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Accurate forecasting of short-term photovoltaic power output is vital for enhancing the
operation efficiency of photovoltaic (PV) power stations and ensuring the safety and stable
operation of grid-connected PV plants. Therefore, a short-term power forecasting model
based on a backpropagation neural network with atom search optimization optimizes the
weights and thresholds. Meanwhile, the Pearson correlation coefficient formula is
introduced to screen the key meteorological factors and eliminate redundant factors,
i.e., total irradiance, temperature, humidity, and direct irradiance are taken as the input of
the prediction model. Moreover, the Euclidean distance formula is used to establish a
customized training set for each test data which improves the dependability of the training
set. Lastly, with the simulations of actual data from a solar farm in Yunnan, China, it is
verified that the proposed ASO-BPNN model is competent to forecast the PV power
generation.

Keywords: solar energy short-term forecasting, backpropagation neural network, ASO-BPNN algorithm, Pearson
correlation coefficient, PV power generation

1 INTRODUCTION

Energy is the foundation for the existence of industrial society (Bozorg et al., 2020; Yang et al., 2021a).
At present, the energy crisis is becoming increasingly severe, and many countries are vigorously
developing clean power technology (Kemmoku et al., 1999; Almonacid et al., 2014). For a continuous
power grid safe operation and regional power optimization dispatching, a variety of clean power
generation, e.g., the solar energy, the wind energy, the hydropower station, and the tidal energy, are
connected to the power grid (Olujobi, 2020; Yang et al., 2021b). Especially in the peak period of
power consumption, the grid connection of clean energy can effectively relieve the dispatching
pressure of the grid and ensure the continuous and efficient operation of the power system (Mayer
and Gróf, 2020; Collino and Ronzio, 2021). Among various alternative energy sources, solar energy
draws much attention because of its huge reserves and eco-friendly peculiarity (Li et al., 2020). In the
background of a carbon-neutral strategy, solar power generation technology has become a significant
method to solve the problem of resource scarcity and improve China’s energy consumption structure
(Xue and Shen, 2020).

However, photovoltaic (PV) power generation is susceptible to solar azimuth motion and
meteorological factors in the field operation, and its time fluctuation also brings new challenges
to the security and economy of the grid (Li et al., 2017). Therefore, improving the prediction accuracy
of PV power is of great significance in two aspects: dispatch operation and market competition. The
dispatching plan and the operating costs can be optimized according to the prediction results of the
PV power system, and the high accuracy of short-term forecast performance is in favor of the
competition of solar power in the electric power market (Yildiz et al., 2017; Yang et al., 2021c). An
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accurate and reasonable scheduling plan can not only ensure the
power balance and power quality of the power system but also
reduce the rotating spare capacity of the power system, which
reduces the operation cost of the grid and improve the utilization
efficiency of solar energy (Huang et al., 2018; Qing and Niu,
2018). In short, with the continuous expansion of grid-connected
PV systems, solar power forecasting technology has important
practical and guiding significance for grid dispatching operation,
electrical load coordination, planning of conventional energy,
and PV generation (Meenal and Selvakumar, 2018).

Nowadays, short-term PV power prediction is in the stage of
extensive research, which is mainly divided into the following two
categories (Chang et al., 2020): indirect prediction and direct
prediction in view of the principle of forecasting methods as
illustrated in Figure 1. The indirect method establishes a physical
prediction model according to the detailed parameters of the PV
module and geographic information. This method has high
prediction accuracy but depends on a complex model of the
PV power generation system and the accurate weather forecast
information which restricts its application range. The indirect
prediction method is only suitable for stable conditions, while the
prediction performance will be badly affected under
unpredictable weather conditions. Moreover, significant
inaccuracies could be generated by improper utilization of the
empirical formula when the PV component parameters change,
which further increases the difficulty of short-term prediction. In
contrast, the direct prediction method is simpler in modeling,
which only requires the mapping relationship between historical
training samples and PV power generation data. Moreover, it has
a strong nonlinear fitting ability (Liu et al., 2015).

