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With the flexible integration of local renewable energy with the smart distribution network
system, the problems of high operating costs and power shortage can be effectively
solved. However, taking the industrial park microgrid with high penetration photovoltaic as
an example, due to the uncertainties and fluctuations arising from the meteorological
conditions and the load demands, the safe and reliable operation of the microgrid system
has been threatened significantly. Operators often need to pay additional unnecessary
costs to maintain stable operations of the microgrid. Therefore, in this study, a dispatch
strategy based on robust model predictive control considering low-carbon cost is
designed to reduce the adverse effects of uncertainties. First, a low-carbon energy
management scheme is formulated based on short-term source and load forecast
information in which a two-stage robust optimization solution method is used to
generate the optimal dispatch scheme under the worst scenario. Then, an intraday
real-time strategy with a closed-loop feedback mechanism is formed based on the
model predictive control. Finally, the feasibility of the proposed strategy is simulated
and analyzed based on the measured data of the photovoltaic microgrid in the industrial
park. The results show that compared with the general intraday scheduling strategy and
the day-ahead robust strategy, the proposed strategy can effectively get low-carbon
scheduling plans considering the uncertainty of source and load while efficiently balancing
the robustness and economy of the grid-connected industrial park photovoltaic microgrid
system operation.
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1 INTRODUCTION

Decentralization and low-carbon energy reformation are promoted continuously with the increasing
scale and intricate operating conditions ofmodern power grids (Basak et al., 2012;Morstyn et al., 2018).
As a singlemodular system, themicrogrid (MG) can flexibly dispatch distributed generation (DG) such
as photovoltaics (PVs) and wind turbines (WTs) to provide power for its regional load demand
(Alipour et al., 2015; Zia et al., 2018). Compared with the traditional distribution network, the electrical
distance between generator units and the consumers is much closer, which can increase power quality
and economic benefits. Because of the plug-and-play characteristics of these distributed devices,
microgrids are considered the foundation for further expansion of the power grids.

Microgrid operators are management platforms responsible for energy flow within the region,
which need to consider the principles of profitability while ensuring the balance of power supply and
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demand in the whole region (Zhou et al., 2021). However, due to
the uncertainties of meteorological conditions and load demands,
it is difficult for microgrid operators to use accurate forecast
information to formulate scheduling plans (Kou et al., 2018).
Therefore, microgrid operators need to use a more appropriate
dispatch strategy in their energy management system (EMS) to
ensure the normal and stable operation of the microgrid (Raya-
Armenta et al., 2021). At the same time, to achieve the objective of
low-carbon environmental protection, various regions have
begun to implement carbon trading policies aiming to meet
the carbon indexes. In addition to purchasing electricity from
the main grid, large-scale consumers of the distribution network
can also trade carbon to deal with the rest of carbon consumption
apart from allocated carbon indexes (Lu et al., 2013). Therefore,
the low-carbon dispatch operation of microgrids also needs
further improvement.

The microgrid in the industrial park is dominated by
industrial loads, which have the characteristics of large load
demand and higher requirement of power supply reliability
(Yu et al., 2016). To minimize the operating cost, the
traditional day-ahead dispatch strategy can make an economic
optimal dispatch plan based on the forecast data. However, these
strategies lack consideration of uncertainty in actual operation; it
is tough to make timely and rational adjustments, which leads to a
higher requirement for the accuracy of the prediction model of
renewable sources and load. On the other hand, operators need to
pay extra costs for forecast deviations due to sudden uncertain
fluctuations and tolerate the damage of power balance and the
safe operation.

