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INTRODUCTION

With the swift development of economy, traditional energy resources have been exposed to problems
such as decreasing reserves, environmental pollution, and health hazards of human beings (Yang
et al., 2020a; Yang et al., 2021a). Nowadays, renewable energy resources (RESs) have been given great
importance by the public and achieved significant development under the support of government
policies (Sun and Yang, 2020; Mahidin et al., 2021). Among a variety of RESs, wind energy resources
are abundant, cheap to develop, have high conversion efficiency, and are environmentally friendly
(Guchhait and Banerjee, 2020; Li et al., 2020). As a result, wind farms have sprung up all over the
country. However, with the gradually increasing proportion of wind turbine commitment in the grid,
the severe effects of randomness and intermittency of wind farms on the grid cannot be ignored (Xi
et al., 2016).

In order to settle the above issues, wind forecasting technology is proposed (Sachdeva and Verma,
2008), whose contribution is mainly reflected in the following three aspects: 1) optimize the
scheduling of grid and provide conditions for wind power bidding on-grid; 2) easy maintenance
and overhaul of wind turbines; and 3) reduce reserve capacity and operating cost. In general, the
classification of wind speed and power prediction is mainly carried out from two views, as shown in
Table 1. Wind speed and power forecasting technologies are classified as long-term forecasting,
medium-term forecasting, short-term forecasting, and ultra-short-term forecasting on the basis of
the time scale. Based on the prediction model, these research techniques are classified as physical
approaches, statistical approaches, and learning approaches.

DATA PRE-PROCESSING

It is particularly crucial for accurate wind speed and power prediction to pre-process data, which ismainly
reflected in avoiding the adverse impact of redundant invalid data, data denoising, andmaking upmissing
data. In literature (Cui et al., 2012), the atomic decomposition technique is used to eliminate wavelet
coefficients of noises for every subseries based on wavelet function and dissolution levels. In addition, the
atomic decomposition technique is easy to execute and takes less consumption time (Yang et al., 2021b).
Singular spectrum analysis (SSA) is introduced to identify noise, and trend, periodic oscillation of original
signals with themerits of fewer parameters. But phase shift phenomenon takes place during the denoising
process by SSA (Jung and Broadwater, 2014). In general, decomposition-based denoising methods
containing the former two approaches remove the noises of the divisional subseries (Qian et al., 2019).
Moreover, decomposition-based denoising methods have the advantage of clear configuration but may
weaken prediction accuracy (Yang et al., 2021b).
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In terms of data completion, there are some relatively simple
methods, including the continuous method, adjacent fan method,
and linear regression method. Literature (Barbara and Richard,
1984) states that the values of adjacent points on a continuous
curve are the same, so when the sampling interval is small, the
nearest data point can be used to supplement the missing data,
which is called the persistence model. The adjacent fan method
finds the power generation relation between the two wind
generators with high spatial correlation so as to complete data
completion (Ji et al., 2014). Based on the spatial-temporal
characteristics of wind generator distribution, the literature
(Ma et al., 2013) uses the linear regression method to
complete the missing data in three dimensions, but this
method is not applicable to nonlinear cases. Adaptive
network-based fuzzy inference system (ANFIS) is proposed in
reference (Yang et al., 2014), which integrates the merits and
application range of various methods and can take different data
completion measures according to specific situations. It has been
proved that the effect of ANFIS is more satisfactory than that of
the linear regression method.

PHYSICAL PREDICTION APPROACHES

The essence of the physical forecasting method is to make the best
of all pivotal physical parameters of wind generators, among
which meteorological information is the most important
parameter (Zhao et al., 2011). First, the meteorological
information, including temperature, barometric pressure, and
wind speed and direction, are collected from the
meteorological platform; meanwhile, the surrounding
parameters of the wind turbine are recorded. Then the actual
values of wind speed and direction around the wind generator
hub are calculated by combining these two sets of data. Then the
wind power output of corresponding parameters is obtained by
comparing the wind turbine power curve provided by the
manufacturer. The physical method relies on the accuracy of

the prediction model, so the physical parameter information
around the wind generator is very critical, which could bring
bias to wind speed values (Tascikaraoglu and Uzunoglu, 2014). In
addition, the update speed of meteorological forecasts is low;
hence, the data collected from meteorological departments often
fail to meet the requirements of forecasting models. Back in the
1990s, Landberg predicted the wind output power through a wind
turbine power curve with the wind speed information based on
numerical weather prediction (NWP). The process of wind speed
and power forecasting based on the physical model is
demonstrated in Figure 1.

STATISTICAL PREDICTION APPROACHES

The purpose of the statistical method is to establish the mapping
functions, mainly linear, between various factors affecting power
output or historical power output data series and output data
(wind speed or power). Statistical method owns early formed
theory and the mature application experience, which includes the
time sequence approach, exponential smoothing method,

TABLE 1 | Prediction approaches on time/model horizon.

Basis of
classification

Forecasting ways Description Features/applications

Time scale Long-term
forecasting

Prediction of 1 year based on annual data The judgment basis for the site selection of wind farm and
to predict the potential economic benefits

Medium-term
forecasting

Prediction of 1 day to 1 month To arrange the maintenance and debugging of equipment;
mainly use the numerical weather forecast model

Short-term
forecasting

Prediction of hours Applicable to the scientific control of power system;
relatively higher accuracy; the research focus

Ultra-short-term
forecasting

Prediction of minutes To meet the demands of wind turbine control and
effectively ensure the scientific operation of equipment

Modeling method Physical prediction
method

Use the external parameters of the fan, including meteorological
information, to get wind speed and direction around the blade,
and then compares the wind turbine power curve to get the
output

High requirements for physical parameter information of
wind generator

Statistical prediction
method

In order to obtain the function relation between the historical data
series and the wind generator output

Easy to implement, mature and complete theoretical basis

Learning prediction
method

Establish the nonlinear model between input and output by using
the artificial intelligence method

Represented by support vector, machine wavelet analysis,
and neural network

FIGURE 1 | Process of the wind speed and power prediction based on
physical model.
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Kalman filter, grey prediction method, and regression analysis
technique.

