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It is necessary to predict solar photovoltaic (PV) output and load profile to guarantee the
security, stability, and reliability of hybrid solar power systems. Severe frequency
fluctuations in hybrid solar systems are expected due to the intermittent nature of the
solar photovoltaic (PV) output and the unexpected variation in load. This paper proposes
designing a PID controller along with the integration of a battery energy storage system
(BESS) and plug-in hybrid electric vehicle (PHEV) for frequency damping in the hybrid solar
power system. The solar PV output is predicted with high accuracy using artificial neural
networks (ANN) given that solar irradiance and cell temperature are inputs to the model.
The variation in load is also forecasted considering the factors affecting the load using
ANN. Optimum values of the PID controller have been found using genetic algorithm,
particle swarm optimization, artificial bee colony, and firefly algorithm considering integral
absolute error (IAE), integral square error (ISE), and integral time absolute error (ITAE)
objective functions. IAE, ISE, ITAE, Rise time, settling time, peak overshoot and maximum
frequency deviation have been measured for comparison and effectiveness. The transient
behavior has been further improved by utilizing the power from BESS/PHEV to the power
system. The results demonstrate the efficacy of the suggested design for frequency control
using the genetic algorithmmethod along with ISE objective function compared with those
obtained from the conventional, particle swarm optimization, artificial bee colony, and firefly
algorithm techniques.

Keywords: load frequency control, PID controller design, load deviation forecasting, solar photovoltaic power
forecasting, particle swarm optimization, genetic algorithm, artificial bee colony (ABC) algorithm

INTRODUCTION

Solar photovoltaic (PV) systems are intermittent in nature. The variation in generated power and
load demand is common in solar PV connected power systems. Under normal operating situations,
microgrids are powered by the integration of both solar PV systems and the power grid. However,
when the output from the solar PV system is lower than expected, and the load demand is high, the
power grid may not be able to support enough power because of its slow dynamic response. This will
cause the power system to be unstable which leads to severe frequency fluctuations in the system
(Sadat, 2012).

Hybrid solar power systems are a source for generating electrical power that use inverters coupled
with batteries to store energy later use. In this way, hybrid solar systems will be able to use the stored
energy during blackouts and compensate for renewable energy sources output fluctuation (Newkirk,
2015). Integrating microgrids with renewable energy systems is considered an adequate solution to
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meet the increasing demand of electric power. Such microgrids
can utilize plug-in hybrid electric vehicles and battery energy
storage systems to maintain the balance between generated power
and the load demand. Due to the intermittent nature of renewable
energy sources, the change in generation power and load demand
would lead the system to instability causing severe frequency
fluctuations. Mathematical models were developed to predict the
behavior of microgrids in order to dampen frequency
fluctuations. Power systems with a high penetration of
renewable energy sources were integrated with battery energy
storage system (BESS) and plug-in hybrid electric vehicles to
maintain the frequency deviations within limits (Akula, 2019).

Mellit (Mellit and Pavan, 2010) uses artificial neural network
methods for forecasting the electric power produced by a 20 kWp

grid-connected PV system placed on a rooftop in the
municipality of Trieste, Italy. According to Huang (Huang
et al., 2016), improved the solar photovoltaic (PV) output by
using the solar irradiance and temperature along solar zenith
angle and solar azimuth angle with the help of artificial neural
network methods. A data-driven ensemble approach was used by
Al-Dahidi in (Al-Dahidi et al., 2019) to predict the day ahead
solar photovoltaic (PV) output (230 kWac capacity) placed on the
top of the Applied Science Private University, Amman, Jordan to
overcome the intermittent nature of solar energy system.

Hote (2018) studied the PID controller calibrating
approaches for load frequency control of Power systems.
The prime challenge in LFC was to design a PID controller
that could maintain the frequency fluctuations rigorously
within the defined limits. Fractional Order PID controller
was tuned by Taher (2014) for load frequency control for
three area power system with the help of imperialist
competitive algorithm (ICA). The response of the
interconnected power system towards disruption was
smooth and less vibratory as a result of using the proposed
controller. Mosaad (Mosaad and Salem., 2014) presented a
methodological design for an adaptive PID load frequency
using artificial neural networks (ANN) and adaptive Neuro-
Fuzzy Inference systems (ANFIS). The PID Controller was
able to maintain the effective performance at any load point in
the power system with the superiority of ANFIS over ANN
with respect to integral absolute error (IAE), integral square of
errors. According to Otani (2017), there are possible chances
of frequency fluctuations after losing balance between power
generated and load demand. Battery storage was incorporated
because of its faster response to overcome load frequency
deviations using recurrent neural networks.

The desired frequency of the power system deviates due to
disturbances in the electric power generation and load
fluctuations. Load frequency control has been considered the
main issue for power system operation and control for effective
and reliable power supply (Sundaram and Jayabarathi, 2011). PI,
PID and fuzzy controllers have been used to stabilize the power
system when it is integrated with wind power. Kumari et al.
(2016) introduce the ANN-based PID controller to sufficiently
damp frequency fluctuations produced as a result of load changes.
An artificial intelligent controller has been designed using the
backpropagation algorithm to reduce the area control error of a

two-area hydrothermal power system for automatic generation
control purposes in (Rao, 2012).

Meta-heuristic optimization techniques have been employed
to get the optimal gains of PID controller for LFC problem.
According to (Das et al., 2010), genetic algorithm based PID
controller was tuned for autonomous hybrid generation system.
Fractional order PID controller was tuned using genetic
algorithm for hybrid power system integrated with renewable
energy sources (Regad et al., 2019). Multi-objective artificial bee
colony technique was adopted to tune the PID controller
parameters with the help of integral time multiplied absolute
error (ITAE) and integral of time weighted squared error (ITSE)
for two area thermal power system (Naidu et al., 2014). Particle
swarm optimization has been utilized to tune the fuzzy logic
controller for the frequency restoration of multi-area power
system (Jaber et al., 2013). PSO is used for obtaining the
optimal PID parameters for two area system with integral
square error as cost function and showing best convergence
profile (Nagarjuna and Shankar, 2015). PID optimal
parameters obtained for two and three area power system
using firefly algorithm considering the generation rate
constraint and governor dead band (Padhan et al., 2014).

Energy storage systems are also used in previous studies for
frequency regulation. The role of battery energy storage system
has been presented for regulating the frequency in interconnected
power system. The results are compared to the conventional PID
controller that describe BESS as efficient for LFC purpose
(Kalyani et al., 2012). Peak frequency deviation and settling
time of two area power system is reduced using the battery
energy storage system and choosing the proper integral gain
(Aditya and Das, 2001). Plug-in electric vehicles power is utilized
for frequency stability of the islanded power system with the help
of controllable power rate strategy (Qi et al., 2018). The energy
from electric vehicles that are charged during daytime can be
utilized in the night-time for small residential power system
(Takagi et al., 2009).

The purpose of this study to address the limitations in the
previous studies and fulfill the gap. Many load frequency control
techniques have been applied to power system for its stability
purposes, i.e., robust control, decentralized aspect, linear
quadratic, pole shifting, and variable structure. But there have
been some drawbacks of these techniques which decrease their
execution efficiency. To overcome such problem, artificial
intelligence techniques, fuzzy logic (FL) and neural network
(NN) have been adopted and applied to solve the non-linear
models of the power system. These techniques have proved their
effectiveness and efficiency to solve the problem. But they still
have some disadvantages. For example, it is hard to train the
neural network again and again to set the number of neurons and
other parameters to get the best output response. Similarly, fuzzy
logic requires hard work to get the influential signal response
from the power system (Abd-Elazim and Ali, 2018).
Optimization techniques such as genetic algorithm (GA)
(Milani and Mozafari, 2009) (Chang et al., 1998;
Rerkpreedapong et al., 2003; Das et al., 2010; Das et al., 2012;
Mallesham et al., 2012; Konar et al., 2014; Regad et al., 2019;
Hemeida et al., 2020; Sidi Brahim et al., 2021), particle swarm
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optimization (PSO) (Pain and Acharjee, 2014; Abd-Elazim and
Ali, 2018) (Gözde et al., 2008; Selvakumaran et al., 2012; Modi
et al., 2013; Rao and Rama Krishna Reddy, 2015; Shankar et al.,
2015; Hazlee Azil et al., 2016; Jeyalakshmi and Subburaj, 2016;
Singh and Ramesh, 2019; Hemeida et al., 2020; Veerasamy et al.,
2020; Safari et al., 2021) (Sidi Brahim et al., 2021) (Mallesham
et al., 2012)- (Kumari and Jha, 2014), firefly algorithm (FA)
(Naidu et al., 2013; Shakarami et al., 2013; Padhan et al., 2014;
Chandra Sekhar et al., 2016; Abd-Elazim and Ali, 2018;
Boddepalli and Navuri, 2018; Gupta et al., 2021), and artificial
bee colony (Ghasemi and Shayeghi, 2011; Rathor et al., 2011;
Gozde et al., 2012; Naidu et al., 2014; Elsisi et al., 2015; Kouba
et al., 2015; Kumar et al., 2017; Abo-Elyousr, 2018), have been
used and found to be effective for load frequency control
problem. But proportional, integral and derivative gain range
of PID controller during optimization problem has been
narrowed. Renewable energy source, photovoltaic and wind
turbine, transfer function model has been adopted in the
previous studies. In the same way, load frequency control has
also been done in previous studies using the energy storage
systems but without efficient PID controller that ultimately
require large energy storage capacity to damp the frequency
(Kalyani et al., 2012)- (Aditya and Das, 2001). Taking into
account the mentioned limitations, the current study discusses
and solve the problem by taking real-time data to train the
network for solar photovoltaic prediction, load deviation
forecasting, widening proportional, integral, and derivative
controller gain range, and integrating the BESS/PHEV with
efficient tuned PID controller.

