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Taking into account energy management and fire safety, electric bicycles are one of the most
significant household loads that require real-time sensing for nonintrusive load monitoring. V–I
trajectories, power quantities, and harmonic characteristics are the basic selection in feature
space for appliance identification. Based on the study of the chargingmode of electric bicycles,
this study expands the V–I trajectory into V-△I trajectory for gaining the load signature withmulti
appliances working simultaneously. We perform linear interpolation and pixelation to obtain a
bitmap of the V-△I trajectory. Meanwhile, active and harmonic features are encoded and
combined to forma hybrid feature bitmap,which is unique to compensate for the high harmonic
feature loss caused by the pixelation of the V-△I trajectory. Furthermore, we trained the DeiT
model on the self-built dataset and UK-DALE dataset and performed two experiments under
single and superposition working conditions for electric bicycles. Our case results indicate that
the DeiT model using hybrid feature bitmap offers better overall precision in the prediction of
electric bicycles, against other deep convolutional neural networks.

Keywords: electric bicycle identification, V-I trajectory, hybrid feature bitmap, DeiT model, deep learning

1 INTRODUCTION

Benefiting from the cheap price and convenient usage, electric bicycles are an important means of
transportation for people, especially in China and Southeast Asian countries, and the number of
electric bicycles has exceeded 300 million in China.

However, due to poor product quality, illegal modification, and chaotic parking and charging,
safety accidents such as fires caused by electric bicycle charging have frequently occurred, which
seriously endangered users and their neighborhoods. According to the data from the Fire and Rescue
Bureau of theMinistry of EmergencyManagement of China, there are about 2,000 electric bicycle fire
incidents every year around China, and about 80 percent of the accidents occurred during the
charging process. For instance, on 8 August 2020, three residents lost their lives in an electric bicycle
fire in Gulou District, Nanjing City, Jiangsu Province.

From a security and management perspective, the charging electric bicycles become one kind of
malignant load in the grid. The behaviors have high randomness and strong concealment, which cause low
efficiency and a high missed detection rate in the human inspection executed by managerial staff. The
simple and convenient way to handle this problem is to monitor the charging behavior all the time on the
grid side.
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Professor Hart proposed the concept of load monitoring in the
1980s (Hart, 1992). Also, the nonintrusive load monitoring
(NILM) technology rapidly received a lot of attention from
scholars around the world. By analyzing the bus current from
a smart meter, NILM can monitor the start and stop of each
appliance of residential users and sense the detailed electricity
consumption in the household (Zoha et al., 2012). As a special
household load, electric bicycles can be completely recognizable
and sensed by NILM without any additional plug-in equipment
in the household.

Generally, four main stages are vital in NILM, consisting of
data collection, event detection, feature extraction, and load
identification (Ruano et al., 2019). Relying on metering, data
collection can obtain voltage, current, active power, reactive
power, and other features at low frequency and gain
harmonic, transient waveform, and other information at high
frequency. Then, the load event should be detected for gaining the
start and end time. Li proposed an algorithm for load event
detection in smart homes based on wide and deep learning that
combines the convolutional neural network and the soft-max
regression (Li et al., 2021). As for data collection and event
detection, electric bicycles follow many commercial plug-in
devices and detectors of NILM.

In terms of feature extraction, the active, reactive, and
apparent powers denoted as P, Q, and S, respectively,
calculated from the time series of current variables are the
most used features (Kelly and Knottenbelt, 2015a; Le et al.,
2015). Some start-up transient feature parameters with clear
physical meanings are designed for motor load identification
(Liu et al., 2022). Also, many researchers apply different
mathematical manipulations, such as fast Fourier
transform (FFT) (Nguyen et al., 2017; Bouhouras et al.,
2017), discrete wavelet transformation (DWT) (Chang H
H et al., 2013), and Hilbert transform (HT) (Gabaldón
et al., 2014), to deal with high-frequency time series and
gain abundant information in the frequency domain, while a
normalized steady-state voltage and current signals during
one cycle called V-I trajectories are considered
distinguishable load signatures (Hassan et al., 2013; Wang
et al., 2018). In the study by Gao et al., (2015), contrast
examples based on the PLAID public dataset certify that V–I
trajectories have more advantages in identification than other
high-frequency features.