Therefore, in order to adapt to the dynamic characteristics of
various devices in the microgrid, various types of scheduling
strategies have been designed in various literature studies to cope
with different uncertain information (Yang and Su, 2021). Robust
optimization (RO) strategy ensures the stable operation of the
microgrid in a complex operating environment by finding the
worst scenario for the scheduling plan (Liu et al., 2020; Choi et al.,
2019). In Liu et al. (2020), a two-stage robust model is proposed
for an integrated power–heat–gas microgrid to achieve the
optimal day-ahead economic scheduling considering the
uncertainty of wind power scenarios. In Li et al. (2021a), a
data-driven set–based robust optimization (DSRO) model
considering the uncertainties of wind power and multiple
demand response programs (DRPs) has been proposed, and a
combined cooling, heating, and power (CCHP) microgrid with
the power-to-gas (P2G) device is used to verify its feasibility. In
Choi et al. (2019), the robust optimal control strategy for an
energy storage system (ESS) of a grid-connected microgrid is
proposed. The mixed-integer linear programming and the non-
linear efficiency map method are considered to cope with
different external conditions. These aforementioned studies
effectively improve the safety margin and robustness of
scheduling plan through RO strategy. However, these
strategies are still day-ahead scheduling strategies, which are
limited by insufficient flexibility in operation. Meanwhile, on
account of the requirements to consider the amount of
information throughout the whole day, the computational
burden on the central controller will be aggravated.

Model predictive control (MPC) utilizes the idea based on
closed-loop rolling optimization to respond to the fluctuation of
renewable energy and realize adaptive optimization with the time
rolls (Li et al., 2018; Wu et al., 2021). In Li et al. (2018), a multi-
time scale–based three-layer coordination optimal scheduling
system is designed. In Garcia-Torres and Bordons (2015), a
control strategy using MPC for renewable energy microgrids
with hybrid ESS is proposed in which the MPC is built within
the market framework in different time scales to maximize the
economic benefit of the microgrid. A multi-renewable-to-
hydrogen production method is proposed to enhance the
green H2 production efficiency in Zhang et al. (2022), and a
hierarchical coordinated control strategy is also developed based
on MPC to suppress high fluctuations in electrolysis current
caused by uncertainty from PV andWT. In summary, the optimal
scheduling strategy based on MPC intraday strategy can
effectively deal with the uncertainty of renewable energy.
However, the aforementioned literature is more inclined
toward constructing the intraday rolling strategy, and there are
few descriptions of the MPC feedback module, which is an
essential means to deal with the uncertainty of renewable
energy. With the increasing penetration of renewable energy,
the effectiveness and the advantage of the strategy will be reduced.

An online optimal operation approach for CCHP microgrids
based on MPC with feedback correction to compensate for
prediction error was proposed in Gu et al. (2017a). Moreover,
as a flexible framework based on the combination of multiple
modules with different time scales, MPC provides the feasibility
of its combination with a variety of traditional optimization
strategies (Cai et al., 2020). An optimal scheduling model
considering the demand responses is proposed in Zhang et al.
(2021) in which a multi-time scale economic scheduling method
based on day-ahead robust optimization and intraday MPC is
designed. A battery/flywheel hybrid ESS stochastic model
predictive control (SMPC) method is proposed in He et al.
(2022) to improve the automatic generation control
performance of thermal power units in which a scenario tree
generation approach is proposed to simulate operation scenario.
In Wu et al. (2021), the results of multiple uncertainty samplings
are used to simulate the future characteristics of aggregated
electric vehicles, and a two-layer strategy framework is
proposed for the optimization issue. These studies provide
some methods for further combating the uncertainty of
renewable energy, but the analysis and processing of uncertain
data are focused on the day ahead or before the optimization.
Therefore, it results in the online optimization stage of MPC still
aiming at the pursuit of economy alone, which has the lack of
flexibility to deal with real-time changing operating scenarios.

Therefore, in order to better cope with the impact of
uncertainty from high penetration of renewable energy and
load demand and further flexibly balance the robustness and
economy of the microgrid online dispatch plan, a dispatch
strategy for the photovoltaic microgrid in an industrial park is
designed based on low-carbon robust model predictive control
(RMPC) in this study. First, the dynamic model and cost function
of operation is built and the two-stage RO method is used to find
the low-carbon scheduling scheme under the worst scenario
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considering uncertainty, where the introduction of the carbon
index cost target makes the environmental protection and
economy of the microgrid are further comprehensively
considered. Second, the feedback mechanism based on MPC is
designed to respond to the fluctuation of PV in an ultra-short
term time scale, which effectively combats the uncertainty of
renewable energy. Finally, the MPC strategy framework is used to
form the intraday scheduling plan of the microgrid, which can
balance the robustness and economy of the microgrid by
combining the RO and MPC strategy. Moreover, the feasibility
and effectiveness of the proposed RMPC strategy are verified by
simulation experiments.