The major contributions of this paper are threefold and shown
below.

1) Solar photovoltaic generated power and load deviation have
been forecasted from the affecting factors using artificial
neural networks.

2) The forecasted solar photovoltaic power and load deviation
have been utilized by the power system model to find the
optimal PID controller parameters using genetic algorithm,
particle swarm optimization, artificial bee colony and firefly
algorithm optimization techniques considering the integral
absolute error, integral square error, and integral time
absolute error objective functions.

3) BESS/PHEV model, with gain levels 10 and 50 respectively,
has been integrated to the power system model to further
dampen the frequency deviation.

POWER SYSTEM MODEL

Power system control concentrate on steady state operation. This
study presents how to deal with active power to keep the power
system in steady state. The major objective of the control strategy
is to provide qualitative and reliable power to customers within an
interconnected system. Changes in the active power disturb the
frequency of the system. Therefore, a control strategy is designed
to regulate load frequency control using control loops. Two
common approaches, transfer function and state variable, are

adopted to transform the power system model into a
mathematical model by making some proper assumptions
(Prakash and Sinha, 2012; Pain and Acharjee, 2014; Prajapati
and Parmar, 2016; Azeer et al., 2017; Lone et al., 2018; Yang-Wu
et al., 2019). A single area power system model is shown in
Figure 1.

Generator Model
The generator equation has been extracted from the swing
equation as shown in Eq. 1.

Δω(s) � 1
2Hs

[ΔPm(s) + ΔPPV(s) − ΔPe(s)] (1)

Load Model
The power system contains resistive and inductive load that is
frequency independent and dependent respectively (Sadat, 2012).
Therefore, the net change in load power can be described as the
combination of frequency sensitive and frequency non-sensitive
load changes shown in Eq. 2.

ΔPe(s) � ΔPL +DΔω (2)
Where ΔPL is the frequency independent load change and DΔω
denotes the frequency-sensitive load change and D represent the
ratio of percent change in load to the percent change in frequency.
So, the relationship for variation in load with respect to frequency
fluctuation can be expressed as,

ΔPL(freq) � DΔω orD � ΔPL(freq)
Δω (3)

Many factors affect the electric load (Khatoon and Singh,
2014). These factors could be short term, middle term, and long-
term influence factors. Some important factors used for load
forecasting are categorized as follows.

• Meteorological factors involving temperature, wind speed,
humidity, surface pressure, and precipitation factor are
responsible for load forecasting.

• Temporal or calendar factors involving hour of the day and
day of the week.

• Random factors such as sports activities.

Frequency dependent load change has been observed from the
Atlas Power Plant. The Atlas power plant is a coal fired thermal
power plant located at the geographic location (Longitude:
31.5204, Latitude:74.3587). The historical load demand data
has been extracted from the power data reference book
produced by the National Transmission and Dispatch
Company Limited (NTDCL) (Power Data Reference Book,
2017). Historical daily load data from 2011 to 2016 has been
taken as input along with weather and seasonal data. Seasonal and
weather data consists of wind speed, surface pressure,
temperature, precipitation factor, and humidity. Average load
has been calculated for 365 days from load profile data between
2011 and 2016 (Alessandra et al., 2011). Frequency dependent
change in load has been extracted from the average load for
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consecutive 365 days as shown in Figure 2. This change in load
power has been taken as an output (Kotur and Žarković, 2016).

The weather data has been first normalized by taking the
maximum value as base from each factor affecting the load and
dividing the entirety of the weather data with base value within
the range (0–1). Similarly, historical data has also been
normalized by dividing with the base value 219 MW and
converting the load data within the range of (0–1). After
normalizing the input and target data, NNTOOL is used to
train the network. A multi-layer feed forward neural network
was trained using wind speed, surface pressure, temperature,
precipitation factor, humidity, and historical load data as input
and deviation in load power data as target as shown in Figure 1 of

the load deviation model (Srinivasan et al., 1991). The number of
neurons has been chosen as 10, Tan sigmoid activation function,
and Levenberg Marquardt as learning algorithm as shown in
Table 1. The trained model depicts its effectiveness showing the
coefficient of regression as 1.0 and mean squared error (MSE) as
1.68 × 10−16 at 525 epochs. After training model, the network
model was deployed in Simulink, where the neural network can
successfully forecast the deviation in load power.

Prime Mover Model
It is the origin of mechanical power whose energy is obtained
from burning coal or gas, or nuclear fission. The transfer function
of the turbine can be represented as the ratio of the change in

FIGURE 1 | Single-area power system model.
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mechanical output power ΔPm(s) to the change in steam valve
position ΔPv(s) as represented by Eq. 4.

GT(s) � ΔPm(s)
ΔPv(s) �

1
1 + sτt

(4)

Where τt is the turbine time constant.

Governor Model
The speed governor model can be expressed as Eq. 5.

ΔPg(s) � ΔPref − 1
R
Δω(s) (5)

The speed governor operates as a comparator and its output ΔPg

can be written as difference between the reference set power
ΔPref and power 1

RΔω, where R indicates the speed regulation.
The relation between governor input and valve opening can be
expressed by Eq. 6 (Kumari et al., 2016).

ΔPv(s) � 1
1 + sτg

ΔPg(s) (6)

Where τg is taken as the governor time constant in seconds.

Solar Photovoltaic Model
It is fact that photovoltaic output power is intermittent in nature.
It depends on two main factors: solar irradiance and temperature
(Rodríguez et al., 2018). Solar photovoltaic power is directly
proportional to solar irradiance while inversely proportional to

temperature (Abd-Elazim and Ali, 2018). Solar photovoltaic
model of 5 MW is considered at location (Longitude:31.5204,
Latitude:74.3587) near the thermal power plant. Solar PV system
is integrated to the thermal power plant. The solar power plant is
built by LONGI solar modules of power 540W. LONGI solar
module characteristics are shown in Table 2. The solar PV
module output (W) was considered at different solar
irradiance (ranges 100–1100 W/m2) and temperature
(0°C–55°C). These changes were applied to the whole 5 MW
power plant to see the effect of intermittency on the power plant.
The solar PV generated power 5 MW has been normalized using
the base power of 219 MW according to the thermal power plant.
A multi-layer feed forward neural network was trained using
solar irradiance and temperature as input data and solar power as
target data (Sedaghati et al., 2012; Ncane and Saha, 2019). The
number of neurons is chosen to be 10, Tan sigmoid activation
function, and Levenberg Marquardt as learning algorithm as
shown in Table 3. The trained model depicts its effectiveness
showing the coefficient of regression as 1.0 and mean squared
error as 8.4 × 10−10 at epochs 22. After successfully training the
model, the network model was deployed using Simulink, where
neural network can successfully forecast the solar power using the
input data taken from the National Aeronautics and Space
Administration (NASA). The peak value of solar irradiance
and its corresponding temperature at a specific time of the day
is considered to forecast the solar photovoltaic output power for
that day.

Battery Energy Storage System/Plug-in
Hybrid Electric Vehicle Model
Energy storage systems are a great source of frequency damping
in the power system. As discussed in the introduction section,
power from battery energy storage systems and plug-in hybrid
electric vehicle play an important role for maintaining the
frequency. Energy from PHEV can be utilized for small
residential systems. The circle of willingness of customers for
utilizing PHEV can be enhanced. Figure 1 consists of the control
system model for a battery energy storage system or plug-in
hybrid electric vehicle integrated to the power system. The term

KpB

TchargeS+1 depicts the mechanism of auto balancing charging loop.
This close-loop control will maintain the energy of the BESS/
PHEV near the initial state, which is considered 50% charged.KB

is the feedback gain from the frequency fluctuation in the power
grid. 1

TConvs+1 represent the first order conversion delay from DC to
AC of the BESS/PHEV (Uehara et al., 2009; Liang et al., 2012).

FIGURE 2 | Load deviation of power system for one-year period.

TABLE 1 | Summary of artificial neural network design and architecture for forecasting load deviation.

Network type Multi-layer feedforward neural network

Inputs 6 inputs- wind speed, surface pressure, temperature, precipitation factor, humidity, historical load 2011–2016
Outputs 1 output-deviation in load
Number of layers Input, hidden, output
Number of hidden neurons 10
Activation function Tan-sigmoid, linear
Learning algorithm Levenberg-Marquardt
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PID Controller Model for Optimization
Problem
The PID Controller model has been adopted in the power system
model as shown in Figure 1. The transfer function of the
controller is as follows.

GPID(s) � Kp + Ki

s
+Kds (7)

The control signal for maintaining the system frequency is
given by Eq. 8 (Abd-Elazim and Ali, 2018).

U(s) � −GPID(s) × ACE(s) (8)
where ACE is the area control error of the power system and U is
the input signal to the governor for controlling the valve output
according to load demand of the power system.

Area Control Error (ACE) of studied single-area power system
can be written by Eq. 9.

ACE � B × Δω (9)
B is called bias factor and denoted with B � 1

R +D, and Δω
represents the frequency deviation.

