where y represents the short-term voltage steady status, and p is
the predicted probability corresponding to the stable sample (y =
1) or the unstable sample (y = 0). For notational convenience, pt is
defined as follows:

pt � { p y � 1
1 − p y � 0

. (5)

Substituting Eq. 5 into Eq. 4 presents:

CE(p, y) � CE(pt) � −lg(pt). (6)
It can be seen from Eq. 6 that the closer pt is to 1, the smaller

the value of CE(pt); conversely, the larger the value of CE(pt).
During the operation of the power system, the number of

stable samples will be much larger than the number of unstable
samples. The total loss of massive unstable samples is much larger
than the stable samples, making CasLightGBM pay more
attention to stable samples during the training process while
ignoring the unstable samples that have important reference
significance for triggering control devices. At the same time, if
the voltage stability is misjudged, it is easy to induce cascade faults
and even cause voltage collapse because appropriate emergency
control measures cannot be taken in time. Therefore, the weight
factor αt is introduced in CE to assign different weights to the two
classes of samples. For notational convenience, αt is defined as
follows:

at � { a y � 1
1 − a y � 0

. (7)

The loss function with the weight factor αt is shown in Eq. 8:

BCE(pt) � −atlg(pt). (8)
Eq. 8 balances the distribution difference and importance of

stable samples and unstable samples, but does not consider the
difficulty of sample classification in overlapping regions. The
samples that are difficult to classify are located in the overlapping
area near the stable boundary in the feature vector space, and the
probability of being misclassified is greater. Conversely, the
samples that are easy to learn and classify are in non-
overlapping regions with larger pt and smaller loss values.
However, the cumulative loss value of the easily classified
samples is large, which is a major contribution to the loss
function and dominates the updating direction of the gradient,
making the model ignore the transient voltage information
contained in the difficult-to-classify samples during the
iteration process and cannot reliably identify them. Therefore,
a modulating factor (1-pt)

γ is added to BCE(pt) to adjust the
attention of the model to samples with different classification
difficulties, as shown in Eq. 9:

FIGURE 3 | The structure of CasLightGBM.
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FL(pt) � −at(1 − pt)γlg(pt). (9)
In the iterative process, themodel paysmore attention to difficult-

to-classify samples and learns them efficiently by adjusting the
direction of the gradient optimization. It should be noted that the
magnitude of the modulating factor changes dynamically. As the
iteration progresses, the discrimination difficulty of the hard-to-
classify samples decreases, the pt gradually increases, and the
values of the modulation factor and loss value also decrease.

The introduction of FL(pt) into CasLightGBM not only
resolves the negative impact of sample imbalance, but also
strengthens the attention of the model to samples in
overlapping regions, which is more helpful in accurately
predicting the risk of short-term voltage instability.

SHORT-TERM VOLTAGE STABILITY
ASSESSMENT FRAMEWORK

The flowchart of the CasLightGBM-based STVS assessment
method is proposed in Figure 4. The scheme consists of four
stages, namely, data preparation, feature selection, offline
CasLightGBM training, and online assessment and update.

Data Preparation
To evaluate real-time voltage stability, first, a reliable and
abundant database should be prepared. The database can be
generated by using a time-series simulation of defined
contingencies (e.g., three-phase faults) on the given power
system, and some possible typical operating conditions are
considered. In addition, the transient operation cases of the
researched system can also be extensively collected to obtain
the data required for model offline training.

Feature Selection
The operation variables that can reflect STVS are chosen to
construct the input features, including node voltage amplitude,
generator reactive power, generator reactive power, load active
power, load reactive power, branch active power flow, and branch
reactive power flow. Since the number of operation variables
increases dramatically as the system scale expands, it is extremely
stressful for subsequent CasLightgGBM training calculations.
Therefore, it is necessary to extract key features from the
initial feature set.

mRMR is a feature selection method based on mutual
information, which maximizes the correlation between the
input features and the result features while also considering
the redundancy between the input features (Peng et al., 2005).
In order to reduce the complexity of the model and accelerate the
training time, mRMR is introduced to screen the strong
representational features with low dimensionality from the
original high-dimensional features.

The mutual information I(S; Y) between feature S and feature
Y is defined as follows:

I(S;Y) � ∫∫p(s, y)log p(s, y)
p(s)p(y), (10)

where p(s) and p(y) are the marginal probability distribution
function of s and y, respectively; p(s, y) represents the joint
probability density function of s and y.