2 DYNAMIC MODEL OF THE
PHOTOVOLTAIC INDUSTRIAL PARK
MICROGRID
2.1 Typical PhotovoltaicMicrogrid Structure
Figure 1 shows a typical structure of the microgrid in a
photovoltaic industrial park. The park is connected to the
main grid through the point of common coupling (PCC);
thus, stable electricity power can be purchased from the main
grid to meet the large load demand. A large number of distributed
PV generation units are built to obtain the renewable energy, and
surplus or lack of electrical energy can be stored or released in an
energy storage system (ESS). As an important auxiliary power
device, ESS can handle excess renewable energy in time, which
simultaneously takes into account both economy and stability of
the system. Moreover, the dispatch plan and control operation of
the microgrid will be formulated and sent by the control center. It
should be noted that despite the existence of different devices to
obtain power, renewable energy like PV is hopefully used in
priority by operators meeting the load considering the electricity
price and low-carbon objective.

2.2 Deterministic Dynamic Model
The deterministic power generation unit in the microgrid can
provide stable and high-quality electricity power, such as

generator, ESS, and the power from the main grid. The
dynamic model of the devices based on the proposed
background is as follows:

Pm(t + 1) � Pm(t) + ΔPm(t), (1)

E(t + 1) �
⎧⎪⎪⎨⎪⎪⎩

E(t) + ηchPch(t)Δt if Ps(t)≥ 0
E(t) − 1

ηdis
Pdis(t)Δt if Ps(t)< 0

, (2)

Eq. 1 represents the power transaction between the microgrid
and the main grid in which the value of the traded power at t + 1
is the sum of the traded power and the hope adjusted power at t;
Pm and ΔPm(t) are the purchase of power from main grid and
the power should be adjusted in the next time, respectively; and t
is the sampling time. Eq. 2 is the ESS model in which the
remaining energy in the ESS at t + 1 is the remaining energy
stored at t plus the amount of charged/discharged in this period;
E represents the remaining energy of the ESS; Pch and Pdis

indicate charging and discharging power, respectively, where
both cannot be present at the same time; ηch and ηdis is the
efficient factor of the charging and discharging in ESS,
respectively; and Δt is the length of operation control interval.

In order to reduce integer variables during optimization, an
intermediate variable δ and an auxiliary variable Zs is used to
unify the two variables of Pch and Pdis into Ps (Parisio et al.,
2014):

δ � 1 ↔ Ps ≥ 0, (3)
ZS � δPs, (4)

where Ps is the power output from the ESS. Eq. 3 means that the
sufficient and necessary condition between δ � 1 and Ps ≥ 0, and
the Big Mmethod is used to guarantee the establishment of Eq. 4,
in which the logical constraint will be shown later. Therefore, Eq.
2 will be transformed into Eq. 5 as follows:

E(t + 1) � E(t) + [(ηch − 1
ηdis

)Zs(t) + ( 1
ηdis

)Ps(t)]Δt. (5)

Moreover, the operating constraints are as follows:

FIGURE 1 | Structure diagram of PV industrial park microgrid.
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{Pmin
m ≤Pm(t + 1)≤Pmax

m

Emin ≤E(t + 1)≤Emax
, (6)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B1δ(t) + B2Zs(t)≤B3Ps(t) + B4,
B1 � [Pmax

s −(Pmax
s + ε) Pmax

s Pmax
s −Pmax

s −Pmax
s ],

B1 � [ 0 0 1 −1 1 −1 ]
B3 � B2,
B4 � [Pmax

s −εPmax
s Pmax

s 0 0 ],
(7)

Ps(t) � Pm(t) + V(t) − D(t), (8)
Eq. 6 is the limit constraints representing the PCC tie-line

power limitation and the energy storage constraint, respectively.
In order to ensure that the microgrid system can switch to the
island operation mode at any time, Pmin

m and Pmax
m are used to

limit the minimum and maximum power purchased from the
main grid to reduce the energy dependence on the main grid and
reduce certain construction costs. Emin and Emax are the upper
and lower boundaries of the safety of ESS. Eq. 7 represents the
logical constraints after the unification of the variables in Eq. 5
(Parisio et al., 2014). Pmax

s is the maximum output power of the
ESS and ε is a teeny error. Eq. 8 is the power balance constraint of
the microgrid system, where V is the output of the PV and D is
the load.