At present, the main solar forecasting methods are as follows:
the backpropagation neural network (BPNN) method, the gray
forecast model, the multiple linear regression method, the
autoregressive integrated moving average (ARIMA) prediction

technique, the Markov chain, the support vector machine (SVM)
method, the fuzzy cluster analysis, and so on. Lorenz et al. (2009)
used the forecast data of radiation intensity provided by the
weather forecast center for the next 3 days and the measured data
of the PV power station to predict the PV power generation, and
the monthly relative root means square error could reach 22%.
Almonacid et al. (2009) fully considered the influence of the PV
panel temperature and irradiation intensity on the PV output
power. They established the function among the PV module
temperature, irradiation intensity, and outputs of the PV station
based on the I/V curve attained by a neural network. The case
studies verify that the correlation coefficient between the
predicted value and the actual power is as high as 0.998. Kudo
et al. (2009) adopted the multiple regression analysis method to
realize an hourly power prediction of the PV plant for the next
day based on the historical power generation data and
corresponding meteorological data. Particularly, in order to
reduce the prediction accuracy dependence on the
meteorological data accuracy, a novel forecasting scheme that
combined measured data, prediction, and late correction is
proposed. The results show that the prediction error of
average hourly power generation is 30.53% and the average
daily power generation is 25.6%. The BPNN model is suitable
for the power prediction of PV power generation (Liu et al., 2017),
but BPNN has the drawback of low convergence rate and easily
falling into local extremums since it is trained by the gradient
descent method. To overcome the above problems, swarm
intelligence algorithms are often used to optimize the BPNN
parameters. Tao and Chen ( 2014) used the genetic algorithm
(GA) to optimize the connection weight and the threshold value
between various layers in the BP neural network model. Ant
colony optimization (ACO) is proposed to optimize the structure
of BPNN in Netsanet et al., 2022. In the aforementioned pieces of
literature, the selection of the training set is relatively rough and

FIGURE 1 | Classification of short-term PV power prediction approaches.
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the accuracy is not high because only the average dominant
meteorological factor is utilized to filter the similar days as the
training set. As a result, the training samples in the
aforementioned studies could not reflect the meteorological
characteristics for the predicted days. Moreover, the
parameters of the selected optimization algorithm are
complicated, which leads to low accuracy and poor robustness
of the solar power prediction model in unstable weather
conditions (Benmouiza and Cheknane, 2019).

Atom search optimization (ASO), a novel swarm intelligence
optimization algorithm that has the advantages of good stability,
strong global searchability, and few parameters (Zhao et al.,
2019), is applied to optimize the weights and bias of BPNN.
The simulation tests verify the good forecasting performance and
less prediction error of the proposed ASO-BPNN model.

This work is structured as follows: The screening of
meteorological factors and training samples is elaborated in
Section 2. The principle of the BPNN modeling of the ASO-
BPNN PV power forecasting model is constructed in Section 3.
Simulation tests of the original BPNN and ASO-BPNN
algorithms are carried out in Section 4, and the analysis of the
simulation results is detailed and discussed in Section 5. Finally,
the conclusions are given in Section 6.

2 SCREENING OF METEOROLOGICAL
FACTORS AND TRAINING SAMPLES

2.1 Screening of Meteorological Factors
There are numerous factors related to PV power generation, but
the redundant factors will increase the complexity of solar power
forecasting if considered. To improve the convergence speed and
accuracy, the core factors influencing the PV power should be
picked out. In this work, the historical power generation and
corresponding meteorological data for 3 months of a PV plant are
collected for correlation analysis. In order to avoid the influence
of redundant meteorological factors on the PV output, the
Pearson correlation coefficient formula is used to extract
meteorological factors which are highly correlated with the PV
power generation as the input of the forecasting model.
Particularly, the formula of the Pearson coefficient method is
as follows:

P � ∑n
i�1(ui − �u)(vi − �v)�����������∑n

i�1(ui − �u)2
√ �����������∑n

i�1(vi − �v)2
√ (1)

where �u � 1
n∑n

i�1ui, �v � 1
n∑n

i�1vi, and the value ranges from -1 to 1.
The larger the|P| is, the more relevant u and v are. In general,

when 0 < |P|≤ 0.2, it is a weak correlation; when 0.2 < |P | ≤ 0.8,
it is a moderate correlation; when 0.8 < |P|≤ 1, it is a strong
correlation.