The load identification algorithm can be divided into
optimization approaches and machine learning methods
(Zoha et al., 2012). With the improvement of the types of
identification appliances, the NP dimension of the
optimization gets bigger, and the efficiency of optimization
is difficult to improve. However, the machine learning
methods, represented by an artificial neural network
(Chang et al., 2015), support vector machine (Su et al.,
2019), and decision tree (Buddhahai et al., 2018), can build
lots of classifiers through offline data training. Also, a
convolution neural network implemented on hardware was
used to identify the appliance through the voltage and current
(V–I) trajectory. Showing 78.16% accuracy in the PLAID
dataset, the CNN algorithm also has low processing time

(5.7 ms) and power consumption (1.868 W) (Baptista et al.,
2018).

The nonintrusive load identification models and algorithms
almost focus on multiple classes of appliances and lack the
identification method for a single special class such as electric
bicycles. This study builds an electric bicycle sensing model based
on a hybrid feature bitmap and DeiT. First, the hybrid feature
bitmap, combined with V-△I trajectory features, power features,
and high-harmonic features, is proposed in this study to avoid the
information loss caused by normalization and pixelation of the
trajectory. Then, this study incorporates the collecting electric
bicycle charging data and other appliance data from the self-build
dataset and the UK-DALE dataset into DeiT for training. In view
of the single-class identification of electric bicycles, the positive
data are the images of electric bicycles, and the negative data are
other different appliances. Also, the case under multi-devices
working at the same time is tested to effectively avoid the error
identification problem of unknown electrical input. In addition,
the main contributions/innovations of this study can be
concluded as follows:

• By improving the V–I trajectory into V-△I trajectory, the
feature of electric bicycle load becomes more unique and
efficient for identification.

• This study proposes one novel hybrid bitmap construction
method to gain the most suitable input data for subsequent
image classifier.

• This study adapts the DeiT to realize the accurate
identification of electric bicycle load in a single and
complex working scene.

This study is organized as follows: the charging process of the
electric cycle and its improved V-△I trajectory are presented in
Section 2; Section 3 illustrates the construction of a hybrid
feature bitmap of electric bicycles. Also, an electric bicycle
identification model based on DeiT is provided in Section 4;
Section 5 shows the practicability and effectiveness through
examples, and finally, conclusions are drawn in Section 6.

2 CHARGING PROCESS AND THE V-△I
TRAJECTORY OF ELECTRIC BICYCLES

2.1 Charging Process of Electric Bicycles
Similar to electric vehicles, electric bicycles are powered by
batteries, widely known as nickel-metal hydride (NiMH) and
lithium-ion (Li-ion) batteries, which require circulated energy
supplement during reduplicated driving. As shown in Figure 1,
the charger is essentially a single-phase AC/DC power supply
with control voltage and current output capability.

Due to the rectification and chopping links, there are a
large number of odd harmonics in its output direct current.
Figure 2 shows the charging current waveform directly, with a
typical triangular wave appearing. Accordingly, the ratios of
harmonic content are presented in Figure 3, which are
particularly obvious on odd harmonics such as three, five,
and seven times.
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The charging method directly impacts the safety, durability,
and performance of batteries. An unscientific charging method
can significantly reduce the life of batteries and cause danger.
According to Young et al. (2013), there are three stages in
common charging methods shown in the Figure 4.

1) Constant current stage. In the beginning, a large current
should be applied to the battery to supply the energy at
maximum speed. In order to maintain a constant current
to the battery, controlled charging voltage is applied to the
battery. However, the voltage of the grid side is basically

FIGURE 1 | Block diagram of the electric bicycle charger.

FIGURE 2 | Current waveform during the electric bicycle charging.