2.3 Uncertainty Dynamic Model
Uncertain equipment in the microgrid refers to the renewable
energy generation units and loads with volatility and uncertainty.
In this study, the high penetration of the PV is the main reason to
cause a great challenge to the safe and stable operation of the
microgrid, where the dispatching scheme did not match the
actual power output. The uncertainty model is described as
follows:

u � {V(t) � [ �V(t) − ΔV(t), �V(t) + ΔV(t)],
D(t) � [ �D(t) − ΔD(t), �D(t) + ΔD(t)], (9)

e � {ΔV(t) � ηVV(t)
ΔD(t) � ηDD(t), (10)

Equation 9 represents the uncertainty model of the PV and
load. �V and �D are the day-ahead forecast value, respectively. ΔV
and ΔD are the uncertainty range. Eq. 10 is the calculation
method of the uncertainty range, where ηV and ηD are the
error coefficient. Thus, the uncertainty set of the microgrid is
described as follows:

U �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u

e

∑O

t�1
|V(t) − V(t)|

ΔV(t) ≤ ΓV ,

∑O

t�1
|D(t) − D(t)|

ΔD(t) ≤ ΓD,

(11)

where ΓV and ΓD are the uncertainty degree of the PV and load,
respectively. O is the length of the operation layer.

3 LOW-CARBON ROBUST PREDICTIVE
DISPATCH STRATEGY

3.1 Low-Carbon Optimization Layer
As mentioned in the introduction, the MPC strategy incorporates
the idea of rolling optimization, which can be more flexibly
integrated with other algorithms reasonably. Therefore, the
original optimal economic problem in MPC is transformed
into a “min–max–min” robust optimization problem to obtain
the robust scheduling plan under the worst scenario.

J � min
x

JCO2 +max
U

min
x,U

f Ty, (12)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

JCO2 � KCO2(WCO2 −Wep),
WCO2 � ∑O

t�1 α + βPm + γP2
m,

Wep � ∑O

t�1 ηCO2(Pm + V),
(13)

{ f � [Kch + Kdis −Kdis Km 0 0 ]T ,
y � [ZS Ps Pm E ΔPm ]T , (14)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Kch � a(E(k)

Cs
) + c

Kdis � −a(E(k)
Cs

) + b,

(15)

Equation 12 represents the objective function of the
microgrid in the optimization layer; f is the set of cost
coefficients for each power generation unit; y is the set of
scheduling plan; and x is the set of control variables in the
optimize schedule. Eq. 12 indicates that the scheduling objective
is to optimize the comprehensive cost of carbon emissions and
microgrid operation. The cost of carbon emission based on
carbon index JCO2 is shown in Eq. 13.

Under the robust uncertainty model in Eq. 11, the primary
goal of operation in microgrid remains economic while meeting
both the supply and demand balance and a certain degree of
robustness, and the microgrid operation cost is shown in Eq. 14,
Eq. 15.

To be specific, Eq. 13 indicates the carbon emission cost. In
the industrial park, the microgrid needs to undertake the
purchase of carbon emission quotas mainly based on CO2. In
Eq. 13, KCO2 represents the unit price of carbon trading;WCO2

is the carbon consumption of the microgrid, and its calculation
method is shown in the literature (Saber and Venayagamoorthy,
2011); Wep represents the carbon emission quota of the
microgrid, and ηCO2 represents the free carbon emission
quota coefficient (Zhou et al., 2021). Eq. 11 represents the
cost coefficients and dispatch variables of the operating cost,
where Kch and Kdis are the charging/discharging cost coefficient
of the ESS, respectively. Km is the price of power in the
main grid.

