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This study presents a command filtered control scheme for multi-input multi-output (MIMO) strict feedback nonlinear unmodeled dynamical systems with its applications to power systems. To deal with dynamic uncertainties, a dynamic signal is introduced, together with radial basis function neural networks (RBFNNs) to overcome the influences of the dynamic uncertainties. Command filters (CFs) are used to prevent the explosion of complexity, where the compensating signals can eliminate the effect of filter errors. Compared with single-input single-output strict feedback nonlinear systems, the method proposed in this study has more suitability. In the end, the simulation experiments are carried out by applying the developed algorithm to power systems, where the simulation results verify the efficacy of the approach proposed.
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1 INTRODUCTION
In recent years, adaptive control has become a hotspot because of its strong disturbance-rejection property. Related theories, such as model reference control, robust adaptive control, and adaptive dynamic programming (Mukherjee et al., 2017; Yang et al., 2021b; Han and Liu, 2020; Yang et al., 2021d; L’Afflitto, 2018; Yang et al., 2021e), have been applied to many fields, including power systems, wind energy systems, and multi-agent systems (Li et al., 2020; Xu et al., 2018; Wu et al., 2017; Ghaffarzdeh and Mehrizi-Sani, 2020; Zou et al., 2020b; Ghosh and Kamalasadan, 2017; Namazi et al., 2018; Zou et al., 2020a). Moreover, applications of adaptive control on energy systems are also widely reported (Deese and Vermillion, 2021; Quan et al., 2020; Liu et al., 2022; Nascimento Moutinho et al., 2008; Liu et al., 2021). Among them, backstepping is a powerful tool since many energy systems can essentially be modeled as strict feedback systems, which can be analyzed through the backstepping technique.
The main idea of backstepping is to divide the whole system into a series of subsystems so that they can be analyzed individually. In this way, the control design and stability analysis can both be simplified, especially for large-scale systems (Yang et al., 2021a). Meanwhile, for unmodeled dynamical systems, if the unmodeled dynamics are ignored, the disturbance from dynamic uncertainties may result in unbounded evolution. Therefore, the dynamic uncertainties need to be paid enough attention, which is not considered in the aforementioned literatures. Zhao J. et al. (2021) presented a fuzzy adaptive control approach with an observer design for unmodeled dynamical systems. Xia et al. developed an output feedback controldesign with quantized performance for dynamic uncertainties in Xia and Zhang (2018). Wang et al. (2017)investigated nonstrict feedback systems with unmodeled dynamics and dead zones through output feedback-based control methods. Although the aforementioned results can successfully tackle dynamic uncertainties, they are not able to deal with the explosion of complexity and avoid the influences of filter errors.
In the backstepping process, the explosion of complexity often occurs because the virtual control is repeatedly differentiated. Meanwhile, the computational complexity increases significantly, which results in the presented design not being suitable for applications (Yang et al., 2020). To deal with this issue, the dynamic surface control method is proposed (Wang and Huang, 2005). The dynamic surface control method uses first-order filters, where the virtual control is replaced by the filter states in each subsystem (Yang et al., 2021c). In this way, the repeated differentiation issue can be evaded. However, filter errors are introduced simultaneously, which degrades the control precision. Thus, command filters (CFs) are developed (Farrell et al., 2009). Based on the dynamic surface control approach, CFs additionally introduce compensating signals to compensate for the loss caused by filter errors, which further improves the control accuracy compared with the dynamic surface control method. Owing to this advantage, CFs are widely applied to many systems. For example, Zhu et al. (2018)investigated a command filtered robust adaptive neural network (NN) control for strict feedback nonlinear systems with input saturation. Zhao L. et al. (2021)presented an adaptive finite-time tracking control design with CFs. The adaptive fuzzy backstepping control approach of uncertain strict feedback nonlinear systems is developed by Wang et al. (2016). However, the applications of the backstepping technique in energy systems are not taken into consideration in these works. In addition, the systems of interest in these works are single-input single-output systems, which may give conservative results. Therefore, in this study, for multi-input multi-output (MIMO) strict feedback nonlinear unmodeled dynamical systems, a command filtered control method is developed and applied to energy systems.
The contributions of this study are two-fold. First, this study designs an adaptive backstepping control scheme for MIMO strict feedback nonlinear unmodeled dynamical systems with CFs, the compensating signal design and controller design are improved such that they can get higher tracking precision. Second, this study investigates the applications of the presented CF-based adaptive backstepping control approach on power systems, and a MIMO circuit system is used in the simulation experiments to verify the effectiveness of the method developed.