Multi-objective function is used in (Naidu et al., 2014) for load
frequency control using the artificial bee colony optimization
approach considering ITAE and ITSE. It has been observed the
performance of the PID controller can be compromised,
i.e., Either frequency deviation or settling time is compromised
on the cost of each other. Therefore, it is recommended to use
objective functions separately. But, the most suitable objective
function should be identified based on the performance indices
and convergence profile.

Three objective functions J are used to check the performance
indices of the PID controller, which are the integral absolute error

(IAE), integral square error (ISE), and integral time absolute
Error (ITAE) and given by Eqs 10–12.

JIAE � ∫∞

−∞
|e(t)|dt (10)

JISE � ∫∞

−∞
e(t)2dt (11)

JITAE � ∫∞

−∞
tp|e(t)|dt (12)

Where e(t) is area control error (ACE).
Frequency deviation permissible limit is calculated using the

following steady-state equation (Sadat, 2012).

Δωss � ± ΔPL
1
R +D

(13)

The maximum steady-state frequency deviation in Hz has
found to be −0.7932 Hz for maximum positive load change and
0.5468 Hz for maximum negative load change for studied model.
So, the frequency deviation permissible limit range should be
(−0.7932, 0.5468) in Hz.

PROPOSED APPROACHES FOR TUNING
THE PID CONTROLLER

Particle Swarm Optimization
Particle swarm optimization technique was developed by
Kennedy and Eberhart in 1995. They used nature inspired
optimization algorithms in their technique. In this technique,
particles are flown through the search space and update the
position of the ith particle at time step of t. The expression for
the velocity updates is given by the Eq. 14.

vi(t + 1) � ωvi(t) + c1rand1 · (pbesti − xi(t)) + c2rand2

· (gbesti − xi(t)) (14)
This technique is adopted to find the optimal values of the PID

controller parameters. Initially, the PID controller proportional
gain Kp, integral gain Ki, and derivative gain Kd optimal values
have been searched in the range (−10, 1000). The searched
controller gains produce insufficient closed-loop stability of
the power system in this range. Therefore, the gain parameters
range has been narrowed iteratively until closed-loop stability
condition of power system model is achieved within the range

TABLE 2 | Electrical characteristics of LONGI Solar 540W module.

Module type LR5-72HPH-540M

Testing condition STC:AM1.5, 1000 W/m2, 25 ℃ NOCT:AM1.5, 800 W/m2, 20 ℃

Maximum power (Pmax/W) 540 403.3
Open circuit voltage (Voc/V) 49.50 46.41
Short circuit current (Isc/A) 13.85 11.20
Voltage at maximum power (Vmp/V) 41.65 38.78
Current at maximum power (Imp/A) 12.97 10.40
Module efficiency (%) 21.1

TABLE 3 | Summary of artificial neural network design and architecture for
forecasting solar photovoltaic power.

Network type Multi-layer feedforward neural
network

Inputs 2 inputs- solar irradiance, temperature
Outputs 1 output-module power
Number of layers Input, hidden, output
Number of hidden neurons 10
Activation function Tan-sigmoid, linear
Learning algorithm Levenberg-Marquardt
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(−10, 150). PID controller produces best results and minimizes
the error significantly within the selected range (−10, 150) as
compared to very short range (0, 5) (Pain and Acharjee, 2014;
Abd-Elazim and Ali, 2018) (Gözde et al., 2008; Selvakumaran
et al., 2012;Modi et al., 2013; Rao and Rama Krishna Reddy, 2015;
Shankar et al., 2015; Hazlee Azil et al., 2016; Jeyalakshmi and
Subburaj, 2016; Singh and Ramesh, 2019; Hemeida et al., 2020;
Veerasamy et al., 2020; Safari et al., 2021) (Sidi Brahim et al.,
2021) (Mallesham et al., 2012)- (Kumari and Jha, 2014). Table 4
depicts the PSO operators used to find out the optimal PID
controller parameters. The best performing PID controller
parameters are mentioned in Table 5.

Genetic Algorithm
Genetic Algorithm is an optimization technique based on
heredity and evolution. This technique was suggested by
John Holland in 1960 to search for the best solution of
complex problems. It is an iterative process which
maintains the constant population size of desired solution.
GA initially begins with a randomly selected population of
function input that is represented as a bit of strings. The
Population is evaluated in each iterative step called
generations to give a new population of the desired
solution. That means GA uses the current population to
produce a new population such that the new population is
better on average if compared to the previous population. Best
elements are used from the current population to form the best
population. The successful process will produce a population
better than the old one. Three steps selection, mating, and
mutation are used to produce new population from the old
population. The basic genetic algorithm cycle is shown in
Figure 3. New generations are produced iteratively with the
repetition of these three steps. The process continues until the
stopping criteria is reached like the maximum number of
iterations is achieved or no improvements (Milani and
Mozafari, 2009) (Chang et al., 1998; Rerkpreedapong et al.,
2003; Das et al., 2010; Das et al., 2012; Mallesham et al., 2012;
Konar et al., 2014; Regad et al., 2019; Hemeida et al., 2020; Sidi
Brahim et al., 2021).

This technique is adopted to find the optimal values of the PID
controller parameters. The PID controller proportional gain Kp,
integral gain Ki, and derivative gain Kd optimal values have been
searched in the range (−10, 150). Different parameters and
functions for applying GA technique are used in
OPTIMTOOL toolbox of MATLAB and given in Table 4. The
optimal parameters obtained are depicted in Table 5.

Firefly Algorithm
The flashing light of fireflies is of great importance to study their
pattern and rhythmic movement. Studies discussed the main aim
of pattern of flashes is either to communicate with the mating
partners, to attract the potential prey or to signal other fireflies for
potential safety warning. This signal consists of rhythmic flash,
rate of flash and amount of flashing. This behavior of flashing
light from fireflies can be used to solve many optimization
problems. This algorithm has been developed by Xin-She
Yang in 2008.

The Euclidian distance rij between two fireflies i and j with
respect to their positions xi and xj can be found with the flowing
Eq. 15

rij �
��������������∑d

k�1(xi,k − xj,k)2√
(15)

Where k denotes the kth element of the geographical coordinates.
The attractiveness between fireflies can be denoted with the
following attractiveness parameter.

β � β0e
−γr2 (16)

TABLE 4 | Meta-heuristic techniques operators used to find out optimal PID gain
parameters.

Option Number/Type

Genetic algorithm

Number of variables 3
Limit (−10, 150)
Population size Default, 50
Creation function Uniform
Fitness scaling function Rank
Selection function Tournament
Crossover fraction Default, 0.8
Mutation function Adaptive feasible
Crossover function Arithmetic
Fitness function IAE, ISE, ITAE
Stopping criteria Default, 100*Number of variables

Particle swarm optimization

No. of variables 3
No. of particles 30
No. of iterations 50
Objective functions IAE, ISE, ITAE
Limit (−10, 150)
C1 � C2 2
wmax 0.9
wmin 0.4

Artificial bee colony

No. of populations 30
No. of iterations 60
Number of variables 3
Objective functions IAE, ISE, ITAE
Limit (−10, 150)
a (acceleration coefficient) 1
Number of onlooker bees 30

Firefly algorithm

No. of populations 30
No. of iterations 50
Number of variables 3
Objective functions IAE, ISE, ITAE
Limit (−10, 150)
γ 1
β 1
α 0.2
ε 0.98
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γ is called the coefficient of absorption. It is used to control the
flashing light concentration. Fireflies’ positions and movement
can be described by the following equations.

vdi (t + 1) � randi × vdi (t) × adi (t) (17)
xd
i (t) � xd

i (t) + β0e
−γr2(xj − xi) + vdi (t + 1) + αε (18)

xi indicates the instantaneous position of the firefly whereas αε
represents the random behavior of firefly when the firefly can’t see
another brighter firefly (Naidu et al., 2013; Shakarami et al., 2013;
Padhan et al., 2014; Chandra Sekhar et al., 2016; Abd-Elazim and
Ali, 2018; Boddepalli and Navuri, 2018; Gupta et al., 2021).

The PID controller proportional gainKp, integral gainKi, and
derivative gainKd optimal values have been searched in the range
(−10, 150) using firefly algorithm. Firefly algorithm operators
used to find out the PID gain values are given in Table 4 and
obtained optimal PID parameters in Table 5.

Artificial Bee Colony
Artificial bee colony is meta-heuristic optimization algorithm
developed by Karaboğa in 2005. Honey bees foraging behavior
has been utilized in this technique searching for nectar at
different positions. Usually, three kind of honey bees are
considered to be responsible for finding nectar positions:
employed, onlooker and scouts. This algorithm adopts
some variables and steps to proceed for finding optimal
solution. The variables of ABC algorithm include
population of honey bees (SN), maximum cycle number
(MCN), objective functions and some functions to test the
probability, fitness and optimization of the objective
functions. The steps in the ABC algorithm includes
initialization, employed, onlooker and scout bees. The
initialization step starts by generating the number of
solutions equal to total number of bees (SN). Each solution
is obtained within the upper and lower limit of the selected
decision variable with the following equation.

xij � xmin
j + rand [0, 1](xmax

j − xmin
j ), i � 1, 2, 3, . . . SN,

j � 1, 2, 3, . . . .D (19)
Where D denotes the total number of decision variables used in
the objective function. The next step starts by generating the new
food source by employed and onlooker bees by updating their
positions as given by,

vij � xij +∅ij(xij − xkj),While i ≠ j (20)
Where ∅ij is random number within range (−1, 1) and used to
change the position around xij. The last step includes the
probability of finding the nectar by onlooker bees, which is
given by following expression,

Pi � fiti∑Sn
n�1 fitn

(21)

Where fiti is the fitness value corresponding to nectar position i.
The fitness value is checked for the next iteration, and if it is better
than previous fitness value the latest one is stored and the
algorithm continues until the stopping criteria is reached
(Ghasemi and Shayeghi, 2011; Rathor et al., 2011; Gozde et al.,
2012; Naidu et al., 2014; Elsisi et al., 2015; Kouba et al., 2015;
Kumar et al., 2017; Abo-Elyousr, 2018). Using the artificial bee
colony, optimized PID controller parameters are found as shown
in Table 5.