The objective of feature selection using mRMR is to maximize
the correlation between the selected features S and the voltage
steady status Y and minimize the redundancy between the
selected features.

maxD(S, Y), D � 1

|S| ∑Si∈S I(Si;Y), (11)

FIGURE 4 | The framework of the proposed approach.
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minR(S), R � 1

|S|2 ∑
Si,Sj∈S

I(Si; Sj), (12)

where Si is the ith feature of the selected feature subset S and |S| is
the dimension of feature subset S.

Combining Eq. 11 and Eq. 12, the feature selection criteria can
be obtained as follows:

maxΦ(D, R),Φ � D − R. (13)
Based on the feature selection criteria, mRMR uses an

incremental search method to find the key feature subset.
Assuming that m-1 key features have been obtained, the mth
feature is selected from the remaining features and satisfies the
following equation:

max
Si ∉ S−Sm−1

⎡⎢⎢⎢⎣I(Si;Y) − 1
m − 1

∑
Sj ∉ Sm−1

I(Si; Sj)⎤⎥⎥⎥⎦. (14)

For notational convenience, the obtained key features set is
defined as follows:

S � ⎡⎢⎢⎢⎢⎢⎣ x1,1 x2,1 / xm,1

x1,2 x2,2 / xm,2

x1,n x2,n / xm,n

⎤⎥⎥⎥⎥⎥⎦. (15)

Offline CasLightGBM Training
The prepared data are utilized to iteratively train CasLightGBM,
and then establish the mapping relationship between the key
features and transient voltage stability status in a data-driven
manner. During model training, the optimal values of the weight
factor α and parameter γ in the FL function are determined. To
effectively evaluate the performance of CasLightGBM, the
confusion matrix in Table 2 is used to define more evaluation
indicators, which include accuracy (Acc), TPR, TNR, and Gmean
(shown in Eq. 3).

Acc � TP + TN

TP + TN + FP + FN
, (16)

TPR � TP

TP + FN
, (17)

TNR � TN

TN + FP
. (18)

Online Assessment and Update
After meeting the performance requirements, the obtained
CasLightGBM can be efficiently applied to the online SVS
assessment. The real-time measurements of the corresponding
key features are obtained from the PMU, and then the STVS

status is immediately predicted by CasLightGBM after the fault is
cleared. If the system is assessed as unstable, an early warning is
given to the dispatchers immediately, so they can plan an
emergency control strategy more quickly to maintain the safe
and stable operation of the system.

After that, the monitoring PMU data are fed back to the
original database for subsequent dynamic updates of
CasLightGBM, so as to further improve the generalization
ability and adaptability of the proposed method.

CASE STUDY

The proposed CasLightGBM-based STVS assessment method is
tested on the IEEE 118-bus system (shown in Figure 5), which
has 118 buses, 54 thermal units, and 91 loads. The test is
conducted on a computer equipped with an Intel Core i7 CPU
working at 3.3-GHz and 16-GB RAM. The transient simulation is
performed using commercial software PSS/E, and the machine
learning methods are implemented in the Python platform.

Database Generation
To obtain a comprehensive database, a wide variety of operating
conditions are considered. Considering the load level ranging from
75 to 125% of its base values, the power output of the generators
was adjusted accordingly. For each load level, the three-phase
grounding faults are created to occur on all buses and all
transmission lines, where the faults are located at 0, 25, 50, and
70% of the length. In addition, the fault duration for each operating
scenario is selected at 0.1 and 0.2 s. Each simulation is carried out
for a time of 10 s. Based on the aforementioned configurations,
7,445 cases were generated via numerical simulations, with each
one being carried out for 10 s to determine its STVS status. In
particular, if the monitored voltages of all buses can successfully
recover an acceptable equilibrium (i.e., no less than 0.90 p.u voltage
levels) within the maximum simulation time, the produced case
would be considered as stable, otherwise unstable.

Effect of Key Feature Number on Evaluation
Performance
For the initial database, 806 operation features are extracted from
the simulation results in the IEEE 118-bus system. To reduce the
unnecessary computational burden, mRMR is introduced to
select the important features. Figure 6 shows the impact of
the selected key features on the evaluation indices. With the
increase of the key features, the evaluation indices (i.e., Acc, TPR,
TNR, and Gmean) of the proposed method have been
significantly improved, and gradually tend to be smooth and
steady. When the amount of the selected key features is 201, the
highest Acc, TPR, TNR, and Gmean can be acquired. Therefore,
the first 201 key features extracted by the mRMR are determined
as new input features. The dimension of the important features is
24.94% of the initial features, which significantly reduces the
computational burden of CaslightGBM while ensuring excellent
evaluation performance.