The rest of this article is organized as follows. Section 2 provides the problem formulation and necessary assumptions. In Section 3, the control design is proposed. The stability analysis of the system with the presented design is carried out in Section 4. In Section 5, a voltage source converter-high voltage direct current transmission system is used to verify the efficacy of the proposed method. The conclusion is made in Section 6.
2 PROBLEM FORMULATION
In this study, the circuit system under consideration is modeled as
[image: image]
where [image: image], [image: image], and [image: image] are the system state, output, and the control input, respectively. [image: image] is a known continuous function, [image: image] is an unknown continuous function, Gi ≠ 0 is a known constant, [image: image] is an unknown constant vector, [image: image], [image: image] is the unmeasured portion of the state, and [image: image] is the unmodeled dynamics.
In this study, the following assumptions are needed.
Assumption 1. Jiang and Praly (1998): The dynamic uncertainty Δi in Eq. 1 is assumed to satisfy
[image: image]
with unknown smooth functions [image: image] and [image: image]. In addition, [image: image] is assumed to be strictly increasing.
Assumption 2. Jiang and Praly (1998): There exists an input-to-state practically stable Lyapunov function [image: image] for [image: image] in Eq. 1 such that
[image: image]
with ω1 and ω2 belonging to class [image: image] functions, [image: image], and c0 and d0 being positive constants.To deal with the dynamic uncertainty, a dynamic signal is designed with the following dynamics,
[image: image]
where [image: image], [image: image], and c0 > 0 and r0 are constants.
Lemma 1. Hardy et al. (1952): For any ξ0 > 0, one has
[image: image]
where χ > 0 is a constant.
Lemma 2. Jiang and Praly (1998):For the unmeasured partial state [image: image] with initial state ς0, [image: image] given in Assumption 2, the dynamic signal r(t) in Eq. 4, and all t ≥ 0, there is a non-negative function [image: image] such that
[image: image]
In addition, there is a limited time [image: image] such that [image: image] for all t ≥  T0.With no loss of generality, choose [image: image] as [image: image]. Accordingly, the dynamic signal r(t) is designed as
[image: image]
The control objective of this study can be formulated as follows.Control Objective: Consider the reference output Xd satisfying [image: image] are bounded. Under Assumptions 1–2, design a neuro-adaptive controller for the system (1), such that,
1. the system output X1 can track the reference Xd asymptotically, and
2. all signals in the closed-loop system keep bounded.
3 NEURO-ADAPTIVE CONTROLLER DESIGN
First, the tracking errors Ei, filter errors Zi, and the compensated tracking errors Λi are defined for each subsystem as
[image: image]
where Ai is the filter state, A0 = Xd, Si is the virtual control, and Bi is the compensating signal.
For the subsequent design and analysis, denote [image: image] with [image: image] being the ideal weight vector of the RBFNNs. In addition, denote [image: image] as the estimation of Θi with an estimation error [image: image].
3.1 Adaptive Backstepping Design
3.1.1 Step 1
Based on Eqs 1, 7, taking a derivative of E1 yields
[image: image]
For the first subsystem, the virtual control S1 is designed as
[image: image]
with [image: image] is a positive definite matrix, and η1 > 0. To avoid repeated differentiation of the virtual control, a CF is designed as
[image: image]
with a positive constant τ1. To eliminate the effect of filter errors, the compensating signal is developed as
[image: image]
To compensate for the unknown dynamics, the adaptive law for Θ1 is presented as
[image: image]
where γ1 > 0 is a constant.
3.1.2 Step [image: image]
From Eqs 1, 7, differentiating Ei leads to
[image: image]
The virtual control design Si is developed as
[image: image]
where [image: image] is a positive definite matrix, and ηi > 0. To obviate repeated differentiation of the virtual control Si, a CF is given as
[image: image]
with a positive design parameter τi. To diminish the influences of filter errors, the compensating signal is proposed as
[image: image]
To deal with the parameter estimation, the adaptive law to estimate Θi is designed as
[image: image]
with a constant γi > 0.
3.1.3 Step n
According to Eqs 1, 7, the differentiation of En can be transformed as
[image: image]
The controller design is given as
[image: image]
with design parameters [image: image] is a positive definite matrix, and ηn > 0. The compensating signal for this step is presented as
[image: image]
The adaptive law is developed as
[image: image]
where γn > 0 is a constant.