TABLE 5 | PID controller gain parameters using IAE, ISE, and ITAE objective function.

PID gain
parameters

IAE ISE ITAE

Kp Ki Kd Kp Ki Kd Kp Ki Kd

Conventional 0.8177 0.1893 0.3908 0.8177 0.1893 0.3908 0.8177 0.1893 0.3908
GA 22.2105 67.3446 14.1122 18.79 140.55 23.18 20.9071 33.7624 9.5543
PSO 22.1722 66.9801 14.1081 21.44 60 18.63 22.8070 51.4915 14.4405
ABC 22.1959 62.8050 13.4827 16.907 138.079 20.729 22.1114 65.7727 13.6213
FA 5.8933 8.9221 21.5548 10.014 1.0915 14.715 4.9795 6.4586 2.0571

FIGURE 3 | Basic genetic algorithm cycle.
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Conventional PID Controller
The Simulinkmodel of the single-area power system containing PID
controller is tuned using the classical method to enhance the
performance and robustness. PID Tuner toolbox is launched
from the Simulink model that automatically computes the linear
power systemmodel to find gain parameters corresponding to initial
controller conditions. The obtained PID controller gains can
robustly stabilize the power system. The performance of
controller could be checked using frequency deviation
performance indicators, i.e., settling time, zero steady state error.
If the desired response is not achieved by auto tunning, PID
controller gains can be adjusted manually by varying the
response time (seconds) and transient behavior. The PID
controller gains are updated to the Simulink model after meeting
the desired requirement (MathWorks, 2022a)- (MathWorks,
2022b). The compensator formula for PID controller is given as,

Compensation Formula � P + I
1
s
+D

N

1 +N 1
s

(22)

In the studied model, best performing PID controller gains
have been found to beKp 0.8177,Ki 0.1893, andKd 0.3908 within
the range (0, 1) corresponding to initial controller conditions.
PID controller has been tuned with response time value of 13.63 s
and transient behavior value of 0.6 between aggressiveness and

robustness. Filter coefficient N value has been chosen as 100 for
this case.

RESULTS AND DISCUSSION

Three objective functions IAE, ISE, and ITAE have been applied
to the genetic algorithm, particle swarm optimization, artificial
bee colony, and firefly algorithm to find out the optimal
proportional gain Kp, integral gain Ki, and derivative gain Kd.
Table 5 illustrates the PID gain parameters for GA, PSO, ABC,
and FA using three objective functions. GA, PSO, and ABC
techniques have found to be competitive and efficient than FA
and conventional methods. The convergence characteristics of
GA, PSO, and ABC are shown in Figure 4. The graph represents
the objective function vs. number of iterations. The graph depicts
almost two iterations are required to reach the best fitness 0.0219,
0.00034, and 0.0166 using IAE, ISE, and ITAE objective function
respectively for genetic algorithm. It can also be seen that almost
40 iterations are required to reach the best fitness 2.20, 0.0344,
and 44.0306 using IAE, ISE, and ITAE cost function respectively
for particle swarm optimization. No significant change has
been observed after 40 iterations. The fitness value has been
found 0.73, 0.0115, and 14.55 using IAE, ISE, and ITAE objective
function respectively in less than 20 iterations for artificial bee

FIGURE 4 | Convergence characteristics of optimization techniques (A) GA (B) PSO (C) ABC.
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colony. Convergence properties describe the effective genetic
algorithm that requires very few iterations to reach its best
fitness value.

The results of the studied model have been categorized into
three cases.

• Frequency damping using integral absolute error (IAE)
objective function, with and without BESS/PHEV
support.

• Frequency damping using integral square error (ISE)
objective function, with and without BESS/PHEV
support.

• Frequency damping using integral time absolute error
(ITAE) objective function, with and without BESS/PHEV
support.

Several parameters are used to check the performance indices
of hybrid power system for frequency deviation including integral

FIGURE 5 | Frequency deviation response using integral absolute error (A) without BESS/PHEV support (B) with BESS/PHEV support, KB � 10 (C) with BESS/
PHEV support, KB � 50.
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absolute error, integral square error, and integral time absolute
error. Rise time Tr(s), settling time Ts(s), peak overshoot
MP(%), and maximum frequency deviation Δf(Hz) are also
used to check the transient response of the power system. These
performance indices are also checked by integrating power from
BESS/PHEV for different capacities to see the frequency deviation
suppression.

Frequency of the power system deviates either positive or
negative depending upon the increase or decrease in load and
photovoltaic power. The mismatch between load demand
and photovoltaic power give rise to changes in
frequency. Five key days, 1st January (ΔPL = 0.3394 pu),
30th March (ΔPL = 0.2374 pu), 13th December (ΔPL =
0.1575 pu), 24th May (ΔPL = −0.2275 pu), and 28th

FIGURE 6 | Frequency deviation response using integral square error (A) without BESS/PHEV support (B) with BESS/PHEV support, KB � 10 (C) with BESS/
PHEV support, KB � 50.
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September (ΔPL = −0.1499 pu), showing significant load
changes have been selected to check the conventional PID,
GA optimized PID, PSO optimized PID, ABC optimized PID,
and FA optimized PID responses against frequency deviation.
Figures 5–7 depicts the frequency deviation responses of the
power system in the same order as mentioned above from top
to bottom.

Frequency deviation responses of the GA optimized PID, PSO
optimized PID, ABC optimized PID, and FA optimized PID
using the IAE objective function is shown in Table 6 and
Figure 5. Their performance indices show that GA optimized
PID, PSO optimized PID, and ABC optimized PID produce
approximately same results as their proportional, integral, and
derivative values have been found to be same. IAE, ISE, ITAE and

FIGURE 7 | Frequency deviation response using integral time absolute error (A) without BESS/PHEV support (B) with BESS/PHEV support, KB � 10 (C) with
BESS/PHEV support, KB � 50.
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TABLE 6 | Frequency deviation parameter indices using integral absolute error objective function.

Without BESS/PHEV support, KB = 10 and KB = 50

Date ΔPL ΔPPV IAE ISE ITAE Tr(s) Ts(s) MP(%) Δf(Hz)

Conventional-PID

1st Jan 0.3394 0.01351 1.718 0.3893 6.502 0.912 7.97 8.15 −0.9184
30th Mar 0.2374 0.01969 1.148 0.1738 4.345 0.912 7.97 8.15 −0.6136
13th Dec 0.1575 0.01192 0.7674 0.07772 2.905 0.912 7.97 8.15 −0.4103
24th May −0.2275 0.0185 1.297 0.2219 4.909 0.912 7.97 8.15 0.6934
28th Sep −0.1499 0.01451 0.8666 0.0991 3.281 0.912 7.97 8.15 0.4634

GA-optimized-PID

1st Jan 0.3394 0.01351 0.02199 0.0003987 0.01991 0.0673 2.87 78.7 −0.1148
30th Mar 0.2374 0.01969 0.01469 0.000178 0.01331 0.0673 2.87 78.7 −0.07668
13th Dec 0.1575 0.01192 0.009823 0.0000795 0.008897 0.0673 2.87 78.7 −0.05132
24th May −0.2275 0.0185 0.0166 0.0002272 0.01503 0.0673 2.87 78.7 0.08664
28th Sep −0.1499 0.01451 0.01109 0.0001015 0.01005 0.0673 2.87 78.7 0.05792

PSO-optimized-PID

1st Jan 0.3394 0.01351 0.02199 0.0003987 0.01994 0.0673 2.86 78.6 −0.1148
30th Mar 0.2374 0.01969 0.01469 0.000178 0.01332 0.0673 2.86 78.6 −0.07668
13th Dec 0.1575 0.01192 0.009824 0.0000795 0.00891 0.0673 2.86 78.6 −0.05132
24th May −0.2275 0.0185 0.0166 0.0002272 0.01506 0.0673 2.86 78.6 0.08664
28th Sep −0.1499 0.01451 0.01109 0.0001015 0.01006 0.0673 2.86 78.6 0.05792

ABC-optimized-PID

1st Jan 0.3394 0.01351 0.022 0.0004133 0.01913 0.069 2.77 78 −0.1171
30th Mar 0.2374 0.01969 0.0147 0.000184 0.01278 0.069 2.77 78 −0.0783
13th Dec 0.1575 0.01192 0.009831 0.000082 0.00854 0.069 2.77 78 −0.0523
24th May −0.2275 0.0185 0.01661 0.000235 0.01444 0.069 2.77 78 0.0885
28th Sep −0.1499 0.01451 0.0111 0.000105 0.00965 0.069 2.77 78 0.05918