FIGURE 3 | Ratios of harmonic content during the electric bicycle
charging. FIGURE 4 | Active power curve in three charging stage.
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unchanged, so the overall power is high and constant. In this
scheme, the state of charge (SOC) will increase linearly and
rapidly till the cut-off point constantly reaches the thermal or
other chemical limits.

2) Constant voltage stage. Aimed at protecting the battery, the
current has been adjusted to a smaller and more flexible value
for batteries. Also, as the SOC of batteries increases, the
current gradually decreases to a low level.

3) Mixed stage. The mixed stage is the combination of constant
voltage and constant current methods. In this stage, the
battery will be filled with less current and voltage.

2.2 V-△I Trajectory of Electric Bicycles
The V–I trajectory refers to the mutual trajectory of the
instantaneous voltage and the current waveform of the
electrical load (Hassan et al., 2013), which is mathematically
manifested as a function of the sampling voltage and the current
over a cycle. Baets proves that the V–I trajectories of household
loads can be extracted from the delta of voltage and current

samples before and after the start-up event (De Baets et al., 2018).
Figure 5 shows the shapes of the V–I trajectories of two kinds of
collected electric bicycles.

It is clear that the V–I trajectory exhibits distinct and easily
distinguishable shape properties for electrical loads with different
operating principles such as heating, motor driving, and
electronic driving. At the same time, the voltage of the gird is
relatively stable, and the voltage waveform of different loads is
basically consistent. Therefore, the V–I trajectory can be
equivalent to the current waveform characteristics of the
reactive load device.

However, it should be noted that these V–I trajectories are
drawn in the stable working state of the electric bicycles, without
any other appliances working. When the electric bicycle load is
started based on other appliances working, the steady-state
current is the sum of the electric bike and other electric
currents based on Kirchhoff laws. At this point, it is
conceivable that the V–I trajectory of the mixed working state
is severely distorted, as shown in Figure 6. The V–I trajectory
under multiple appliances simultaneous operating cannot present
the typical shape of electric bicycle load.

Considering that the load equipment startup is a very short
transient process, assuming that the working waveform of
already-on appliances is completely unchanged before and
after the start event of another electric load on these
background appliances is reasonable. Therefore, the difference
vector (△I) of the current waveforms before and after the start of
the electric bicycles will filter the effect caused by other working
appliances. The V-△I trajectories calculated by the current
differences and voltage will return to the situation with only
one device working, where the voltage vector can take any cycle
near the start event. Moreover, there are many event detection
methods for NILM, such as generalized likelihood ratio (GLR)
(Berges et al., 2011) and log-likelihood ratio (LLR) (Anderson
et al., 2012a). In this study, a modified CUSUM algorithm (Fang
et al., 2020) with a fast and accurate detection effect is adopted.

Finally, the V-△I trajectories of the electric bicycle devices are
only approximated, not identical, which are just like the Arabic
handwritten letters. Correspondingly, the identification of the
electric bicycles, similar to the Arabic handwritten letter

FIGURE 5 | V–I trajectories of two kinds of collected electric bicycles.

FIGURE 6 | V–I trajectory of mixed state with electric bicycles and
hairdryer both working.
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recognition, adopts image construction methods and an image
recognition model.

3 BUILDING THE HYBRID FEATURE
BITMAP

In the Arabic handwritten letter recognition system, gaining the
bitmaps is the first and significant step, which can reduce the
complexity of characteristics and improve the accuracy of the
subsequent identification. At the same time, the bitmaps cause the
fuzzification of the images, which makes different devices in the
same category share closer features.

3.1 The Linear Interpolation and Pixelization
of the V-△I Trajectory
In order to effectively handle the V-△I trajectories within the
same category, this study proposes a three-step mapping
algorithm, mapping the V-△I trajectory into a binary bitmap
where each cell is assigned one binary number.

Given that the V-△I trajectory is drawn from current and
voltage samples whose frequency may not match or meet the
requirement, the first step is to perform the linear interpolation
for the V-△I trajectory using the formulas given by Hart, (1992);
Zoha et al., (2012). Assuming that the number of the original
current or voltage samples during one cycle is n0, the formulas
given by Hart (1992) and Zoha et al. (2012) expand the current or
voltage samples sequence.

iqp � q

n1
(ip+1 − ip) + ip, q ∈ {1, 2,/, n1}, p ∈ {1, 2,/, n0 − 1}.