After the calculation, four meteorological factors, i.e., the total
irradiance, temperature, humidity, and direct irradiance, are kept
as the input variables for higher coefficients. The Pearson
correlation coefficients of the whole seven indexes are shown
in Table 1.

2.2 Screening of Training Samples
In previous studies, the daily average dominant meteorological
factors of similar days were usually regarded as the training set.
However, due to the great fluctuation of meteorological factors,
the average dominant meteorological factors could hardly
accurately reflect the weather fluctuation characteristics of
the inflection point. Also, the prediction model trained by
average dominant factors had a poor prediction accuracy of the
model under unstable weather conditions. Therefore, in this
study, the Euclidean distance formula is used to calculate the
temporal sequence similarity of each piece of test data and then
the independent training set is screened one by one. On
account of the similarities between the meteorological
characteristics of the predicted points and those of the
historical samples, the selected training samples can
accurately track the variation meteorological characteristics
of the predicted points and, thus, the robustness of the
prediction model is improved. The screening formula of the
training set is calculated as follows:

Disp �

���������������⎡⎣∑4

i�1(ui − vi,p)⎤⎦2
√√

, p � 1, 2, . . . , n (2)

where u1, u2 , u3, and u4 represent the total irradiance,
temperature, humidity, and direct irradiance of one prediction
point, respectively, and v1,p, v2,p, v3,p, and v4,p denote the total
irradiance, temperature, humidity, and direct irradiance of pth
historical training data.

The former k (1< k≤ n) samples of the Euclidean distance
{Dis1, Dis2, Disn} in ascending order are used as training
samples of one piece of test data to predict the PV outputs.
Because the units of sample data are different, the value range of
various data differs greatly, which leads to slow convergence and
long training time and also reduces the prediction accuracy. In
order to improve the accuracy of the PV power prediction
model, all data should be normalized. The following formula
is used to normalize the data and delimit the data to fall in
between (1, 1):

TABLE 1 | The Pearson correlation coefficients between PV outputs and meteorological factors.

Meteorological
factor

Total
irradiance

Wind speed Wind
direction

Temperature Atmospheric
pressure

Humidity Direct
irradiance

Value of |P| 0.81894 −0.07161 0.11366 0.20758 0.17338 −0.40150 0.93234
Correlation Strong

correlation
Weak
correlation

Weak
correlation

Moderate
correlation

Weak correlation Moderate
correlation

Strong
correlation
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y � 2(x − xmin)
xmax − xmin

− 1 (3)

where y represents the normalized values of historical
atmosphere data and output data of the solar farm and x
represents the original data of historical atmosphere and solar
farm outputs.

3 ASO-BPNN PREDICTION MODEL

3.1 Principle of BPNN
BPNN is a complex nonlinear network system based on imitating
the structure and function of the biological brain and applying
mathematical and physical methods (Kaushika et al., 2014). It has
good nonlinearity, strong robustness, fault tolerance, and self-
learning ability, and hence it is very suitable for high dimensional
and nonlinear problems such as the PV power generation
prediction. The common structure of BPNN is a three-layer
network, which is shown in Figure 2.