FA-optimized-PID

1st Jan 0.3394 0.01351 0.1106 0.001322 0.61 0.0548 3.84 76.9 −0.09573
30th Mar 0.2374 0.01969 0.0739 0.00059 0.4076 0.0548 3.84 76.9 −0.0641
13th Dec 0.1575 0.01192 0.0493 0.000264 0.2725 0.0548 3.84 76.9 −0.0428
24th May −0.2275 0.0185 0.08352 0.000753 0.4605 0.0548 3.84 76.9 0.0722
28th Sep −0.1499 0.01451 0.05882 0.000336 0.3078 0.0548 3.84 76.9 0.0484

With BESS/PHEV support, KB � 10 and KB � 50

Date ΔPL ΔPPV IAE ISE ITAE Tr(s) Ts(s) MP(%) Δf(Hz)
KB � 10 KB � 50 KB � 10 KB � 50 KB � 10 KB � 50 KB � 10 KB � 50 KB � 10 KB � 50 KB � 10 KB � 50 KB � 10 KB � 50

Conventional-PID

1st Jan 0.3394 0.01351 1.72 1.299 0.2356 0.08956 10.24 11.27 7.93 — 693 — 10.1 — −0.6085 −0.2554
30th Mar 0.2374 0.01969 1.149 0.8681 0.1052 0.03998 6.839 7.53 7.93 — 693 — 10.1 — −0.4066 −0.1705
13th Dec 0.1575 0.01192 0.7885 0.5805 0.04703 0.01788 4.573 5.035 7.93 — 693 — 10.1 — −0.2719 −0.1140

(Continued on following page)
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TABLE 6 | (Continued) Frequency deviation parameter indices using integral absolute error objective function.

Without BESS/PHEV support, KB = 10 and KB = 50

Date ΔPL ΔPPV IAE ISE ITAE Tr(s) Ts(s) MP(%) Δf(Hz)

24th May −0.2275 0.0185 1.299 0.9809 0.1343 0.05105 7.728 8.509 7.93 — 693 — 10.1 — 0.4594 0.1928
28th Sep −0.1499 0.01451 0.8678 0.6555 0.05997 0.0228 5.164 5.686 7.93 — 693 — 10.1 — 0.3070 0.1289

GA-Optimized-PID

1st Jan 0.3394 0.01351 0.01873 0.01353 0.0003203 0.0001902 0.01696 0.01399 0.0683 0.0738 2.3 1.75 70 41 −0.1103 −0.09469
30th Mar 0.2374 0.01969 0.01252 0.00904 0.000143 0.0000848 0.01133 0.009344 0.0683 0.0738 2.3 1.75 70 41 −0.07368 −0.06326
13th Dec 0.1575 0.01192 0.00837 0.006045 0.0000639 0.0000379 0.007576 0.006248 0.0683 0.0738 2.3 1.75 70 41 −0.04928 −0.04229
24th May −0.2275 0.0185 0.01414 0.01022 0.0001826 0.0001083 0.0128 0.01056 0.0683 0.0738 2.3 1.75 70 41 0.08323 0.07146
28th Sep −0.1499 0.01451 0.009452 0.006827 0.0000815 0.0000483 0.008555 0.007056 0.0683 0.0738 2.3 1.75 70 41 0.05561 0.04779

PSO-Optimized-PID

1st Jan 0.3394 0.01351 0.01874 0.01355 0.0003205 0.0001902 0.01699 0.01402 0.0683 0.0738 2.3 1.75 69.9 40.9 −0.1103 −0.09469
30th Mar 0.2374 0.01969 0.01252 0.009052 0.0001431 0.0000849 0.01135 0.00937 0.0683 0.0738 2.3 1.75 69.9 40.9 −0.07368 −0.06326
13th Dec 0.1575 0.01192 0.008373 0.006053 0.0000639 0.0000379 0.007589 0.006265 0.0683 0.0738 2.3 1.75 69.9 40.9 −0.04928 −0.04229
24th May −0.2275 0.0185 0.01415 0.01023 0.0001827 0.0001084 0.01282 0.01059 0.0683 0.0738 2.3 1.75 69.9 40.9 0.08323 0.07146
28th Sep −0.1499 0.01451 0.009455 0.006835 0.0000815 0.0000484 0.00857 0.007075 0.0683 0.0738 2.3 1.75 69.9 40.9 0.05561 0.04779

ABC-optimized-PID

1st Jan 0.3394 0.01351 0.01872 0.01346 0.0003236 0.000197 0.01619 0.01324 0.07 0.0756 2.3 1.77 69.1 40 −0.1122 −0.0959
30th Mar 0.2374 0.01969 0.01251 0.00899 0.0001485 0.000088 0.01082 0.00884 0.07 0.0756 2.3 1.77 69.1 40 −0.0749 −0.064
13th Dec 0.1575 0.01192 0.00836 0.00611 0.0000664 0.000039 0.00723 0.00591 0.07 0.0756 2.3 1.77 69.1 40 −0.0501 −0.0429
24th May −0.2275 0.0185 0.01413 0.01017 0.000189 0.000112 0.01222 0.00999 0.07 0.0756 2.3 1.77 69.1 40 0.0847 0.0724
28th Sep −0.1499 0.01451 0.00944 0.00679 0.000084 0.000050 0.008168 0.00667 0.07 0.0756 2.3 1.77 69.1 40 0.0566 0.0484

FA-optimized-PID

1st Jan 0.3394 0.01351 0.1041 0.0844 0.001192 0.00087 0.5558 0.399 0.0553 0.059 2.75 8.98 69.9 46.1 −0.0926 −0.0823
30th Mar 0.2374 0.01969 0.0695 0.05642 0.000532 0.000388 0.3714 0.266 0.0553 0.059 2.75 8.98 69.9 46.1 −0.0619 0.05504
13th Dec 0.1575 0.01192 0.0465 0.0377 0.000237 0.000173 0.2483 0.1782 0.0553 0.059 2.75 8.98 69.9 46.1 −0.0414 −0.0366
24th May −0.2275 0.0185 0.0786 0.0637 0.000679 0.000496 0.4196 0.3012 0.0553 0.059 2.75 8.98 69.9 46.1 0.070 0.06194
28th Sep −0.1499 0.01451 0.05254 0.0426 0.000303 0.000221 0.2804 0.2013 0.0553 0.059 2.75 8.98 69.9 46.1 0.0468 0.0415
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TABLE 7 | Frequency deviation parameter indices using integral square error objective function.

Without BESS/PHEV support

Date ΔPL ΔPPV IAE ISE ITAE Tr(s) Ts(s) MP(%) Δf(Hz)

Conventional-PID

1st Jan 0.3394 0.01351 1.718 0.3893 6.502 0.912 7.97 8.15 −0.9184
30th Mar 0.2374 0.01969 1.148 0.1738 4.345 0.912 7.97 8.15 −0.6136
13th Dec 0.1575 0.01192 0.7674 0.07772 2.905 0.912 7.97 8.15 −0.4103
24th May −0.2275 0.0185 1.297 0.2219 4.909 0.912 7.97 8.15 0.6934
28th Sep −0.1499 0.01451 0.8666 0.0991 3.281 0.912 7.97 8.15 0.4634

GA-Optimized-PID

1st Jan 0.3394 0.01351 0.02719 0.0003375 0.04641 0.0518 4.51 87 −0.09178
30th Mar 0.2374 0.01969 0.01817 0.0001507 0.03101 0.0518 4.51 87 −0.06102
13th Dec 0.1575 0.01192 0.01215 0.0000673 0.02074 0.0518 4.51 87 −0.04110
24th May −0.2275 0.0185 0.02053 0.0001924 0.03504 0.0518 4.51 87 0.06937
28th Sep −0.1499 0.01451 0.01372 0.0000859 0.02342 0.0518 4.51 87 0.04637

PSO-Optimized-PID

1st Jan 0.3394 0.01351 0.02339 0.0003489 0.02866 0.0581 3.35 81.6 −0.1014
30th Mar 0.2374 0.01969 0.01563 0.0001557 0.01915 0.0581 3.35 81.6 −0.06781
13th Dec 0.1575 0.01192 0.01045 0.00006964 0.0128 0.0581 3.35 81.6 −0.04532
24th May −0.2275 0.0185 0.01766 0.0001988 0.02164 0.0581 3.35 81.6 0.0766
28th Sep −0.1499 0.01451 0.0118 0.0000888 0.01446 0.0581 3.35 81.6 0.05118

ABC-optimized-PID

1st Jan 0.3394 0.01351 0.02629 0.000327 0.04707 0.0551 3.37 84 −0.0966
30th Mar 0.2374 0.01969 0.01758 0.000146 0.03145 0.0551 3.37 84 −0.0644
13th Dec 0.1575 0.01192 0.01174 0.000065 0.02103 0.0551 3.37 84 −0.0431
24th May −0.2275 0.0185 0.01985 0.0001868 0.03554 0.0551 3.37 84 0.0731
28th Sep −0.1499 0.01451 0.01326 0.0000834 0.02375 0.0551 3.37 84 0.0487

FA-optimized-PID

1st Jan 0.3394 0.01351 0.2756 0.005127 1.896 0.0677 2.27 67.9 −0.1146
30th Mar 0.2374 0.01969 0.1841 0.00228 1.267 0.0677 2.27 67.9 −0.0764
13th Dec 0.1575 0.01192 0.1231 0.00102 0.8469 0.0677 2.27 67.9 −0.0511
24th May −0.2275 0.0185 0.2081 0.002922 1.432 0.0677 2.27 67.9 0.0865
28th Sep −0.1499 0.01451 0.139 0.001305 0.9564 0.0677 2.27 67.9 0.0577

With BESS/PHEV support, KB � 10 and KB � 50

Date ΔPL ΔPPV IAE ISE ITAE Tr(s) Ts(s) MP(%) Δf(Hz)

KB � 10 KB � 50 KB � 10 KB � 50 KB � 10 KB � 50 KB � 10 KB � 50 KB � 10 KB � 50 KB � 10 KB � 50 KB � 10 KB � 50

Conventional-PID

1st Jan 0.3394 0.01351 1.72 1.299 0.2356 0.08956 10.24 11.27 7.93 — 693 — 10.1 — −0.6085 −0.2554
30th Mar 0.2374 0.01969 1.149 0.8681 0.1052 0.03998 6.839 7.53 7.93 — 693 — 10.1 — −0.4066 −0.1705

(Continued on following page)
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TABLE 7 | (Continued) Frequency deviation parameter indices using integral square error objective function.