(1)
uq
p � q

n1
(up+1 − up) + up, q ∈ {1, 2,/, n1}, p ∈ {1, 2,/, n0 − 1}.

(2)
In the formula given by Hart (1992) and Zoha et al. (2012), n1

is the number of interpolation points between the two original
samples, ip is the pth sample in the original current sequence, and
iqp is the qth interpolation point between sample ip and sample
ip+1. Similarly, up is the pth sample in the original voltage
sequence and uqp is the qth interpolation point between sample
up and sample up+1. The length of the expended current or
voltage sequence is n1pn0 + n0 − n1, also marked as n.

The second step is normalization. Changing the values of
current and voltage expended sequence per unit which ranges
from 0 to 1 is necessary by formula (Ruano et al., 2019) and (Li
et al., 2021).

i′k � ik − Imin

Imax − Imin
, k ∈ {1, 2,/, n}. (3)

u′k � uk − Umin

Umax − Umin
, k ∈ {1, 2,/, n}. (4)

In the formula given by Ruano et al. (2019) and Li et al. (2021),
i′k and ik are the kth points in the current sequence before and
after normalizing, respectively. Imax and Imin is the maximum and

minimum value of the current sequence before normalizing,
respectively. As for voltage, the u′k, uk, Umax, and Umin have
the same computational properties.

The expended current and voltage sequences should be
mapped into the bitmap in the third step, also called
pixelization. Generally, the mapping process involves scanning
each point in sequence and finding the location cell in the image
which has m*m grid cells. The cells occupied by points in
sequences will be colored in black, and unmatched cells will
be white. A binary matrix, corresponding to a black-and-white
bitmap, can be calculated by the formula given by Liu et al.
(2022).

x � ⌊u′kp(m − 1)⌋.
y � ⌊i′kp(m − 1)⌋.
M(x, y) � 1.

(5)

In the formula given by Liu et al. (2022), x and y are row and
column indexes of matrixM, respectively. �� is the symbol of the
ceiling. All values in the bitmap are initialized as zero, and each
point will be mapped to the corresponding cell.

It is noted that the parameter n1 of linear interpolation in step
1 and the parameter m of the grid decide the degree of fuzziness of
the bitmap. Under the same conditions, if the value of n1 andm is
less, the bitmap of theV − ΔI trajectory becomes more blurry. On
the contrary, the bitmap is more close to the actual V − ΔI
trajectory images with larger n1 and n1. Figure 7 is a typical
bitmap of the V − ΔI trajectory of electric bicycles.

3.2 Mixed Feature Bitmap
Not surprisingly, the normalized V-△I trajectories lack
information about active and reactive power. Therefore, the
bitmap of the household with the same working principle but
different working power, such as laptop and television, is not
considered. In addition, harmonic amplitude and phase, as the
effective harmonic features, are also not considered.

To solve the problem caused by the normalization and
pixelization of the V-△I trajectory and improve the accuracy
of load identification, supplementary features such as active
power, reactive power, and harmonic current should be added
to the bitmap. This study proposes the mixed feature bitmap,
combining the V-△I trajectory, active power, reactive power, and
high odd harmonic currents from 5 to 15.

Each supplementary feature is just one single value within the
real number fields, differing from the two-dimensional images. It
is necessary to change the single value into a special image that
only has one column of pixels. Before transforming, the
normalization of the supplementary feature should be
executed. After all, the units vary across the supplementary
parameters. Also, the formula given by Kelly and Knottenbelt
(2015b) shows the calculating process during all samples of the
supplementary feature.

C′k � Ck − Cmin

Cmax − Cmin
. (6)

In the formula given by Kelly and Knottenbelt (2015a),C′k and
Ck are the normalized and original values of the kth
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supplementary feature, respectively, while Cmax and Cmin are the
maximum and minimum values of the feature in all training
samples, respectively.

