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An accurate state of health and remaining useful life prediction is important to provide effective
judgment for the lithium-ion battery and reduce the probability of battery effectiveness. This article
proposes a hybrid model for the prediction by combining an improved decomposition algorithm,
an improvedparameterization algorithm, anda least squares support vector regression algorithm.
The capacity signal is decomposed by the improved complete ensemble empirical mode
decomposition with an adaptive noise algorithm to solve the backward problem. Then, the
least squares support vector regression algorithm is used to predict each decomposition
component separately. To obtain better parameters of the prediction model, a good point
set principle and inertia weights are introduced to optimize a sparrow search algorithm.
Experimental results confirm that the proposed hybrid prediction model has high accuracy,
good stability, and strong robustness, which achieves a minimum 0.3% mean absolute error of
theB0005battery. The impact of prediction stepsonaccuracy is alsodiscussed in this article. The
results verified the capacity accuracy of the batteries predicted by eight steps.

Keywords: lithium-ion battery, life prediction, parameterization algorithm, mode decomposition, support vector
regression

INTRODUCTION

The lithium-ion battery has been widely used in pure electric or hybrid electric vehicles, satellites, and
aircrafts due to its high energy density, long power endurance, satisfying nominal voltage, low self-
discharge rate, long cycle, and rare memory effect (Lin et al., 1153; Li et al., 2021). With the increase
in charging and discharging times, the chemical reaction inside the battery will become slow, which
will eventually lead to the aging of the battery. The aging of the battery makes the actual capacity of
the battery far lower than its rated capacity, resulting in a performance of degradation. An aging
battery will directly lead to the failure of an automobile or satellite power system, affecting the regular
use of the whole machine. In recent years, the prediction of battery state of health (SOH) and
remaining useful life (RUL) has become a challenging problem in the field of prognostic and health
management (PHM), to reduce some major disasters caused by battery aging. Extensive attention is
attracted on the degradation of batteries. The estimationmethods can be roughly divided into model-
based methods and data-driven methods (Hannan et al., 2017; Kong et al., 2021).

The model-based method mainly uses the empirical degradation model such as the exponential model
and polynomial model to describe the trend of battery capacity degradation, and then the method uses a
particle filter (PF) to obtain and adjust the parameters of the model to track the aging trend of batteries
(Wei et al., 2018). Li and Xu (2015) employed amixture of Gaussian process (MGP) and a PF algorithm to
predict battery SOH under uncertain conditions. Zhang et al. (2017a) developed an improved unscented
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particlefilter (IUPF)method, using an algorithm calledMarkov chain
Monte Carlo, tomaintain the diversity of samples to solve the particle
degeneracy phenomenon. Based on a double exponential
mathematical model, Chen et al. (2020) applied a second-order
central differential particle filter method to predict the SOH and
RUL more accurately by optimizing the importance probability
density function of the PF method. Hu et al. (2018) proposed an
SOC and SOH co-estimation scheme based on the fractional-order
calculus. The comparative studies show that it improves themodeling
accuracy appreciably from its second- and third-order counterparts.
The model-based method has succeeded in the PHM prediction of
the battery. However, there is no general and accurate mathematical
model to describe the degradation of different types of batteries, and
the particle degeneracy phenomenon of the PF cannot be completely
eliminated. In addition, the results are prone to large deviations due to
the noise in the simulation process.

The data-driven approach obtains the battery degradation trend
based on historical data without a definite mathematical model, and
this approach is more suitable for different types of battery prediction.
These methods include artificial neural network (ANN) (Li et al.,
2019a; Gong et al., 2021; Yang, 2021), support vector regression (SVR)
(Zhang et al., 2016; Feng et al., 2019;Wang et al., 2019; Li et al., 2020),
relevance vector machine (RVM) (Cadini et al., 2019; Zhang et al.,
2020), andGaussian process regression (GPR) (Nagulapati et al., 2021;
Pang et al., 2021). Deng et al. (2022) extracted the random capacity
under different voltage segments from the partial charging process,
and the average value and standard deviation of the random capacity