To mobilize the enthusiasm of all power generation units and
prevent the damage to the battery caused by the excessive or low
energy storage, the relationship between the charging/discharging
cost coefficient and the remaining energy of the ESS is shown in
Eq. 15. Cs is the capacity of ESS. a, b, and c are all constant
coefficients.
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From the aforementioned equations, after converting Eqs
1–15 into the standard form of robust optimization, Eq. 12
can be solved by a two-stage robust optimization problem
based on the column constraint generation (C&CG) algorithm.
The main problem is described as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

min
x

JMP

s.t. JMP ≥ f T · y
Gy ≤ j −Hx

Iy ≤ g
Ly � h
My � up.

(16)

The constraints from Eqs 6–8 can be written as the standard
constraint expression in Eq. 16.

On the other hand, the strong duality theory is used to
linearize the constraints in the subproblem, which the hard-to-
solve “max–min” optimization problem in the subproblem is
transformed into a “max” problem. This transformed Lagrange
dual problem is shown in Eq. 17:

⎧⎪⎪⎨⎪⎪⎩
Fsp � max

U
{ − λT(j −Hx) − μTg + σTh + (γT + δT)u}

{f T + λTG + μTI − σTL − (γT + δT)M} � 0
λ≥ 0, μ≥ 0.

(17)

Finally, the optimization problem iterates between the two
subproblems until the optimal scheduling plan is found even in
the worst scenario which is still feasible. The whole process is shown
in Figure 2.

3.2 Robust Model Predictive Control Rolling
Layer
The intraday scheduling strategy based on rolling optimization
rolls forward with time in a day. The RMPC framework based on
time flow is shown in Figure 3.

In Figure 3, the RMPC framework is divided into three stages.
First, the time horizon for the optimization layer is from t to
t + O, which is utilized to obtain the optimal scheduling plan for
this period by the method we have described. However, the
operator only sends the control signal from t to t + C to the
system, which C represents the length of the control layer. During
the time period of the control layer, the modules of the feedback
layer will be continuously looped in a smaller time horizon until
reaching the next sampling point t + C. After that, the sampling
point t + C becomes to t, and the previous optimization process is
repeated. Therefore, a real-time rolling optimization strategy
based on RMPC is formed.

3.3 Low-Carbon Robust Model Predictive
Control Feedback Layer
In the optimization layer, the robust optimization ensures the
feasibility of the schedule plan in the worst scenario, but the
problem solved without predicted data has a certain probability
that it may not match the real operation conditions of the
microgrid. Therefore, in a shorter time scale, the feedback
mechanism of MPC is used to form a closed-loop control
system that can timely forecast the predictive deviation of the
uncertain information and make a response. The feedback
mechanism is divided into two stages: the prediction
correction and the output correction.

In the prediction correction module, the actual output value in
the past is collected for feedback, and then the prediction output
in an ultra-short term will be corrected. In other words, when the
latest actual output is obtained at a certain feedback sampling
point, the prediction module in the feedback layer will update the
predicted variation of the renewable energy output at the next
feedback point. At the same time, the prediction model is also
revised to obtain more accurate planning in the next optimization
stage. Such prediction model is generally obtained by the gray
model or neural network. This study selects the wavelet

FIGURE 2 | The flow of the C&CG method.

FIGURE 3 | The framework of RMPC.
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decomposition convolutional neural networks (WDCNN) to
form the prediction model which is widely used in prediction
research (Li et al., 2021b; Yan et al., 2021).

The corrected prediction output will be sent to the output
correction module. Under the ultra-short time scale, the
overloaded tie lines may suffer excess uncertainty fluctuations
if there is no protective action in the schedule plan, and it will
pose a great threat to the safe operation of the microgrid.
Therefore, the redistribution principle in the output correction
module is designed, which is more inclined to the safe operation
than the pursuit of economy. Therefore, theminimum pressure of
the remaining power generation capacity of each equipment is
regard as the goal shown in Eq. 18, (Zhao et al., 2021). The
dispatch plan will be adjusted in the ultra-short time scale based
on the predicted values.