With BESS/PHEV support, KB � 10 and KB � 50

Date ΔPL ΔPPV IAE ISE ITAE Tr(s) Ts(s) MP(%) Δf(Hz)

13th Dec 0.1575 0.01192 0.7885 0.5805 0.04703 0.01788 4.573 5.035 7.93 — 693 — 10.1 — −0.2719 −0.1140
24th May −0.2275 0.0185 1.299 0.9809 0.1343 0.05105 7.728 8.509 7.93 — 693 — 10.1 — 0.4594 0.1928
28th Sep −0.1499 0.01451 0.8678 0.6555 0.05997 0.0228 5.164 5.686 7.93 — 693 — 10.1 — 0.3070 0.1289

GA-optimized-PID

1st Jan 0.3394 0.01351 0.02258 0.01686 0.0002532 0.0001398 0.03997 0.03458 0.0522 0.0551 3.42 2.77 80 55.9 −0.08901 −0.07942
30th Mar 0.2374 0.01969 0.01509 0.01126 0.000113 0.0000624 0.02871 0.02311 0.0522 0.0551 3.42 2.77 80 55.9 −0.05950 −0.05293
13th Dec 0.1575 0.01192 0.01009 0.007531 0.0000505 0.0000279 0.01788 0.01545 0.0522 0.0551 3.42 2.77 80 55.9 −0.03987 −0.03547
24th May −0.2275 0.0185 0.01705 0.01273 0.0001443 0.0000796 0.03018 0.02611 0.0522 0.0551 3.42 2.77 80 55.9 0.06738 0.05988
28th Sep −0.1499 0.01451 0.01139 0.008505 0.0000644 0.0000355 0.02017 0.01745 0.0522 0.0551 3.42 2.77 80 55.9 0.04506 0.04005

PSO-optimized-PID

1st Jan 0.3394 0.01351 0.01997 0.01475 0.0002766 0.0001646 0.02497 0.02049 0.0588 0.0628 2.64 2.2 74 47.8 −0.09794 −0.08589
30th Mar 0.2374 0.01969 0.01334 0.009856 0.0001235 0.00007347 0.01668 0.01369 0.0588 0.0628 2.64 2.2 74 47.8 −0.06544 −0.05740
13th Dec 0.1575 0.01192 0.00892 0.00659 0.0000552 0.00003285 0.01116 0.00915 0.0588 0.0628 2.64 2.2 74 47.8 −0.04378 −0.03838
24th May −0.2275 0.0185 0.01508 0.01114 0.0001577 0.0000938 0.01885 0.0154 0.0588 0.0628 2.64 2.2 74 47.8 0.07401 0.06494
28th Sep −0.1499 0.01451 0.01008 0.007442 0.0000704 0.0000419 0.0126 0.01034 0.0588 0.0628 2.64 2.2 74 47.8 0.04944 0.04341

ABC-optimized-PID

1st Jan 0.3394 0.01351 0.02323 0.01835 0.00026 0.000155 0.0437 0.03927 0.055 0.059 2.9 2.7 76.7 51.6 −0.09344 −0.08275
30th Mar 0.2374 0.01969 0.01552 0.01226 0.00011 0.000069 0.0292 0.02624 0.055 0.059 2.9 2.7 76.7 51.6 −0.0624 −0.0554
13th Dec 0.1575 0.01192 0.01038 0.00819 0.000519 0.000031 0.0195 0.01755 0.055 0.059 2.9 2.7 76.7 51.6 −0.041 −0.037
24th May −0.2275 0.0185 0.01754 0.01385 0.000148 0.000088 0.03299 0.02965 0.055 0.059 2.9 2.7 76.7 51.6 0.0706 0.0625
28th Sep −0.1499 0.01451 0.01172 0.009257 0.000066 0.000039 0.02205 0.01981 0.055 0.059 2.9 2.7 76.7 51.6 0.0471 0.0417

FA-optimized-PID

1st Jan 0.3394 0.01351 0.2726 0.2601 0.00486 0.00405 1.925 1.986 0.0686 8.24 8.47 488 59.8 7.85 −0.1098 −0.09428
30th Mar 0.2374 0.01969 0.1821 0.1738 0.00217 0.00181 1.286 1.327 0.0686 8.24 8.47 488 59.8 7.85 −0.0733 −0.0629
13th Dec 0.1575 0.01192 0.1218 0.1162 0.00097 0.00081 0.86 0.8872 0.0686 8.24 8.47 488 59.8 7.85 −0.049 −0.042
24th May −0.2275 0.0185 0.2058 0.1964 0.00277 0.0023 1.453 1.499 0.0686 8.24 8.47 488 59.8 7.85 0.0828 0.0712
28th Sep −0.1499 0.01451 0.1375 0.1312 0.001237 0.00103 0.9711 1.002 0.0686 8.24 8.47 488 59.8 7.85 0.0554 0.0476
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TABLE 8 | Frequency deviation parameter indices using integral time absolute error objective function.

Without BESS/PHEV support

Date ΔPL ΔPPV IAE ISE ITAE Tr(s) Ts(s) MP(%) Δf(Hz)

Conventional-PID

1st Jan 0.3394 0.01351 1.718 0.3893 6.502 0.912 7.97 8.15 −0.9184
30th Mar 0.2374 0.01969 1.148 0.1738 4.345 0.912 7.97 8.15 −0.6136
13th Dec 0.1575 0.01192 0.7674 0.07772 2.905 0.912 7.97 8.15 −0.4103
24th May −0.2275 0.0185 1.297 0.2219 4.909 0.912 7.97 8.15 0.6934
28th Sep −0.1499 0.01451 0.8666 0.0991 3.281 0.912 7.97 8.15 0.4634

GA-optimized-PID

1st Jan 0.3394 0.01351 0.02375 0.0005794 0.01643 0.0827 2.55 73.4 −0.1374
30th Mar 0.2374 0.01969 0.01587 0.0002587 0.01098 0.0827 2.55 73.4 −0.09176
13th Dec 0.1575 0.01192 0.01061 0.0001157 0.007339 0.0827 2.55 73.4 −0.06134
24th May −0.2275 0.0185 0.01793 0.0003302 0.0124 0.0827 2.55 73.4 0.1037
28th Sep −0.1499 0.01451 0.01198 0.0001475 0.008287 0.0827 2.55 73.4 0.06925

PSO-optimized-PID

1st Jan 0.3394 0.01351 0.02201 0.0003988 0.01991 0.0665 3.03 78.4 −0.1136
30th Mar 0.2374 0.01969 0.0147 0.000178 0.0133 0.0665 3.03 78.4 −0.07594
13th Dec 0.1575 0.01192 0.009388 0.0000725 0.008493 0.0665 3.03 78.4 −0.04849
24th May −0.2275 0.0185 0.01662 0.0002273 0.01503 0.0665 3.03 78.4 0.08579
28th Sep −0.1499 0.01451 0.0111 0.0001015 0.01004 0.0665 3.03 78.4 0.05736

ABC-optimized-PID

1st Jan 0.3394 0.01351 0.022 0.000409 0.01936 0.0686 2.76 78.2 −0.1165
30th Mar 0.2374 0.01969 0.0147 0.0001827 0.01293 0.0686 2.76 78.2 −0.0778
13th Dec 0.1575 0.01192 0.00982 0.0000817 0.00864 0.0686 2.76 78.2 −0.052
24th May −0.2275 0.0185 0.01661 0.000233 0.01462 0.0686 2.76 78.2 0.088
28th Sep −0.1499 0.01451 0.0111 0.000104 0.00976 0.0686 2.76 78.2 0.0588

FA-optimized-PID

1st Jan 0.3394 0.01351 0.07121 0.005468 0.04984 0.205 1.84 45.5 −0.3024
30th Mar 0.2374 0.01969 0.04758 0.002441 0.0333 0.205 1.84 45.5 −0.202
13th Dec 0.1575 0.01192 0.03182 0.00109 0.0222 0.205 1.84 45.5 −0.135
24th May −0.2275 0.0185 0.05376 0.003117 0.03763 0.205 1.84 45.5 0.228
28th Sep −0.1499 0.01451 0.03593 0.00139 0.02515 0.205 1.84 45.5 0.1526

With BESS/PHEV support, KB � 10 and KB � 50

Date ΔPL ΔPPV IAE ISE ITAE Tr(s) Ts(s) MP(%) Δf(Hz)
KB � 10 KB � 50 KB � 10 KB � 50 KB � 10 KB � 50 KB � 10 KB � 50 KB � 10 KB � 50 KB � 10 KB � 50 KB � 10 KB � 50

Conventional-PID

1st Jan 0.3394 0.01351 1.72 1.299 0.2356 0.08956 10.24 11.27 7.93 — 693 — 10.1 — −0.6085 −0.2554
30th Mar 0.2374 0.01969 1.149 0.8681 0.1052 0.03998 6.839 7.53 7.93 — 693 — 10.1 — −0.4066 −0.1705
13th Dec 0.1575 0.01192 0.7885 0.5805 0.04703 0.01788 4.573 5.035 7.93 — 693 — 10.1 — −0.2719 −0.1140

(Continued on following page)
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TABLE 8 | (Continued) Frequency deviation parameter indices using integral time absolute error objective function.