TABLE 2 | Confusion matrix.

Predicted stable Predicted unstable

Actual stable TP FN
Actual unstable FP TN
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Effect of α and γ
In this section, the values of α and γ in the FL function are
changed to enhance the attention distribution of CasLightGBM
during the training process thereby improving the fitting degree
of CasLightGBM to unstable samples and difficult-to-classify

samples. The effect of different α values on the evaluation
performance of CasLightGBM is shown in Figure 7.

When the value of (1-α) is in the range of [0, 0.75], Gmean
shows an obvious upward trend, and Acc does not decrease
significantly. When the value of (1-α) is 0.75, the obtained

FIGURE 5 | Topology of the IEEE 118-bus system.

FIGURE 6 | Impact of the number of key features on classification performance.
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Gmean is optimal, and the model has the best-imbalanced sample
processing capability. It should be noted that too large a value of (1-
α) will also destroy the balance between stable sample information
and unstable sample information processed by CaslightGBM,
resulting in the decline of its prediction performance.

Figure 8 shows the results of different γ values for STVS
assessment using the proposed method. As shown in Figure 8,
the best Gmean and Acc can be obtained when γ = 4. The
modulating factor can further improve the fitting degree of the
model to difficult-to-classify samples. Compared with the case of
γ = 0, the Gmean increases by 1.17%.

Comparison With Other Methods
To further demonstrate the superiority of the proposed method,
four other methods, including LightgGBM, LSTM (Zhang et al.,

2021), 1D-CNN (Rizvi et al., 2021), DT, and ANN, are selected
for comparison. Table 3 compares the classification performance
of the proposed CasLightGBM with other machine learning
methods. Combined with the cascaded structure and FL
function, the evaluation performance of CasLightGBM is
effectively improved. Leveraging CasLightGBM, the acquired
TNR and Gmean are 2.04 and 0.94% more than LightgGBM,
respectively. LSTM and 1D-CNN can effectively mine voltage
stability information in the operation variables through the deep
architecture and has better evaluation performance than DT and
ANN. However, the evaluation performance of LSTM and 1D-
CNN still lags behind CasLightGBM. Due to the simple structure
and overfitting problem, the evaluation precision of DT and ANN
is inferior.

Table 4 shows the training time of different machine learning
methods. The training time of LSTM and 1D-CNN is long,
because the architecture of LSTM and 1D-CNN is relatively
complex, deep representation of the operation features
requires a lot of memory and time. Due to the fast operation
speed of LightGBM, the cascade process of CasLightGBM does
not take too much time. The training time of CasLightGBM is
3.58 s. After the model is trained, the STVS assessment result can
be quickly acquired within 0.018 s, which can meet the rapidity
requirement of real-time evaluation.

Evaluation Performance of Unbalanced
Samples
In the process of power grid operation, the unstable cases are far
less than the stable cases, so the proportion of the two types of
samples in the dataset is unbalanced. To verify the effectiveness of
the proposed method under unbalanced samples, a study was
carried out here by comparing it with the generative adversarial
network (GAN) (Hu et al., 2021). 5000 samples are extracted to
construct new training data with four different proportions of
stable samples and unstable samples, and the test results of
different methods are summarized in Table 5.

As shown in Table 5, although the number of unstable samples
continues to increase, Acc and TPR of CasLightGBM do not
decrease significantly, and the values have remained at a high
level with small fluctuations. This is because the proposed model
further improves the ability of LightGBM to characterize complex
functions through the cascade structure, thereby effectively mining
the voltage information contained in the transient data. In the
unbalanced dataset, the magnitude of Acc and TPR has less
influence on the safe operation of the power system, while TNR
and Gmean are more worthy of attention. With the gradual
reduction of unstable samples, TNR shows a downward trend
as a whole, but in the case of only a few unstable samples, the
obtained TNR of CasLightGBM can still be close to 95%. GAN
generates a large number of unstable samples by simulating the
data distribution, which can alleviate the problem of accuracy
degradation caused by sample imbalance. However, when the
number of unstable samples is scarce, GAN cannot simulate the
real distribution of the data well, and the newly generated unstable
samples may also destroy the distribution characteristics of the
original data, resulting in poor TNR and Gmean.

FIGURE 7 | Evaluation performance of the model in different (1-α) values.