were used as the input of the GPRmodel to estimate the battery SOH.
Tang et al. (Tang et al., 2021) reconstructed the voltage curve from the
measured data with the changing current and noise, and this article
extracted the corresponding health indicators from the IC curve to
estimate the SOH of the battery. To predict the SOH and RUL of
batteries, Ma and Zhang et al. (Ma et al., 2019) employed a
combination neural network composed of long short-term
memory neural network (LSTM) and convolutional neural
network (CNN) by using the false nearest neighbors method to
calculate the size of the input window. The results showed that the
proposed approach performs well in improving the accuracy and
stability of the prediction. To optimize the extreme learning machine
(ELM) model parameters, Zhu et al. (2019) developed an algorithm
called the differential evolution gray wolf optimization (DE-GWO).
The experiment results demonstrated that the DGWO-ELMmethod
offers reduced errors. Although some deep learning networks such as
LSTMand gated recurrent unit (GRU) usually performwell on a large
number of datasets, they are weak in learning with small samples, and
they consume a lot of computation (Zhao et al., 2018; Ungurean et al.,
2020; Liu et al., 2021). SVR not only has the advantages ofminimizing
structural risks and being suitable for small sample predictions but
also can improve the efficiency of regression convergence (Patil et al.,
2015; Zhang et al., 2018). To find the optimal parameters of SVR
algorithm, Qin et al. (2015) utilized particle swarm optimization
(PSO) to find the best coefficient c and kernel radius g in SVR to
improve the accuracy and the robustness of battery RUL prediction to
a certain extent. However, the PSO algorithm is easy to fall into the

FIGURE 1 | Detailed prediction process.
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local optimal value, and the problem of premature convergence exists.
Li et al. (2019b) and Wang et al. (2019) designed an improved bird
swarm algorithm (IBSA) and an artificial bee colony (ABC) algorithm
to obtain the parameters of SVR models for life prediction. The
aforementioned two hybrid algorithms can improve the accuracy of
parameters and RUL prediction by using the historical capacity data.
However, they also have a shortcoming of easily falling into the local
optimum and then the global optimal value can hardly be found.

In the practical working process, batteries are easily affected by
physical characteristics and the external working environment. There
is a short-term capacity regeneration phenomenonof the batteries due
to the accompanied noise (Li et al., 2019c; Sui et al., 2020). To reduce
the disturbance of the random noise to battery SOH estimation, some
signal processing methods have been proposed (Zhang et al., 2017b).
Chang et al. (2017) directly used an improved empirical mode
decomposition algorithm to decompose the original signal into
several components and then employed the hybrid model of UKF
and RVM to track the degradation trend of the batteries. On the basis

of Ref. 36, Qu et al. (2019) developed the mode decomposition with
adaptive noise and then utilized the PSO algorithm to optimize the
mixedmodel for RUL prediction. Themethodsmentioned previously
reduced the instability of time series which have strong nonlinearity,
time-varying, and high complexity. However, they have the problems
of some “spurious” modes in the early stages of the decomposition.

In order to solve the problems previously mentioned, a
combination algorithm of improved CEEMDAN
(ICEEMDAN), improved sparrow search algorithm (ISSA),
and LSSVR model is proposed in this article. ICEEMDAN is
utilized to decompose historical capacity data of batteries,
and ISSA is introduced to obtain two important parameters of
the LSSVR model to improve the performance of life
prediction.

This article is organized as follows: related algorithms used in
this work are presented in Section 2. Section 3 mainly describes
the experimental data, model evaluation criteria, and prediction
process. Experimental results are analyzed and discussed in detail
from three aspects with two open source datasets in Section 4.
Conclusions and future work are presented in Section 5.

RELATED TECHNOLOGY AND THEORY

Decomposition Methods in Data
Processing
The EMD proposed in 1988 is a time-frequency focusing
algorithm with a high signal-to-noise ratio. It is suitable for
processing non-stationary and nonlinear signals.
According to the data time scale characteristics, complex
signals can be decomposed into various intrinsic mode
functions (IMFs).

In order to solve the problem of noise residue, modal aliasing,
and false modes that appeared early in the EMD method, the
ICEEMDAN algorithm is proposed by adding the positive and
negative Gaussian white noise and calculating the local mean.

The detailed ICEEMDAN algorithm steps are described as
follows:

Step 1:By Eq. 1, add noise to the original signal ζ.

ζ(i) � ζ + β0E1(ω(i)),
β0 �

ε0std(ζ)
std(E1(ω(i))), (1)

where ε0 is the reciprocal of the expected signal-to-noise ratio and
ω(i) is a Gaussian white noise with zero mean and unit variance.