With BESS/PHEV support, KB � 10 and KB � 50

Date ΔPL ΔPPV IAE ISE ITAE Tr(s) Ts(s) MP(%) Δf(Hz)
KB � 10 KB � 50 KB � 10 KB � 50 KB � 10 KB � 50 KB � 10 KB � 50 KB � 10 KB � 50 KB � 10 KB � 50 KB � 10 KB � 50

24th May −0.2275 0.0185 1.299 0.9809 0.1343 0.05105 7.728 8.509 7.93 — 693 — 10.1 — 0.4594 0.1928
28th Sep −0.1499 0.01451 0.8678 0.6555 0.05997 0.0228 5.164 5.686 7.93 — 693 — 10.1 — 0.3070 0.1289

GA-optimized-PID

1st Jan 0.3394 0.01351 0.01968 0.01412 0.0004687 0.0002801 0.01284 0.009743 0.0844 0.095 2.04 0.94 63.1 29.9 −0.1302 −0.1080
30th Mar 0.2374 0.01969 0.01315 0.009436 0.0002092 0.000125 0.008581 0.00651 0.0844 0.095 2.04 0.94 63.1 29.9 −0.08699 −0.07205
13th Dec 0.1575 0.01192 0.008793 0.006309 0.0000935 0.0000559 0.005738 0.004353 0.0844 0.095 2.04 0.94 63.1 29.9 −0.05821 −0.04821
24th May −0.2275 0.0185 0.01486 0.01066 0.0002672 0.0001596 0.009696 0.007356 0.0844 0.095 2.04 0.94 63.1 29.9 0.09831 0.08150
28th Sep −0.1499 0.01451 0.009929 0.007125 0.0001193 0.0000712 0.006479 0.004915 0.0844 0.095 2.04 0.94 63.1 29.9 0.06569 0.0544

PSO-optimized-PID

1st Jan 0.3394 0.01351 0.01863 0.01347 0.0003207 0.0001919 0.01673 0.01334 0.0647 0.072 2.25 1.97 69.8 41.4 −0.1092 −0.09385
30th Mar 0.2374 0.01969 0.01245 0.009003 0.0001432 0.0000856 0.01118 0.008912 0.0647 0.072 2.25 1.97 69.8 41.4 −0.07292 −0.06276
13th Dec 0.1575 0.01192 0.007947 0.005748 0.0000583 0.0000349 0.007138 0.00569 0.0647 0.072 2.25 1.97 69.8 41.4 −0.04656 −0.04008
24th May −0.2275 0.0185 0.01406 0.01017 0.0001828 0.0001094 0.01263 0.01007 0.0647 0.072 2.25 1.97 69.8 41.4 0.08240 0.07091
28th Sep −0.1499 0.01451 0.009399 0.006798 0.0000816 0.0000488 0.008442 0.00673 0.0647 0.072 2.25 1.97 69.8 41.4 0.05507 0.04742

ABC-optimized-PID

1st Jan 0.3394 0.01351 0.01877 0.01352 0.000329 0.0001955 0.01653 0.01357 0.0696 0.075 2.3 1.75 69.4 40.3 −0.116 −0.095
30th Mar 0.2374 0.01969 0.01254 0.009035 0.000147 0.000087 0.01104 0.009065 0.0696 0.075 2.3 1.75 69.4 40.3 −0.074 −0.064
13th Dec 0.1575 0.01192 0.00838 0.00604 0.000065 0.000039 0.00738 0.00606 0.0696 0.075 2.3 1.75 69.4 40.3 −0.0499 −0.0427
24th May −0.2275 0.0185 0.01417 0.01021 0.0001878 0.000111 0.01248 0.01024 0.0696 0.075 2.3 1.75 69.4 40.3 0.0843 0.0722
28th Sep −0.1499 0.01451 0.00947 0.00682 0.000083 0.000049 0.00833 0.006845 0.0696 0.075 2.3 1.75 69.4 40.3 0.0564 0.04823

FA-optimized-PID

1st Jan 0.3394 0.01351 0.06825 0.0575 0.00425 0.00220 0.05132 0.05132 0.227 1.12 1.89 1.79 25.6 1.8 −0.264 −0.175
30th Mar 0.2374 0.01969 0.0456 0.03842 0.001897 0.000985 0.03429 0.03429 0.227 1.12 1.89 1.79 25.6 1.8 −0.176 −0.1169
13th Dec 0.1575 0.01192 0.0304 0.02569 0.000848 0.00044 0.0229 0.02293 0.227 1.12 1.89 1.79 25.6 1.8 −0.118 −0.0781
24th May −0.2275 0.0185 0.0515 0.04341 0.00242 0.001259 0.03875 0.03874 0.227 1.12 1.89 1.79 25.6 1.8 0.2 0.132
28th Sep −0.1499 0.01451 0.03443 0.02901 0.00108 0.000562 0.02589 0.02589 0.227 1.12 1.89 1.79 25.6 1.8 0.133 0.0882
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Δf are higher for higher mismatches between load and
photovoltaic generated power and lower for lower
mismatches, i.e., The values of IAE, ISE, ISE and Δf are
0.02199, 0.0003987, 0.01991, and −0.1148 for GA, PSO, and
ABC considering the 0.3394 pu load deviation and 0.01351 pu
solar PV power for 1st January loading situation in single-area
power system. These values of IAE, ISE, ITAE and Δf are
lowered to 0.01469, 0.000178, 0.01331, and −0.07668 for GA,
PSO, and ABC for 0.2374 pu load deviation and 0.0147 pu
solar PV power on 13th December loading conditions. FA
optimized PID produces relatively poor result as the IAE, ISE,
and ITAE values 0.1106, 0.001322, 0.61 for 1st January loading
conditions indicate much higher than GA, PSO and ABC. The
values of rise time Tr(s), settling Ts(s) , and peak overshoot
MP(%) are same for all loading conditions. For example, the
values of Tr(s), settling Ts(s) , and peak overshoot MP(%) are
0.0673, 2.87, and 78.7 for GA and PSO, 0.069, 2.77, and 78 for
ABC on 1st January.

Considering the effect of BESS/PHEV with its different
capacities, BESS/PHEV KB of 10 and 50 are used to check
frequency deviation response. Results indicate that settling
Ts(s), peak overshoot MP(%) are reduced to 2.3, 70 for GA,
PSO, and ABC for KB of 10. These values are further reduced to
1.75 and 40 for KB of 50. The values of IAE, ISE, ISE and Δf are
reduced to 0.01873, 0.0003203, 0.01696, and −0.1103 for GA,
PSO, ABC for KB of 10, and 0.01353, 0.0001902, 0.01399, and
−0.0946 for KB 50 for 1st January loading conditions. Rise time
Tr(s) remains unchanged in any case.

Frequency deviation responses of the GA optimized PID,
PSO optimized PID, ABC optimized PID, and FA optimized
PID using the ISE objective function is shown in Table 7 and
Figure 6. Their performance indices show that GA
optimized PID, PSO optimized PID, and ABC optimized
PID produce efficient and competitive results. IAE, ISE,
ITAE and Δf are higher for higher mismatches between
load and photovoltaic generated power and lower for lower
mismatches, i.e., The values of IAE, ISE, ISE and Δf are
0.02719, 0.0003375, 0.04641, and −0.09178 for GA, 0.02339,
0.0003489, 0.02866, and −0.1014 for PSO, 0.02629, 0.000327,
0.04707, and −0.0966 for ABC considering the 0.3394 pu
load deviation and 0.01351 pu solar PV power on 1st January
in a single-area power system. These values of IAE, ISE,
ITAE and Δf are lowered to 0.01817, 0.0001507, 0.03101,
and −0.06102 for GA, 0.01563, 0.0001557, 0.01915, and
−0.06781 for PSO, 0.01758, 0.000146, 0.03145 and
−0.0644 for ABC for 0.2374 pu load deviation and
0.0147 pu solar PV power on 13th December loading
conditions. The values of rise time Tr(s), settling Ts(s),
and peak overshoot MP(%) remain same for different
loading conditions. For example, the values of rise time
Tr(s), settling Ts(s), and peak overshoot MP(%) are
0.0518, 4.51, and 87 for GA, 0.0581, 3.35, and 81.6 for
PSO, 0.0551, 3.37, and 84 for ABC on 1st January loading
conditions. FA optimized PID produces relatively poor
result as the IAE, ISE, and ITAE values are much higher
than GA, PSO and ABC as can be seen their values are 0.275,
0.005127, and 1.896.