FIGURE 8 | Evaluation performance of the model in different γ values.

TABLE 3 | Comparison of different machine learning methods.

Acc/% TPR/% TNR/% Gmean/%

CasLightGBM 98.67 98.90 96.94 97.91
LightGBM 98.62 99.09 94.90 96.97
1D-CNN 98.67 99.22 94.38 96.77
LSTM 98.50 99.09 93.87 96.44
DT 97.81 98.57 91.84 95.15
ANN 97.23 98.37 88.27 93.18
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By setting the weight for the unstable samples and introducing
the modulation factor, the proposed method pays full attention to
the unstable samples and difficult-to-classify samples, so Gmean
can be maintained at an excellent level. It is worth noting that the
obtained Gmean is still over 96.5% when there are only
450 unstable samples. Therefore, the proposed model can
adapt to the data imbalance problem in STVS assessment.

Robustness Analysis
In the process of power grid operation, it is inevitable that the
collected PMU data will be accompanied by noise. In order to
analyze the anti-noise interference ability of the proposed
method, a certain degree of white Gaussian noise is added to
the original dataset, which is summarized as:

Z′ � Z + eθ, θ ~ N(0, 1) (19)
whereZ is the original data;Z′ is the datadisturbedbynoise; e is thenoise
matrix obeying the Gaussian distribution, and θ is the noise amplitude.

Generally, the signal-to-noise ratio (SNR) is used to measure
the error between noise and truthful data:

SNR � 20lg
‖Z‖����Z′���� (20)

The evaluation performance of CasLightGBM is tested on the
data contaminated by white Gaussian noise, and the SNR of the
data added noise was 50 dB, 40 dB, 30 dB, and 20 dB, respectively.
STVS results for various levels of white Gaussian noise are
presented in Figure 9. Although the intensity of noise
continues to increase, CasLightGBM still has excellent
evaluation precision, and the obtained evaluation indicators
have not been greatly reduced (e.g., the descending range of
Gmean is less than 1.2%). When the SNR is 20 dB, the average
value of Acc, TPR, and Gmean obtained by CasLightGBM is still
more than 97%, and the TNR is not less than 94%, reflecting the
excellent anti-noise performance of CasLightGBM. Therefore,
CasLightGBM can adapt to the scenarios in that the collected
PMU data is disturbed by noise during the operation of the
power grid.

CONCLUSION

Taking sample imbalance and overlapping into a
comprehensive account, this article developed an FL function
rectified CasLightGBM approach for intelligent STVS
assessment. The extensive numerical tests are carried out on
the IEEE 118-bus system, and the conclusions are drawn as
follows:

1) Compared with the dimension of the original feature, the
dimension of the key features extracted by mRMR is
significantly reduced compared with the dimension of
original features, which effectively avoids the problem of
dimension explosion.

2) Aided by the FL function, CasLightGBM pays more attention
to unstable samples and difficult-to-classify samples, and the
obtained TNR and Gmean are better.

3) Compared to other machine learning methods, CasLightGBM
has higher Acc, TPR, TNR, and Gmean, and the anti-noise
performance is excellent. This performance enhancement
contributed to executing timely emergency control
measures for less load shedding amount.

TABLE 4 | Calculation time of different methods.

Time/s CasLightGBM LightGBM 1D-CNN LSTM DT ANN

Training time 3.58 2.96 371.92 156.26 2.19 25.62
Testing time 0.018 0.016 0.071 0.052 0.023 0.035

TABLE 5 | Assessment results of different amounts of unstable training samples.

CasLightGBM GAN-LightGBM

Acc/% TPR/% TNR/% Gmean/% Acc/% TPR/% TNR/% Gmean/%

450:4550 98.27 98.70 94.90 96.78 93.96 94.16 92.34 93.25
550:4450 98.33 98.77 94.90 96.81 95.11 95.07 95.40 95.24
650:4350 98.16 98.31 96.94 97.62 95.74 95.65 96.42 96.04
750:4250 98.16 98.25 97.45 97.85 95.97 95.85 96.93 96.39

FIGURE 9 | The performance of CasLightGBM considering noise
interference.
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In the actual operation of the power grid, factors such as
equipment maintenance and natural disasters will lead to
frequent changes in the power grid topology, which poses a
huge challenge to the data-driven STVS assessment
technology. In relevant future work, how to learn the topology
of the power grid will be further analyzed and discussed to make
the evaluation model more adaptable in the new topology
scenarios.
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