Time sequence method, a classical, mature, and earlier
developed load or power prediction method, takes historical
wind generator output data series collected according to fixed
time as time sequences. In addition, this method establishes an
accurate time sequence statistical model based on the historical
power data and the power prediction expression. According to
the established time sequence statistical model and power
prediction expression, wind speed and power prediction are
carried out. According to the types of linear filters, the time
sequence method is further classified as follows: generalized
autoregressive conditional heteroskedasticity (GARCH) (Zhou
et al., 2011), GARCH in mean (GARCH-M) (Chen et al., 2013),
component GARCH-M (CGARCH-M) (Chen et al., 2015),
autoregressive moving average (ARMA) (Torres et al., 2005),
autoregressive integrated moving average (ARIMA) (Yatiyana
et al., 2017), and fractional ARIMA (Kavasseri and Seetharaman,
2009). Component GARCH-M model is presented in reference
(Chen et al., 2015) to execute power forecasting by decomposing
the volatility configuration to the everlasting and transient
component. ARIMA method is applied to develop a statistical
model for forecasting both wind speed and direction and attains
good precision with an error of less than 5% for wind speed
(Yatiyana et al., 2017).

Kalman filter prediction is another statistical method
commonly used to predict wind speed and direction. Although
the wind prediction model established by the time series method
owns the superiority of time sequence and autocorrelation,
without the need to analyze the background and conditions of
signal series, it still has the demerits of poor forecasting precision
for low-order model. The Kalman filter prediction method makes
up for the above shortcomings due to its ability to dynamically
modify the prediction weight. The Kalman filter prediction
method can obtain high precision by predicting recursive
equations. In literature (Babazadeh et al., 2012), a
Gauss–Markov based Kalman filter is applied in forecasting
the wind speed of a single wind farm an hour ahead. An
unscented Kalman filter is proposed in the literature (Chen
and Yu, 2014) to predict the wind speed of a single wind
turbine which has stable dependability and robustness. In
addition, the Kalman filter prediction method has difficulty in
establishing the Kalman equation of state and measurement
equation. To overcome this drawback, Tian et al. (2014)
developed the adaptive Kalman filter which is simple to
acquire Kalman state and measurement equations. In addition,
the case studies on single wind power stations verify that the
adaptive Kalman filter decreases the error and time delay of
predicted wind speed.

Regression analysis, a statistical mathematical method, starting
with the transformation law reflected by historical data, explores the
relationship between input variables and output variables which is
implied in the transformation law. When applied to wind power
prediction, the regression analysis method can predict the wind
power value in the future according to the historical wind power
data, whose basic expression is as follows:

f(t) � k0 + k1x1(t) +/ + knxn(t) + ω(t) (1)
where f(t) is the wind power value at time t;
x1(t), x2(t)/, xn(t) represent the related factors; ω(t) means
the noises; and k0, k2/, kn are regression coefficients.

LEARNING PREDICTION APPROACHES

Nowadays, wind speed and power prediction based on the
learning method is a research hotspot thanks to its pre-
eminent nonlinear processing capability. Learning methods,
characterized by artificial intelligence methods, derive the
mapping between input and output through training of a large
number of samples. Different from the statistical methods,
learning methods establish nonlinear models, which cannot be
simply expressed by a mathematical formula. At present, the
main learning methods include wavelet analysis, support vector
machine (SVM), and neural network.

Higher-order SVM based on Gaussian can enhance the
prediction precision of wind speed (Mohandes et al., 2004; Yang
et al., 2020b). Moreover, the combined model of the least square
method and SVM can achieve high accuracy and generalization
ability with faster computing speed and fewer factors (Maria et al.,
2014; Chen et al., 2021). In recent years, variants of SVM are also
developed, such as convolutional SVM (Mi et al., 2019; Yang et al.,
2020c), SVM-enhancedMarkovmodel (Yang et al., 2015), and SVM
based on multi-variable regression (Park and Hur, 2017). In
literature (Li and Shi, 2010), three artificial neural networks, feed-
forward BP, radial basis function, and ADALINE neural network,
are applied to wind speed prediction and compared with each other.
The case studies reveal that the prediction precision relies on the
quality of inputs data, and the combined performance of those three
neural networks is similar. However, the original neural network
sometimes makes failed feature identification under complex
conditions. Hence, some wind prediction models based on deep
learning algorithms are developed, such as transfer learning (Lin
et al., 2017), convolutional neural network (Hu et al., 2016),
recurrent neural network (Cheng et al., 2018), structural learning
(Mi and Zhao, 2020), and long short-termmemory (Liu et al., 2018).

DISCUSSION AND CONCLUSIONS

Wind forecasting technique can effectively alleviate the impact of
large-scale wind generator grid-connected and requires further
studies (Desai and Makwana, 2021; Xu et al., 2021). Several
perspectives for future researches are proposed as follows:

1) Offshore wind resources are more abundant, so more research
on offshore wind speed and power prediction should be
carried out;

2) The combination of a data-driven neural network and
physical model is a promising method for wind forecasting;

3) The structure of neural networks has a significant influence on
the accuracy of a prediction model. Therefore, a more stable
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and efficient heuristic algorithm should be used to improve
the structure of neural networks.
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