Considering the effect of BESS/PHEV with its different
capacities, gain for KB 0f 10 and 50 are taken to check the
stability of power system. Results indicate that settling time
Ts(s), peak overshoot MP(%) are reduced to 3.4, 80 for GA,
2.64, 74 for PSO, and 2.9, 76.7 for ABC for KB of 10. These
values are further reduced to 2.77, 55.9 for GA, 2.2, 47.8 for
PSO, and 2.7, 51.6 for ABC for KB of 50. Similarly, the values
of IAE, ISE, ITAE and Δf are reduced to 0.02258, 0.0002532,
0.03997, and −0.08901 for GA, 0.01997, 0.0002766, 0.02497,
and −0.09794 for PSO, 0.02323, 0.00026, 0.0437, −0.09344 for
ABC, for KB of 10, and further reduced to 0.01686, 0.0001398,
0.03458, and −0.07942 for GA, 0.01475, 0.0001646, 0.02049,
and −0.085859 for PSO, 0.01835, 0.000155, 0.03927, and
−0.08275 for ABC, for KB of 50 for 1st January loading
conditions. Rise time Tr(s) remains almost unchanged in
any case. FA optimized PID produces high error values
although it is connected to BESS/PHEV support. Instead,
the settling time reached to 488 s when BESS/PHEV gain is
50. It is concluded that GA optimized PID produces
comparatively better result that PSO, ABC, and FA when
ISE cost function is used for the load frequency control.

Frequency deviation responses of the GA optimized PID,
PSO optimized PID, ABC optimized PID, and FA optimized
PID using the ITAE objective function is shown in Table 8
and Figure 7. Their performance indices show that GA
optimized PID, PSO optimized PID, and ABC optimized
PID produce approximately efficient competitive results.
IAE, ISE, ITAE and Δf are higher for higher mismatches
between load and photovoltaic generated power and lower for
lower mismatches, i.e., The values of IAE, ISE, ITAE and Δf
are 0.02375, 0.0005794, 0.01643, and −0.1374 for GA, 0.02201,
0.0003988, 0.01991, and −0.1136 for PSO, 0.022, 0.000409,
0.01936, and −0.1165 for ABC, considering the 0.3394 pu load
deviation and 0.01351 pu solar PV power on 1st January in a
single-area power system. These values of IAE, ISE, ITAE and
Δf are lowered to 0.01587, 0.0002587, 0.01098, and −0.09176
for GA, 0.0147, 0.000178, 0.0133, and −0.07594 for PSO,
0.0147, 0.0001827, 0.01293 and −0.0778 for ABC, for
0.2374 pu load deviation and 0.0147 pu solar PV power on
13th December loading conditions. The values of rise time
Tr(s), settling Ts(s), and peak overshootMP(%) remain same
for different loading conditions. For example, the values of
rise Tr(s), settling Ts(s), and peak overshoot MP(%) are
0.0827, 2.55, and 73.4 for GA, 0.0665, 3.03, and 78.4 for
PSO, 0.0686, 2.76, and 78.2 for ABC on 1st January loading
conditions. FA optimized PID produces relatively poor result
as the IAE, ISE, ITAE, and Δf values are much higher than
GA, PSO as can be seen the values are 0.07121, 0.005486,
0.04984, and −0.3024.

BESS/PHEVwith its different capacities, gainKB 10 and 50 are
taken into consideration. Results depict that settling time Ts(s),
peak overshoot MP(%) are reduced to 2.04, 63.1 for GA, 2.25,
69.8 for PSO, and 2.3, 69.4 for ABC forKB of 10. These values are
further reduced to 0.94, 29.9 for GA, 1.97, 41.4 for PSO, and 1.75,
40.3 for ABC forKB of 50. Similarly, the values of IAE, ISE, ITAE
and Δf are reduced to 0.01968, 0.0004687, 0.01284, and −0.1302
for GA, 0.01347, 0.0001919, 0.01673, and −0.1092 for PSO,
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0.01877, 0.000329, 0.01653, and −0.116 for ABC, for KB of 10,
and further reduced to 0.01412, 0.0002801, 0.009743, and
−0.1080 for GA, 0.01475, 0.0001646, 0.01334, and −0.09385
for PSO, 0.01352, 0.0001955, 0.01357, and −0.095 for ABC, for
KB of 50 for 1st January loading conditions. Rise time Tr(s)
remains almost unchanged in any case. FA optimized PID
produces high error values and frequency deviation although it
is connected to BESS/PHEV support. It is concluded that GA
optimized produces better results with respect to settling time and
peak overshoot but PSO optimized PID produces minimum IAE,
ISE, ITAE and Δf using ITAE objective function.

The conventional PID controller is tuned using the PID
tuner toolbox within MATLAB. Tables 6–8 depict that
performance indices IAE, ISE, ITAE and Δf increase with
the higher load changes and decrease with lower load changes.
But rise time Tr(s), settling time Ts(s), and peak overshoot
MP(%) remains same regardless of the load and photovoltaic
power changes. It is depicted that performance indices IAE and
ISE decreases when BESS/PHEV is integrated to the system at
the gain levels 10 and 50, while ITAE increases when the BESS/
PHEV is integrated. Frequency deviation Δf decreases with
the attachment of BESS/PHEV support. Rise time Tr(s),
settling time Ts(s), and peak overshoot MP(%) increase
significantly for gain 10, but are infinite at gain 50 because
of the unstable response of conventional PID controller.
Therefore, the values are replaced by – (dash) where the
conventional PID controller response is unstable. It is
considered to be major drawback of the conventional PID
controller. The conventional PID controller response is shown
in Figures 5–7.

The maximum steady state frequency deviation permissible limit
in Hz is found to be in the range (−0.7932, 0.5468) for maximum
positive and negative load deviation respectively. It can be seen from
Table 6, Table 7 and Table 8 that the frequency deviation in Hz has
found to be within permissible range using the GA, PSO, ABC, and
FA optimizationmethods. The frequency deviation has not found to
be within steady state limit for Conventional PID controller. The
frequency deviation range in Hz is (−0.9184, 0.4634) for
Conventional-PID. The frequency deviation is suppressed by
adding the BESS/PHEV source. But, the PID controller response
becomes unstable if the large capacity of BESS/PHEV source is
attached to the power system model. The power delivered to power
system by BESS and/or PHEV is 0.025 pu for gain KB of 10, and
0.105 pu for gain KB of 50 taking into account the maximum
positive loading condition on 1st January.

After comparison between the applied techniques and
objective functions, it is concluded that PSO optimized PID
controller using the ITAE objective function performs well just
to mitigate frequency deviation Δf of the power system but
GA optimized PID controller using the ISE objective function
gives better overall results considering all the performance

indices. The convergence characteristics and parameter
indices indicate the effectiveness, sustainability and
consistency of proposed GA optimized PID tested within
the loading range (−0.2275, 0.3394).

CONCLUSION

The load deviation of single area power system and solar
photovoltaic power is forecasted using the state-of-the art
artificial neural network. PSO, GA, ABC, and FA
metaheuristic techniques have been employed to find out
the optimal PID controller gain parameters using the IAE,
ISE and ITAE objective functions. Some key days, showing
significant load changes, have been chosen to see the
performance of the single area hybrid power system. Results
indicate the efficiency and competency of GA, PSO, and ABC
among each other that sufficiently reduce frequency
fluctuations. It has been found that PSO optimized PID
along with ITAE cost function can sufficiently minimize the
frequency. The performance indices and convergence
characteristics show overall better results produced from
GA optimized PID than others using ISE objective function.
These frequency fluctuations are further improved by
integrating power from BESS/PHEV source. Small BESS/
PHEV capacity is required to damp the frequency when
integrated with GA optimized PID.
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APPENDIX

The typical values for the hybrid power system are given below

Pr � 219MW,f � 50Hz,H � 5, D � 0.8, τg � 10 sec,
τt � 5 sec, R � 0.05 Hz/pu.MW,

τcharge � 100, τconv � 0.02, KB � 10&50, Kpb � −0.02
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NOMENCLATURE

IAE Integral absolute error

ISE Integral square error

ITAE Integral time absolute error

GA Genetic algorithm

PSO Particle swarm optimization

ABC Artificial bee colony

FA Firefly algorithm

Tr(s) Rise time

Ts(s) Settling time

MP(%) Peak overshoot

Δf (Hz) Maximum frequency deviation in Hertz

Kp Proportional gain

Ki Integral gain

Kd Derivative gain

ACE Area control error

ΔPm Change in mechanical power

ΔPPV Solar photovoltaic power

ΔPe Net change in electrical load demand

PBESS/PHEV Battery Energy Storage System/Plug—in Hybrid Electric
Vehicle Power

KB BESS/PHEV gain

τconv DC-AC converter time constant

τcharge BESS/PHEV charging time constant

Prated Rated power plant power

Δf Change in nominal frequency

H Generator inertia constant

ΔPL Change in frequency sensitive load power

τt Turbine time constant

τg Governor time constant

D � ΔPL
Δf Ratio of percent change in load to percent change in frequency

R Governor speed regulation per unit

β Attractiveness parameter

γ Coefficient of absorption
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