Δ �
∣∣∣∣ΔP′

m

∣∣∣∣
(Pmax

m − Pm(t)) +
∣∣∣∣ΔP′

s

∣∣∣∣
(Pmax

s − ∣∣∣∣Ps(t)
∣∣∣∣). (18)

In Eq. 18, Δ is the predictive deviation of the corrected
prediction value and the previous forecast value; ΔP′

m and ΔP′
s

are the adjusted values allocated to the PCC and ESS, respectively,
which both are still required to satisfy the constraints of Eqs 1–8.
Finally, the updated schedule plan will be implemented when the
next feedback point t + F arrives, and the feedback layer will be
carried out in a loop until the sampling point of the next
optimization layer t + C is reached.

4 SIMULATION RESULTS

This study takes a typical industrial park photovoltaic microgrid
as an example, and the microgrid will be operated within a day
through the RMPC strategy proposed. Figure 4 shows the
forecast curves of PV and load for a typical day with a time
interval of 30 min. In the simulation environment with MATLAB
2019a, we set the rolling layer R = 48, the optimization layer O =
8, the control layer C = 1, and the feedback layer F = 3. It means

the sampling interval of the system is 30 min, the sampling
interval of the feedback layer is 10 min, and the optimization
time scale is 4 h. The park is equipped with PV and battery energy
storage systems (BESS), with the capacity of 8 MW and 20 MWh,
respectively. Table 1 shows the operating and optimization
parameters of the microgrid. Figure 5 shows a typical

FIGURE 4 | PV and load prediction curves in a typical PV industrial park
microgrid.

TABLE 1 | Operation parameters.

Parameters Values Parameters Values

Pmax
m 4 MW Pmax

s 5 MW
Emax 0.9 p.u. Emax 0.1 p.u.
ηch ηdis 0.9 a 1.5
b 0.85 b −0.05
ηco2 0.648 α 10.33 t/h
β −0.24444 t/MWh γ 0.00312 t/MW2h
ηco2 140 RMB/t

FIGURE 5 | Typical peak-valley electricity price for industrial park.

FIGURE 6 | Dispatch scheme for energy based on RMPC strategy.
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peak–valley electricity price changing curve for the industrial
park in 1 day.

4.1 Feasibility Analysis of Robust Model
Predictive Control Strategy
Figure 6 shows the scheduling scheme of the photovoltaic
microgrid in the industrial park using the proposed RMPC
strategy. The uncertainty coefficients of photovoltaic and load
in Eq. 11 are both four, which is the moderate value of robust
expectation. The allowable ranges of prediction error in Eq. 10
are both 5%. The operation goal of the microgrid in industrial
parks is to achieve internal supply and demand balance and can
maintain stable operation even if the forecast data has errors.
That is the significance of introducing a robust optimization
mechanism.

As shown in Figure 4, although the power output from PV has
a strong arch-shaped output law in a day, the shortcomings of this
are also obvious.With the lack of sunlight, the PV has little output
in the morning and evening. It makes the microgrid to purchase a
large amount of power from the main grid and use the BESS as an
auxiliary power output device to meet the large load demand.

For example, as shown in Figure 6, from 0:00 a.m. to 6:00 a.m.,
there is no energy output from PV. Therefore, the load is nearly
satisfied by the power purchased from the main grid considering
the economy because of the lowest electricity price in the whole
day, and the BESS is scheduled to contribute energy as little as
possible. After that, the PV starts to generate electric power, and
the electrical price of the main grid reaches the parity zone.
Therefore, the power balance will be met by the BESS from 8:00
a.m. to 10:00 a.m. From 10:00 a.m. to 3:00 p.m., the PV reaches its
peak period, which could promptly replenish the BESS by the
surplus energy. It makes it possible to avoid the expensive period
of electricity price in the afternoon while satisfying the self-
sufficiency expectation of renewable energy in the industrial

park. The proposed strategy efficiently improves the economy
of the photovoltaic microgrid in industrial parks.