According to the analysis results in Section 2.1, the total
irradiance, temperature, humidity, and direct irradiance are taken
as the inputs of the BPNN-based prediction model, and the
output power of the PV station is regarded as the outputs of
the prediction model. In addition, the number of nodes in the
hidden layer is determined by an empirical formula as follows:

h � �������������
input + output

√ + σ (4)
where input and output denote the number of neuron nodes in
the input layer and output layer, respectively, and σ is an integer
between [0, 10]. Finally, the number of neuron nodes in the
hidden layer is 5.

The training of the BPNN model can be divided into two
phases: the input signal forward propagation stage and the error
signal backpropagation stage. First, the input data are input
through the input layer and then pass through the hidden
layer to the output layer. When the difference between the

output value and the expected value does not meet the
accuracy requirements, the error signal will enter the stage of
reverse propagation, that is, the deviation of the output value
from the expected value will be reverse propagated through the
output layer. Based on this deviation signal, BPNN adjusts the
weights and bias of each layer through the gradient descent
algorithm. The cycle repeats until the error between the
output value and the expected value meets the accuracy
requirement or reaches the maximum number of iterations.

BPNN utilizes the error backpropagation algorithm to adjust
parameters whose initial parameters are random numbers, so it is
easy to fall into the local optimum in the training process.
Therefore, it is necessary to improve the structure of BPNN to
enhance the prediction accuracy of the PV power
prediction model.

3.2 Modeling of ASO-BPNN
In this study, ASO which has a strong macro exploration ability
and good global optimization performance is introduced to
optimize the weights and bias of BPNN. As one of the
physically inspired metaheuristic optimizers, ASO is inspired
by basic molecular dynamics models and imitates patterns of
atomic motion in nature, in which atoms interact through the
Lennard–Jones potential and binding interactions through bond
growth potential. ASO is simple and easy to perform (Yang et al.,
2020).

3.2.1 Principle of ASO
ASO is inspired by basic molecular dynamics. All substances in
nature are composed of atoms with mass and volume. In an
atomic system, all atoms interact with each other and are in a
constant state of motion, and atoms’microscopic interactions are
very complex. The atomic motion follows the laws of classical
mechanics, and the interaction force between atoms has twomain
characteristics in the atomic system: first, when the close contact
between atoms produces compression, the atoms produce mutual
repulsion; the other is the attraction between the atoms that holds
them together. The potential energy of atoms is a good
explanation for these two features, and the Lennard–Jones
potential is used to mimic the interaction between a pair of
atoms. In the repulsive region, the repulsive force between atoms
increases rapidly as the distance between two atoms decrease. In
the attractive region, the attraction gradually drops to zero as the
distance between the two atoms increases. When the two atoms
reach the equilibrium distance, the potential energy between the
atoms reaches a minimum, and the interaction force between the
atoms is equal to zero. Therefore, the total interaction force Fi

applied to the ith atom is as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Fi � ∑N

j�1,j ≠ i
fij

fij � 24ρ

δ2
[2( δ

dij
)14

− ( δ

dij
)8]dij

(5)

where N denotes the total number of atoms in the atomic
ensemble; fij is the force of jth atom on ith atom; ρ denotes

FIGURE 2 | Structure of BPNN.
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the depth of the potential well, which represents the strength of
the interactions; δ is the collision diameter; dij is the Euclidean
distance between the ith atom and the jth atom; and ( δ

dij
)14 and

( δ
dij
)8 denote the mutual repulsion force and mutual attraction

force, respectively.
In ASO, the position of each atom in the searching space

represents a solution that is related to the atomic mass.
Heavier masses of atoms mean better solutions and vice
versa. All the atoms in the swarm attract or repel each
other depending on the distance between two atoms,
causing the lighter atoms to move toward the heavier ones.
Heavy atoms, with smaller accelerations, seek better solutions
in local space. In other words, lighter atoms have higher
accelerations, which drives them to explore the global
searching space for better solutions. Apart from the
interaction forceFi, the atom is also subjected to the force
of binding force Gi provided by the covalent bond between
atoms. So, the acceleration ai and the mass mi of the atom are
calculated as follows:

ai � (Fi + Gi)/mi (6)⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
mi � Mi∑N

j�1Mj

Mi � e
Fiti−Fitbest

Fitworst−Fitbest

(7)