Step 2: Decompose the noisy signal to obtain the first IMF1
component and residual component R1 by EMD algorithm.

R1 � 〈H(ζ(i))〉,
IMF1 � ζ − R1.

(2)

Step 3: The second residual component was calculated by the
local mean of R1+β1E2 (ω(i)), and then the second IMF2 is
calculated by:

IMF2 � R1 − 〈H(R1 + β1E2(ω(i)))〉. (3)

TABLE 1 | Benchmark functions (U, unimodal functions; M, multimodal functions).

Type Test function Range Optimum

U F1(x) � ∑n
i�1x2i [-100,100] 0

F2(x) � ∑n
i�1|xi | +∏n

i�1|xi | [-10,10] 0

F3(x) � ∑n−1
i�1 [100(xi+1 − x2i )2 + (xi − 1)2] [-30,30] 0

F4(x) � ∑n
i�1 ix4i + random[0, 1) [-1.28,1.28] 0

M F5(x) � ∑n
i�1−xi sin(

���|xi |√ ) [-500,500] -418.9829n

F6(x) � 1
4000∑m

i�1x2i −∏n
i�1cos( xi�

i
√ ) + 1 [-600,600] 0

TABLE 2 | Parameter settings of the optimization algorithms.

Algorithm Parameter

PSO N = 30, Itermax = 500, c1 = c2 = 1.4944, and w = 0.729
DE N = 30, Itermax = 500, FDE = 0.5, and CDE = 0.2
GWO N = 30, Itermax = 500, ã = 2→0, and r1 and r2 ∈rand [0,1]
SSA N = 30, Itermax = 500, SE = 0.2, SD = 0.1, and ST = 0.8
ISSA N = 30, Itermax = 500, SE = 0.2, SD = 0.1, and ST = 0.8

TABLE 3 | Optimization results of algorithms (D = 30).

F Value PSO DE GWO SSA ISSA

F1 Mean 1.86e-02 2.76e-04 1.47e-27 3.65e-63 1.01e-281
Std 2.80e-02 1.19e-04 2.33e-27 2.47e-62 0

F2 Mean 8.95e-01 1.88e-03 1.03e-16 5.17e-30 1.29e-140
Std 6.76e-01 4.87e-04 1.03e-16 3.37e-29 6.43e-140

F3 Mean 159.54 134.69 26.92 2.25e-04 1.66e-05
Std 122.50 45.24 7.12e-01 1.28e-03 3.44 e-05

F4 Mean 1.89e-01 5.21e-02 1.84e-03 1.71e-03 8.56e-04
Std 8.88e-02 1.21e-02 9.81e-04 1.52e-03 7.81e-04

F5 Mean -4,024.68 -9,738.87 -5,871.08 -8,587.26 -9,727.40
Std 858.26 522.22 970.23 488.62 642.65

F6 Mean 4.30e-01 3.64e-03 3.72e-03 0 0
Std 3.87e-01 3.61e-03 9.93e-03 0 0
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Step 4: By Eq. 4, calculate the kth residue Rk in turn.

Rk � 〈H(Rk−1 + βk−1Ek(ω(i)))〉, k � 3, . . . , K. (4)
Step 5: Calculate the kth IMFk component

IMFk � Rk−1 − Rk. (5)

Step 6: Repeat steps 4 and 5 to obtain several IMFs and a
residual component.

Sparrow Search Algorithm
The sparrow search algorithm (SSA) is a novel swarm intelligence
optimization algorithm proposed in 2020, mainly inspired by the
behavior of sparrows (Xue and Shen, 2020). Compared with other
optimization algorithms such as GWO, DE, and PSO, it has achieved
good results in engineering applications for its characteristics of fast
convergence, high search accuracy, and strong robustness. The
population of the sparrow is grouped into explorers and
scroungers. Explorers are responsible for looking for food, and
scroungers mainly obtain food following explorers. Each individual
will monitor the behavior of other individuals and compete for food.

The sparrow search algorithm is represented as follows:

FIGURE 2 | Average fitness curve of the five algorithms (A) F1 (B) F2 (C) F3 (D) F4 (E) F5 (F) F6.

TABLE 4 | Parameter settings of the hybrid model.