Figure 7 shows the changing curves of the carbon index and
carbon consumption in the microgrid. Due to the added carbon
index in the optimization goal, the power purchased from the
main grid is more restrained. Thus, the microgrid is encouraged
to consider larger-scale renewable energy sources in the
projecting stage to increase their advantage in the future
carbon index trading market. And the application of the
carbon index could also meet the environmental protection
targets and low-carbon operating goals reasonably for the
photovoltaic microgrid in the industrial park. Furthermore,
Figure 8 shows the change of the energy storage in the BESS.
Except for periods when renewable energy is extremely abundant,
the power storage in ESS can always maintain a healthy value for
system operation, even it has fluctuation.

4.2 Effectiveness Analysis for Strategy
Considering Uncertainty
As mentioned in Section 3.3, while the robust dispatch scheme
satisfies the basic requirements of the economic operation, the
feedback mechanism in MPC is proposed to avoid the damage to
the stable operation of the microgrid caused by the error of the
prediction information.

The ability to fight the uncertainty of input information
depends on the accuracy of the correction model. Therefore,
the proposed rolling feedback mechanism based on historical and
real-time data can make the error correction curve under the
ultra-short time scale closer to the actual output situation.
Secondly, in the proposed output correction module, due to
the setting of the redistribution objective in Eq. 18, the output
adjustment pressure of the equipment is fairly distributed to each
controllable power generation beforehand. Thereby, it could
improve the safety margin of the operation (Zhao et al., 2021).

FIGURE 7 | The change of carbon index and consumption. FIGURE 8 | The change of power storage in BESS.
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The calculation results of the average relative error of the net
load (Gu et al., 2017b) are shown in Figure 9. It can be seen from
Figure 9 that the error calculation result based on the MPC
strategy is obviously better than the rolling optimization
strategy which pursues the economy completely. This is
because the introduction of the feedback mechanism makes
the prediction curve closer to the actual one, and the relative
prediction error naturally decreases. However, it can be also
found from Figure 9 that the relative error value increases
slightly with the RMPC strategy compared with the MPC
strategy. This is because the worst-case scenario predicted by
robust optimization is not based on the actual data, but rather
on the operating state of the devices. Therefore, it does not
necessarily match the actual operation scenario, which may lead
to more operation errors.

Figure 10 shows the average relative error of the load under
the uncertainty model compared with the day-ahead forecast
value of load which ΓD � 0. It can be seen that with the increase
of the uncertainty degree, the average relative error of the load
will also increase. This is because in the optimization layer, the
original day-ahead forecast is forced to take into account the
worst scenario due to the uncertainty set. The larger the
uncertainty, means the more points are forced to deviate,
and the larger result of the average relative error of the
load. However, the variable weather information and flexible
load are more difficult to predict in the actual operation.
Therefore, for operators who need to face diverse uncertain
factors, the cost of small increase error is acceptable to ensure
normal operation of the microgrid. And as we described, the
uncertainty degree can be adjusted timely by the operator
because of the combination of MPC and RO, which can also
have a better decision on the acceptance degree of this
increased error.

If it is assumed that these points that are forced to deviate are
called robust point, the case with the most robust points (ΓD, ΓV =

8) is shown in Figure 11. Due to the constraints of the load in the
power balance, the power generation units in the microgrid need
to supply sufficient energy to the load. Therefore, the robust point
of load in the whole day is basically to increase the positive
deviation as the deterioration of the operating scenario. As an
important low-cost power generation unit and an important
means of providing carbon indicators, photovoltaics are
basically negative deviations in the worst scenario. However, at
the peak of power generation, that is, at noon, a large amount of
surplus power generation will challenge the storage capacity and
capacity of energy storage. At this time, it is believed that larger
power generation will pose a greater threat to the operation of the
microgrid. In addition, the deviations of both robust points of PV
and load are close to the maximum error allowable range
bounded. Therefore, increasing the error coefficient is also an
important means to increase the robustness of the
scheduling plan.