The velocity and position of atoms are as shown in Eqs 8 and
9, respectively:

vi(t + 1) � rand × vi(t) + ai(t) (8)
xi(t + 1) � xi(t) + vi(t + 1) (9)

In addition, the drift factor is introduced into ASO to enable
the algorithm to drift from the exploration stage to the
exploitation stage, which is expressed as follows:

ω(t) � 0.1 × sin(π
2
×

t

T
) (10)

where T is the maximum iterations and t is the current iteration.

3.2.2 Process of ASO-BPNN
After exploration and exploitation of ASO, the optimal solution
sought by ASO is assigned to the initial weights and bias of BPNN
for enhancing its prediction accuracy. In conclusion, the specific
steps of the solar energy forecasting model based on ASO-BPNN
are as follows:

(1) Set the atomic population size N and randomly initialize the
position and speed of each atom each of which represents a
potential solution to the optimization problem;

(2) Calculate the fitness value of each atom (fitness is the average
absolute percentage error between the real value and the
predicted value after each iteration);

(3) Compute the acceleration and mass of each atom in the
swarm using Eqs 6 and 7;

(4) Update the velocity and position using Eqs 8 and 9;
(5) If the maximum number of iterations is reached, export the

best atom’s position; otherwise, repeat steps (2) to (4);
(6) Assign the position of the optimal atom which contains the

initial weights and bias to BPNN;
(7) Adjust the individual weight and threshold by model training

until the error precision is satisfied;
(8) Forecast simulation of PV power generation.

4 SIMULATION TEST

4.1 Establishment of the Sample Set
The experimental data in this work are acquired from a solar farm
in Yunnan, China. The selected sample data include the PV
power generation data and the corresponding meteorological
data within the time interval from March 1, 2020, to May 31,
2017, and the temporal resolution of data collection is 15 min.
The forecasting time period is between 06:00 and 20:00. The input
variables of the solar power forecasting model include four
meteorological indicators, i.e., total irradiance, temperature,
humidity, and direct irradiance. After screening and sorting,
the summation of the sample data is 5239, containing 5182
pieces of training data to train ASO-BPNN, and 59 pieces of
test data to verify the prediction performance.

4.2 Prediction Error Indicator
In order to accurately evaluate the prediction performance of
each proposed model, root mean squared error (RMSE) (Zhang
et al., 2021) and mean absolute percentage error (MAPE) (Yang
et al., 2015) are introduced to quantitatively compare and analyze
the prediction effect of each power forecasting model.
Particularly, the specific formulae of RMSE and MAPE are as
follows:

RMSE �
��������������
1
n
∑n

i�1(Pi − Ri)2
√

(11)

MAPE � 1
n
∑n

i�1

∣∣∣∣∣∣∣Pi − Ri

Ri

∣∣∣∣∣∣∣ × 100% (12)

TABLE 2 | Parameter settings of each neural network algorithm.

Neural network
algorithm

Data size Number of
nodes in
the hidden

layer

Iteration number Learning rate Population size

BPNN 5,239 5 - 0.05 -
ASO-BPNN 5,239 5 20 0.05 30
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FIGURE 3 | (A) Predicted power curves of the BPNN model based on two samples. (B) Predicted power curves of the ASO-BPNN model based on two samples.
(C) Predicted power curves of two models based on two samples.
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where n is the number of total data in the test set; Pi is the
predicted value of PV power generation of ith test data; and Ri is
the real value of the PV power generation of ith test data.