Algorithm Parameter

ISSA N = 20, Itermax = 20, SE = 0.2, SD = 0.1, and ST = 0.8
ICEEMDAN K = 500 and E1 (ω(i)) = 0.2
LSSVR c = 500 and g = 500
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1) Position and fitness equation of sparrows

The position of sparrows can be described by the following
matrix:

X �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ x1,1 x1,2 · · · x1,d

x2,1 x2,2 · · · x2,d

· · · · · · · · · · · ·
xn,1 xn,2 · · · xn,d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (6)

where n is the number of sparrows and d is the dimension of the
variable.

The fitness values are defined by the following vectors:

FX �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣f([x1,1 x1,2 · · · x1,d ])
f([x2,1 x2,2 · · · x1,d])

· ··
f([xn,1 xn,2 · · · xn,d])

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (7)

2) Position update:

Explorers have better fitness and a larger range of foraging
search than scroungers. Therefore, they can get the food in the
search process first and provide the position and direction of food
for the whole population.

Explorers’ position update is described by Eq. 8.

FIGURE 3 | Prediction capacity results and errors of different algorithmss (a1–a4) is the prediction capacity. (b1–b4) is the prediction error.
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Xt+1
i,j �

⎧⎪⎪⎪⎨⎪⎪⎪⎩ Xt
i,j · exp( −i

αssa · Itermax
), if AR< ST,

Xt
i,j + Qssa · Lssa, if AR≥ ST,

(8)

where t represents the number of current iterations, αssa represents a
random number between 0 and 1, AR is the alarm value and
AR∈[0,1], ST is the safety threshold and ST∈[0.5, 1], Qssa is the
randomnumber withGaussian distribution, and L is a 1×dmatrix in
which each element has a value of 1.

3) Location update:

The location update of scroungers can be calculated by Eq. 9.

Xt+1
i,j �

⎧⎪⎪⎪⎨⎪⎪⎪⎩ Qssa · exp(Xt
worst −Xt

i,j

i2
) , if i>N/2,

Xt+1
P +

∣∣∣∣∣Xt
i,j −Xt+1

P

∣∣∣∣∣ · A+
ssa · Lssa , if otherwise,

(9)

where XP is the best position occupied by the current explorer, Xworst

is the worst position in the whole sparrow population, and Assa is a
1×dmatrix in which each element is randomly assigned 1 or -1 and
the condition Assa

+ = Assa
T (AssaAssa

T)−1 is satisfied.

4) Anti-predation behavior:

The sparrow will make anti-predation behavior if they are
aware of the danger, and can be calculated by:

Xt+1
i,j �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
Xt

best + βssa
∣∣∣∣∣Xt

i,j −Xt
best

∣∣∣∣∣,
if fi >fbest,

Xt
i,j +Kssa( ∣∣∣∣∣Xt

i,j −Xt
worst

∣∣∣∣∣(fi − fworst) + εssa
),

if fi � fbest,

(10)

where Xbest is the current global optimal position, βssa is the
control parameter of the step with Gaussian distribution, which is
a random number between 0 and 1, Kssa is the step control
parameter with the random value between -1 and 1, fi is the
current sparrow’s fitness, fbest is the best current global fitness,
fworst is the worst current global fitness, and εssa is the minimum
constant to avoid zero denominators.

In the SSA, the population initialization is random, which may
cause the population distribution to be far from the actual solution,
thus reducing its optimization ability and convergence speed. In
order to guarantee the population diversity of SSA, the good point set
principle is developed for initialization to make the initial solution
evenly distributed in the area of search.

In the H-dimensional euclidean space, there is a unit
cube:

FIGURE 4 | Error metrics of the prediction model.
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Pn(k) � {((rn1 · k),/, (rnH · k))|1≤ k≤ n}. (11)
Here, Pn (k) is the good point set if the deviation satisfies the

relationship.

φ(n) � C(r, ε)n−1+ε,
r � 2 cos(2πr/p), (12)

where r is the good point, ε is a positive integer, C (r, ε) is a
constant, p is the smallest prime, and (p-H/2)≥H.

The inertia weight is an important parameter in population
optimization which affects the ability and speed of the global and

local search. In this article, new adaptive weights are introduced by
using adaptive weight coefficients to improve the optimization ability.