4 STABILITY ANALYSIS
In this section, we analyze the stability of the closed-loop system (Eq. 1) with the presented design of the virtual control (Eqs 9, 14), controller (Eq. 19), adaptive laws (Eqs 12, 17, 21), CFs (Eq. 10) and (15), and compensating signals (Eqs 11, 16, 20).
4.1 Step 1
Inserting Eq. 9 into Eq. 8, we obtain
[image: image]
From the aforementioned equation and Eq. 11, one has
[image: image]
The Lyapunov function is defined as [image: image]. From Assumption 1, the term [image: image] satisfies
[image: image]
For the term [image: image] in the aforementioned equation, based on Lemma 1, one has
[image: image]
with [image: image] and ɛ11 being positive constants and
[image: image]
Consider the term [image: image] in Eq. 24, according to Lemma 2, we have
[image: image]
It is to be noted that ϕ12(⋅) is strictly increasing and non-negative from Assumption 1, together with the fact that [image: image], one has
[image: image]
From Lemma 1, we can obtain
[image: image]
where [image: image] and ε12 are positive constants, and
[image: image]
[image: image]
where [image: image]. From Eqs 23–29, the derivative of V1 can be expressed as
[image: image]
Using RBFNNs satisfies
[image: image]
where [image: image]. It is to be noted that [image: image] is an unknown function. Then, according to the universal approximation theory, the unknown function [image: image] can be approximated by the RBFNNs in the following form,
[image: image]
with [image: image] being the ideal weight vector defined as
[image: image]
where [image: image] and [image: image] are compact regions for W1 and Y1, respectively. The corresponding approximation error [image: image] is defined as
[image: image]
with [image: image] and a positive constant ε1.
Based on the definition of Θ1, combining with Young’s inequality, we have
[image: image]
Inserting Eq. 33 into Eq. 31 yields
[image: image]
4.2 Step [image: image]
Inserting the virtual control design Eq. 14 into Eq. 13, we have
[image: image]
On the basis of Eq. 16 and the aforementioned equation, one can obtain
[image: image]
To analyze the stability of the i-th subsystem through the Lyapunov theory, define the Lyapunov function for Λi and [image: image] as [image: image]. Based on Assumption 1, the term [image: image] satisfies
[image: image]
Consider the term [image: image] in Eq. 37, on account of Lemma 1, one has
[image: image]
with [image: image], ɛi1 > 0, and
[image: image]
For the term [image: image] in (37), according to Lemma 2, we can obtain
[image: image]
Since ϕi2 is strictly increasing and non-negative from Assumption 1, based on the fact [image: image], one has
[image: image]
On the basis of Lemma 1, we can obtain
[image: image]
with [image: image], ɛi2 > 0, and
[image: image]
Using Young’s inequality, we have
[image: image]
where [image: image].
From Eqs 36–42, the derivative of Vi becomes
[image: image]
Applying RBFNNs yields
[image: image]
where [image: image]. The unknown function [image: image] can be approximated in the following form:
[image: image]
where [image: image] is the ideal weight vector defined as
[image: image]
with [image: image] and [image: image] being compact regions for Wi and Yi, respectively. The approximation error [image: image] is defined as
[image: image]
where [image: image] and ɛi > 0.
Based on the definition of Θi, using Young’s inequality, one has
[image: image]
Inserting Eq. 46 into Eq. 44, one can obtain
[image: image]
4.3 Step n
Inserting Eq. 19 into Eq. 18 results in
[image: image]
Based on the aforementioned equation and Eq. 20, we have
[image: image]
To investigate system stability through the Lyapunov theory, the Lyapunov function is defined for Λn and [image: image] as [image: image]. According to Assumption 1, the term [image: image] satisfies
[image: image]
For the term [image: image] in Eq. 50, one can obtain
[image: image]
with [image: image] and εn1 being positive constants and
[image: image]
For the term [image: image], from Lemma 2, we have
[image: image]
Based on the facts that ϕn2(⋅) is strictly increasing and non-negative from Assumption 1 and [image: image], one has
[image: image]
From Lemma 1, we can obtain
[image: image]
where [image: image] and εn2 > 0 are constants and
[image: image]
Applying Young’s inequality, we have
[image: image]
with [image: image]. From Eqs 48–55, the derivative of Vn becomes
[image: image]
Inserting Eqs 19, 51, 52 into Eq. 56 results in
[image: image]
where [image: image]. The unknown function [image: image] can be estimated as
[image: image]
with [image: image] being the ideal weight vector defined as
[image: image]
where [image: image] and [image: image] are compact regions for Wn and Yn, respectively, with the approximation error [image: image] defined as
[image: image]
with [image: image] satisfying [image: image] and a positive constant ɛn.