Figure 12 shows the worst scenario for day-ahead RO and
rolling RO with the same ratio of uncertainty degree. Taking
ΓD � 2 in the RMPC strategy as an example, since the length of
the optimization layer is 8, the uncertainty ratio is 0.25. That
means that in the optimization layer with the length of 48 in
day-ahead RO, the uncertainty degree ΓD is 12. As shown in
Figure 12B, when the ΓD � 12, the number of the robust point
used in day-ahead RO are also 12, which most of them are used
in the morning. But as shown in Figure 12A although the
uncertainty ratio is the same, the number of robust points used
in rolling RO is far more than day-ahead RO. That because in
each rolling process, two of the sampling points in the
optimization layer are always forced to be as robust points.
Moreover, the robust points are gathering at the moment when
the load is large in noon, which is closer to the worst case of the
load for the damage operation analyzed above. Therefore,
compared with the day-ahead RO, the rolling RO method
used in this study will make more robust dispatch schedule
in a short time of optimization layer and also has the ability to
adjust flexibly in time.

FIGURE 9 | Average relative error of the net load.

FIGURE 10 | Average relative error of the load.
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4.3 Economic Analysis
Since the intraday scheduling scheme is a real-time optimization
strategy that rolls with the time flow, the uncertainty degree of the
system can be flexibly adjusted. Compared with the day-ahead
robust optimization strategy, the worst scheduling scenario is just
for the short-term period, which has greater operability and

accuracy. At the same time, RO and MPC strategies can
respond to the uncertainty of renewable energy at different
time scales, respectively. But this ability has to pay the cost of
certain economic losses, as shown in Figure 13, which is the
comparison of the cost with different strategy and uncertainty
degree. Compared with the RMPC strategy, the MPC strategy

FIGURE 11 | Robust worst-case scenario (A) load (B) PV.

FIGURE 12 | Comparison of robust point of Γ_D = 2 (A) Rolling RO (B) Day-ahead RO.
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pursues cost minimization in the short-term scheduling stage, so
that the total cost can be kept lower.

And it can be seen from Figure 13 that with the increase of
uncertainty degree, the economy gradually decreases. From the
change of ΓD, ΓV = 0 (MPC strategy) to ΓD, ΓV = 8, it can be found
that different degrees of worst scenario have diverse degrees of
influence on the operation of the microgrid, which provides an
important guide for operator to select the exact uncertainty
degree in real-time dispatch.

These also confirm what we discussed in the previous
section, robustness and economy of the operation of the
microgrid are two opposite directions that operators cannot
get both at the same time. The prevention of the worst-case
scenario in exchange for part of economic losses can make the
microgrid with a high proportion of renewable energy access
more reliable.

Moreover, if the operator wants to eliminate the impact of
robust optimization on economy, they can consider increasing
the benefits of microgrid operations in other aspects, such as
power transactions, cooperation with other microgrids, electricity
price games between operators and users, etc. In short, how to
balance risks and benefits depends on the operator’s thoughts and
their operation goals for microgrids in the region. The proposed
RMPC strategy can flexibly balance the robustness and economy
of PV microgrid operation in industrial parks, which gives
operators more options to achieve their desired microgrid
management target.

5 CONCLUSION

This study proposes a low-carbon robust predictive dispatch strategy
for a photovoltaic microgrid in industrial parks, which combines the
advantages of robust optimization strategy and MPC strategy. Based
on establishing the dynamic model of power generation equipment
and the uncertainty model of renewable energy and load, an energy
management strategy based on RMPC is designed for the photovoltaic
microgrid. The proposed strategy ensures the independent and stable
operation of the microgrid and has the ability to combat the
uncertainty through two-stage robust optimization method and an
MPC feedbackmechanism at different time scales. These twomethods
cooperate with each other and improve both robustness and the safe
operation of the microgrid at the expense of part of the economy. At
the same time, due to the characteristics of the real-time strategy, the
uncertainty degree is adjustable, which allows operators to balance
robustness and economymore flexibly. In addition, the introduction of
the carbon index mechanism effectively increases the inhibition of the
use of polluting energy. Thus, the operators have to consider the
environmental cost while pursuing the operation economy so as to
achieve the goal of low carbon emissions. Finally, simulations using
real data are carried out to verify the effectiveness of the proposed
strategy. By comparing with other strategies, the characteristics of the
proposed strategy are analyzed, which provides an important reference
for the application and further development of this strategy.
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