The adaptive weight formulas of wssa and the position update
are as follows:

wssa � 1 − lg((e − 1) · n/Itermax + 1),

Xt+1
i,j �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
wssa · (Xt

i,j · exp( −i
αssa · Itermax

)), ifAR< ST,

wssa · (Xt
i,j + QssaLssa), ifAR≥ ST.

(13)

FIGURE 5 | Prediction results of the five algorithms on the B0005 battery. (a1–e1) Prediction capacity. (a2–e2) Probability density curve of the prediction error.
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Least Squares Support Vector Regression
The theory of SVM proposed in 1999 is not only efficient and
simple but also has good robustness (Vapnik, 1999). It can be
used to solve some classification regression problems with fewer
samples. However, when dealing with large samples, the SVM
algorithm will become complex with a long training time and low
prediction accuracy. LSSVR converts the constraints of SVR into

an equation, which has good nonlinear fitting ability and
generalization ability. It significantly reduces the amount of
calculation and improves the prediction accuracy.

The LSSVR model in a high-dimensional space can be
described as:

f(x) � wTϕ(x) + b, (14)

FIGURE 6 | Prediction results of the five algorithms on the CS-35 battery. (a1–e1) Prediction capacity. (a2–e2) Probability density curve of the prediction error.

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 8998048

Chen et al. Battery Life Prediction

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


where f(x) is the output, ϕ(x) is a nonlinear mapping

function, w is the normal vector, and b is the

displacement term.
According to the minimum structural risk theory, the

optimization problem of the LSSVR problem can be described
by Eq. 15:

min
w,b

J(w, ξ) � 1
2
wTw + γ

2
∑n
i�1
ξ2i ,

s.t.f(xi) � wTϕ(xi) + b + ξ i,

(15)

where γ is the penalty constant, which affects the complexity of
the model; the larger the value of γ is, the model will become

FIGURE 7 | Prediction results on the multi-step prediction in advance. (A,B) Capacity and error on B0006. (C,D) Capacity and error on B0007. (E,F) Capacity and
error on CS-37. (G,H) Capacity and error on CS-38 of the prediction error.
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more accurate but more complex. The smaller the value of γ is,
the larger the deviation between f (xi) and yi can be tolerated. ξi
is the regression error.

Transforming the optimization problem into a maximum
value problem of α:

L(w, b, α, ξ) � J(w, ξ) −∑n
i�1
αi(wTϕ(xi) + b + ξ i − yi), (16)

where α is the Lagrange multiplier.
The LSSVR regression model can be finally transformed into:

f(x) � ∑n
i�1
αiK(xi, xj) + b, (17)

where K (xi,xj) is the Gaussian radial basis kernel function.

Complete Prediction Process of the Hybrid
Model
In this article, a combination algorithm is proposed to improve
the performance of life prediction, which is shown in Figure 1.

The detailed prediction process is divided into the following steps:
Step 1: Decompose the capacity of batteries into five IMFs and

a residual by the ICEEMDAN algorithm.
Step 2: Predict the signal after mode decomposition by the LSSVR

model, the parameters ofwhich are optimized by ISSA. The prediction
modes are divided into 1-step advance forecast, 4-step advance
forecast, 6-step advance forecast, and 8-step advance forecast.

Step 3: After the prediction of each decomposed signal is
completed, the prediction results are reconstructed as the final
capacity prediction results.

EXPERIMENTAL DATA AND DETAILED
PREDICTION PROCESS

Experimental Data
Two open source datasets are applied for battery life
prediction: one is from the National Aeronautics and

Space Administration (NASA), and the other is from the
Center for Advanced Life Cycle Engineering (CALCE) at the
University of Maryland (He et al., 2011). In total, six lithium-
ion batteries (#5, #6, #7, CS-35, CS-37, and CS-38) are
selected from the datasets for algorithm verification. The
batteries of NASA are commercially available 18,650 cells
with a standard rated capacity of 2Ah, while those of CALCE
are square lithium cobalt oxide batteries with a rated
capacity of 1.1Ah. The cycle test experiments of the four
batteries are all carried out at room temperature, which
mainly include three different operational profiles. For
NASA batteries, during the charging phase, the three
batteries are initially charged in the constant current (CC)
mode under a current of 1.5 A until the voltage reaches 4.2V;
then, the voltage is kept at 4.2 V until the current drops to
20 mA. In the discharging phase, three batteries are
discharged in the CC mode under a suitable current until
the respective cut-off voltages are reached. The battery
capacity degradation of NASA does not gradually decrease
in strict accordance with the increase in the number of
cycles, but rises in a small range. The main reason is that
the chemical reaction inside the battery is easily interfered by
external factors in cyclic charging and discharging. The
batteries of CALCE are CS2 with the rated capacity of
1.1Ah. During the charging process, the batteries are
charged in the CC mode at a constant current of 0.5C
until the charging cut-off voltage reaches 4.2V, and then
charged in the constant voltage (CV) mode until the current
dropped to 0.05 A. During the discharge process, the
batteries are discharged in the CC mode at different
constant current until the discharge cut-off voltage
reaches 2.7 V.