From the definition of Θn, combining with Young’s inequality, we can obtain
[image: image]
Applying Young’s inequality, substituting Eqs 21, 59 into Eq. 57 yields
[image: image]
Theorem 1. Under Assumptions 1–2, with the virtual control (Eqs 9, 14), the CF design (Eqs 10, 15), the adaptive laws (Eqs 12, 17, 21), the compensating signals (Eqs 11, 16, 20), and the controller (Eq. 19), the following facts hold.
1. The tracking errors will converge to the neighborhood of the origin asymptotically.
2. The boundedness of all signals in the closed-loop system (Eq. 1) can be guaranteed.
Proof. Define [image: image], applying Young’s inequality yields
[image: image]
Based on Eqs 34, 47, 60, the overall Lyapunov function satisfies
[image: image]
where Im is the m-dimension identity matrix,
[image: image]
Therefore, Λi, [image: image], and [image: image] are bounded. Next, we investigate the boundedness of Zi, and the dynamics of the filter error Zi can be expressed as
[image: image]
where
[image: image]
is continuous on the compact set [image: image] with
[image: image]
and R0 > 0, Ri > 0. Thus, [image: image] is bounded, which derives that Zi is also bounded from Eq. 61. According to Eqs 11, 16, 20, Bi is bounded. Thus, Ei, Ai, Si, U, and Xi are all bounded, which invokes ς, Δ, and r to be bounded based on Lemma 2 and Eq. 6. In the end, we can conclude that the boundedness of all the signals in the closed-loop system can be guaranteed. This completes the proof.
5 SIMULATION STUDY
The system considered in this section is a voltage source converter-high voltage direct current transmission system with the following dynamics (Hu et al. (2020)).
[image: image]
where L1 and L2 are the electrical inductances, and C1 and C2 are the capacitances. Applying variable transformation [image: image], [image: image], [image: image], [image: image], [image: image], and [image: image], the aforementioned equation becomes
[image: image]
By applying the presented control scheme, the control design is developed as
[image: image]
with the compensating signal design
[image: image]
In addition, the CF design and adaptive law design are the same as Eqs 10, 11, 15, 16, 20.
The design parameters are given as L1 = 4 mH, L2 = 8 mH, C2 = 0.1μF, [image: image], ω = 100π rad/s, [image: image], [image: image], [image: image], γ1 = 0.00085, γ2 = 0.00066, γ3 = 0.00059, η1 = 0.00005, η2 = 0.000003, η3 = 0.000004.
The RBFNNs are chosen in typical Gaussian form. To be specific, the RBFNN [image: image] contains 32 nodes with the center and width being [−2, 2] × [−2, 2] × [−2, 2] × [−2, 2] × [−2, 2] and 2, respectively. RBFNN [image: image] contains 128 nodes and the center and width are distributed in [−2, 2] × [−2, 2] × [−2, 2] × [−2, 2] × [−2, 2] × [−2, 2] × [−2, 2] and 2. RBFNN [image: image] contains 512 nodes with the center and width selected as [−2, 2] × [−2, 2] × [−2, 2] × [−2, 2] × [−2, 2] × [−2, 2] × [−2, 2] × [−2, 2] × [−2, 2] and 2, respectively.
The simulation results are shown in Figure 1. From Figure 1, it can be observed that the output tracking objective can be achieved and the system output can track the reference output asymptotically. The dynamic uncertainties can also converge with the convergence of system states.
[image: Figure 1]FIGURE 1 | Output tracking performance and evolution of dynamic uncertainties.
6 CONCLUSION
In this study, a control approach for MIMO strict feedback nonlinear unmodeled dynamical systems with CFs is developed. The dynamic signal design introduced together with RBFNNs can efficiently prevent the effect of the dynamic uncertainties. The CFs employed in the controller design can not only prevent the explosion of complexity, but can also eliminate the effect of filter errors through the compensating signal design. Compared with single-input single-output strict feedback nonlinear systems, the approach proposed in this study is suitable for more general cases. Finally, in the simulation experiments, the presented method is applied to power systems, where the simulation results validate the effect of the scheme proposed.
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