4.3 Parameter Setting of the Prediction
Model
The sample data of the PV prediction model are trained by the
original BPNN and ASO-BPNN, respectively, and the test results
and model performance are compared and analyzed. According

to the time sequence similarity calculated by the Euclidean
distance formula in descending order, the former 2000 pieces
of data are selected as the training set of each model, and then the
data on May 31, 2017, are regarded as the test set. Moreover, after
repeated imitation tests, the parameter settings of each prediction
model are shown in Table 2; meanwhile, the rest of the
parameters use the default values or remain the same. In
particular, all simulation tests are performed using Matlab
2019b on a personal computer with IntelR CoreTMi7 CPU at
2.0 GHz and 32 GB of RAM.

FIGURE 4 | RMSE of the two models based on two samples.

FIGURE 5 | MAPE of the two models based on two samples.

TABLE 3 | Prediction error data of each neural network algorithm.

Neural network algorithm BPNN before screening BPNN after screening ASO-BPNN before screening ASO-BPNN after screening

RMSE/MW 0.38 0.16588 0.2032 0.054306
MAPE/% 672.1824 216.8181 35.868 28.3937
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5 ANALYSIS OF SIMULATION RESULTS

The neuron number for input, hidden, and output layers of each
network are 4, 5, and 1, respectively. Except for the simulation
results based on the screened and sorted sample, the simulation
data based on the original sample was provided to verify the
effectiveness and necessity of data screening by the Pearson
correlation analysis and the Euclidean distance. Figure 3A
shows the forecasting results by BPNN based on two samples.
The simulation shows that the predicted values in 6:00–10:00 and
16:00–20:00 based on the original sample are far from measured
values, and that based on a screened sample are slightly improved
but still unsatisfactory. Figure 3B shows the forecasting results by
ASO-BPNN based on two samples which verify the effectiveness
of data screening as well. Figure 3C shows four curves of two
forecasting network models based on two samples. Simulation
results show that the forecasting results of the ASO-BPNNmodel
based on a screened sample are best; the forecasting results of
BPNN based on a screened sample are slightly worse than that of
ASO-BPNN based on an original sample in 6:00–7:00 and 17:
00–20:00, but better in the remaining time. Moreover, the RMSE
and MAPE curves of the two forecasting network models based
on two samples are depicted in Figures 4 and 5, respectively.
Moreover, the corresponding mean forecasting error of the two
models based on two samples are tabulated in Table 3.

According to the comparison power curves in Figure 3 and the
forecasting error in Table 3, it can be inferred that ASO effectively
improves the weights and bias of BPNN and thus observably enhance
the forecasting accuracy of the solar power prediction model.
Particularly, the ASO-BPNN model based on the screened sample
has the smallest values in two error indexes of RMSE and MAPE
which verify that the ASO-BPNN model has good adaptability and
outstanding predictive performance. It is worth mentioning that the
screening of training samples by using the Pearson correlation analysis
and the Euclidean distance has contributed to decreasing the
prediction error of the ASO-BPNN model.

6 CONCLUSION

In this study, given the lack of the gradient descent algorithm in
the traditional BPNN forecasting model resulting in easy trapping
into local extremum, low convergence rate, and the undesirable
prediction error, ASO is applied to optimize the weights and bias
of BPNN and further enhance the accuracy and robustness of the

solar farm power model. Thus, the short-term power forecasting
model based on ASO-BPNN is established. Meanwhile, the
training samples to train the network are screened and sorted
which mitigates the adverse impact on the prediction precision of
redundant meteorological factors. The following conclusions are
stated as follows:

• According to the analysis results of the Pearson correlation
coefficient formula, the meteorological factors of total
irradiance, temperature, humidity, and direct irradiance
are taken as the input of the prediction model, which
reduces the complexity of the prediction model and
effectively avoids the redundancy of meteorological factors;

• Combined with the Pearson correlation analysis results, the
Euclidean distance formula is used to calculate temporal
sequence similarity to accurately screen training samples.
The screened training samples accurately track the
meteorological characteristics;

• The ASO-BPNN prediction model has a desirable
forecasting accuracy and is competent to carry out the
short-term power prediction work for this
aforementioned solar farm in Yunnan.
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