Model Evaluation Criteria
Four popular metrics are utilized to measure and demonstrate the
model which is defined by Eq. 18:

MAE � 1
M

∑M
n�1

∣∣∣∣yp
n − yn

∣∣∣∣,
RMSE �

�������������
1
M

∑M
n�1

(yp
n − yn)2√√

,

MAPE � 1
M

∑M
n�1

∣∣∣∣∣∣∣∣yp
n − yn

yn

∣∣∣∣∣∣∣∣ × 100%,

R2 � 1 − ∑M

n�1(yn − yp
n)2∑M

n�1(yn − �yn)2,
(18)

where MAE represents the mean absolute error, M is the total
number of the predicted battery capacity value, yn* is the
predicted battery capacity in the nth cycle, yn is the actual
battery capacity in the nth cycle, RMSE represents the root
mean square error, MAPE represents the mean absolute
percentage error, R2 represents the decisive factor, and �yn is
the average battery capacity.

TABLE 5 | Capacity error statistics of the multi-step prediction.

Battery Prediction model MAE RMSE MAPE (%) R2 NE

B0006 4-step ahead 0.0124 0.0209 0.8641 0.9739 -1
6-step ahead 0.0179 0.0266 1.2425 0.9552 0
8-step ahead 0.0219 0.0320 1.5075 0.9306 1

B0007 4-step ahead 0.0077 0.0126 0.4947 0.9829 3
6-step ahead 0.0097 0.0146 0.6128 0.9756 6
8-step ahead 0.0122 0.0175 0.7665 0.9620 8

CS-37 4-step ahead 0.0059 0.0078 0.6877 0.9896 12
6-step ahead 0.0066 0.0089 0.7691 0.9864 14
8-step ahead 0.0075 0.0103 0.8778 0.9818 18

CS-38 4-step ahead 0.0054 0.0073 0.6092 0.9860 9
6-step ahead 0.0062 0.0087 0.7017 0.9800 10
8-step ahead 0.0069 0.0100 0.7910 0.9735 12
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The 95% confidence interval (CI) of the model is applied for
the assessment of the uncertainty, which represents the interval of
the prediction error. The equation is as follows:

95%CI � yp
n ± 1.96 × cov(yn). (19)

A relative error (RE) is defined by Eq. 20 to evaluate the model
accuracy of RUL prediction:

RE � RULpre − RULtrue. (20)

EXPERIMENTAL RESULTS AND ANALYSIS

In this article, the prediction performance and generalization
ability of the proposed combination model is conducted from
three aspects to verify the effectiveness.

ISSA Verification
Six classical functions are used including four unimodal functions
and two multimodal functions for ISSA verification. The
benchmark function is shown in Table 1.

To compare the optimization performance with ISSA, PSO,
DE, GWO, and SSA algorithms are chosen. The parameter
settings of the five optimization algorithms are listed in Table 2.

To ensure the robustness of the five algorithms, they are run
50 times for each test function independently, and then the average
value (Mean) and the standard deviation (Std) are recorded and listed
in Table 3. For functions F1 and F2, although the statistical index of
ISSA has not been greatly improved, the stability of the algorithm is
much higher than that of the other four algorithms. For the
multimodal function F5, the ISSA achieves the best performance,
and the result is much better than that of PSO, GWO, and SSA
algorithms. For the multimodal function F6, the statistical results of
ISSA and SSA are almost the same and aremuch better than the other
optimization algorithms.

Figure 2 shows the average fitness curve of the five algorithms in
each test function to better reflect the dynamic optimization results. It
can be seen intuitively that the convergence speed and optimization
ability of ISSA are higher than those of the other four algorithms.

Performance of the Hybrid Model
The superiority of the hybridmodel is verified by comparison between
SVR-LSSVR, ISSA-LSSVR, EMD-ISSA-LSSVR, and ICEEMDAN-
ISSA-LSSVR algorithms on B0005, B0007, CS-35, and CS-37. The
parameter settings of the hybrid model are listed in Table 4. The first
50% of each battery data is for training, while the left 50% is for test.

As shown in Figure 3, there is an obvious lag in the prediction
results of SVR, LSSVR, and ISSA-LSSVRmodels on the four batteries.
The prediction performance of LSSVR is better than that of SVR,
confirming the superiority of LSSVR algorithm. The parameters of
SVR and LSSVR prediction models are given randomly, while ISSA-
LSSVR algorithm can automatically find the best parameters of
LSSVR in the process of training. The proposed hybrid model
achieves a better prediction effect and has a higher degree of
fitting with the actual available capacity than EMD-ISSA-LSSVR,
indicating that the effect of ICEEMDAN decomposition algorithm is
better. Figure 4 shows the statistical intuitive chart of the prediction

error on the four batteries. For the three indexes of MAE, RMSE, and
MAPE, the algorithms of SVR, LSSVR, ISSA-LSSVR, EMD-ISSA-
LSSVR, and the proposed hybrid model show a decreasing trend,
while R2 shows an increasing trend, indicating that the proposed
algorithm has the highest accuracy. Taking the B0007 battery as an
example, the MAE, RMSE, and MAPE predicted by the proposed
algorithm are 0.0031, 0.0054, and 0.2009, respectively. They are fewer
than those of the other four algorithms. The R2 predicted by the
proposed algorithm is 0.9929 which is the largest.

To verify the stability of the algorithm, taking B0005 and CS-35 as
examples, the capacity predictions including the confidence interval
and the probability density curve are shown in Figure 5 and Figure 6.
The narrower 95% ranges indicate the stronger robustness of the
prediction models. It can be seen from the figure that 95% IC of the
proposed method is the smallest, which confirms that the proposed
algorithm can give better performance for capacity prediction.

Performance on Multi-Step Prediction in
Advance
Step-by-step prediction is sometimes difficult to ensure the safety and
stability of battery long-term operation. To verify the stability of the
model, the capacity is predicted in many steps, that is, the actual
capacity in the window d is used to predict the capacity in the future
n+ l secondary charge–discharge cycle, and l is the number of steps in
advance. The ability of the proposed combination algorithm inmulti-
step prediction is tested by four steps in advance, six steps in advance,
and eight steps in advance. B0006, B0007, CS-37, and CS-38 batteries
are selected as experimental subjects.

The prediction results for the available capacity are shown in
Figure 7. It is not difficult to see that with the increase of the
number of cycles or prediction steps in advance, the error of the
combined model will increase accordingly, and the
corresponding life error will gradually increase.

Table 5 shows the statistical results of the capacity error ofmulti-step
prediction. The MAE of B0007 obtained by eight steps in advance
prediction is 0.0122 Ah, RMSE is 0.0175 Ah, MAPE is 0.7665, R2 is
0.9620, and the battery life error is 8. The MAE of CS-37 obtained by
eight steps prediction is 0.0075 Ah, RMSE is 0.0103 Ah, MAPE is
0.8778, R2 is 0.9818, and the battery life error is 18. This demonstrates
that the proposed hybrid model also has a higher prediction level in the
multi-step prediction, which can predict the capacity of the battery in a
longer time step and provide a more reliable guarantee for the safety of
the battery system.

CONCLUSION

A novel data-driven hybrid model is proposed for SOH and RUL
prediction of batteries. The feasibility and superiority of the model are
verified fromdifferent directions by battery aging datasets fromNASA
and CALCE. The ISSA plays a significant role in the parameter
optimization of LSSVR, which dramatically improves the prediction
accuracy of capacity. The ICEEMDAN decomposition algorithm can
reduce the random noise interference and solve the backward
problem of capacity data. The results of eight steps in advance
show that the proposed model can still obtain the accurate
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capacity of the battery with a longer time step in the future. It can
provide a more reliable guarantee for the safety of the battery system.
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