After normalizing, the next step of gaining the hybrid feature
bitmap is to encode and splice the image. First, each normalized
feature, constantly within [0, 1], is expended to an integer within
[0, 2m+1 − 1]. The binary code of this integer is the one-column
bitmap for the feature. Horizontal splicing of binary codes of
multiple features yields the bitmap of supplementary features,
whose matrix expression form is Fm×a and a is the number of
supplementary features. As shown in Figure 7, the hybrid feature
bitmap MFm×(a+m) can be easily gained by combining the sub-
bitmap of the V-△I trajectory and supplementary features.

4 THE IDENTIFICATION MODEL BASED ON
DATA-EFFICIENT IMAGE TRANSFORMERS

Obviously, this study draws a black and white image for each
sample, called a hybrid feature bitmap, containing the V-△I
trajectory, active power, reactive power, and harmonic features.
Just like one given Arabic handwritten letter system, electric
bicycle load can be extracted and identified by convolutional
neural networks (CNNs). In this study, the Data-efficient image
Transformer (DeiT) model, which has achieved better results on
the large dataset ImageNet, is used for electric bicycle recognition.

The transformer is a natural language processing (NLP) model
proposed by Google in 2017 (Vaswani A et al., 2017). Based on

the self-attention mechanism, it can not only be trained in a
parallel way but can also capture global context information and
mine the dependencies between long-distance information. In
October 2020, Dosovitskiy proposed the Vision Transformer
(ViT) model (Dosovitskiy A et al., 2020), an image
classification scheme based entirely on the self-attention
mechanism. It is also the first work in the CV field where the
Transformer completely replaces standard convolution.
However, the ViT model requires millions of datasets to
achieve ideal accuracy and generalization ability, and it is
difficult for most researchers and projects to obtain such large
datasets and computing resources, especially in the field of
electric bicycle identification. Therefore, Facebook proposed a
Data-efficient image Transformer (DeiT) (Touvron H et al.,
2021) model based on knowledge distillation in 2021, which
efficiently reduces the amount of dataset and time required for
training without declining the accuracy of ViT.

4.1 Transformer and ViT
The Transformer framework consists of an encoder and a decoder.
The encoder comprisesN identical encoder layers. Each encoder layer
includes sub-modules such as multi-head attention, sum and norm
layer, feed-forward neural network, etc. The decoder also comprises
N identical decoder layers. In addition to including the same four sub-
modules as the encoder, each decoder also adds a masked multi-
head attention module to avoid subsequent information in the
decoding process as known information to predict the current
information.

FIGURE 7 | Typical bitmap of the V-△I trajectory of electric bicycles.
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The heavy use of the layer called self-attention is most special
in Transformer. Also, the Attention mechanism imitates the
internal process of biological observation behavior, and
increasing the fineness of observation in some areas can
quickly extract important features of sparse data. Self-attention
is a variant of the attention mechanism, which reduces the
dependence on external information and is better at capturing
the internal correlation of data or features. The application of the
self-attention mechanism in text mainly solves the problem of
long-distance dependence by calculating the mutual influence
between words. Multihead self-attention is the connection and
mapping of multiple self-attention mechanisms. The purpose is
to construct multiple sub-spaces and find correlations between
input data from different angles so that multiple relationships and
subtle differences can be encoded.

Compared with the traditional cyclic neural network, the
Transformer network has no input sequence but adopts the
idea of parallelization to speed up the operation so that the
model can process the next sequence at the same time when the
result of the previous sequence has not been revealed. Therefore,
in order not to lose order, it is necessary to combine position
embedding before inputting the sequence.

In order to convert the image into sequence data that can be
processed by the Transformer structure, the two-dimensional
image is first processed into blocks (sequence of flattened 2D
patches), and then each image patch is flattened into a one-
dimensional vector through a linear transformation (full
connection layer). At the same time, position coding is
introduced, and the position information of the sequence is
added. In addition, a classification flag (class) is added before
the input sequence data as a learnable embedding vector for
outputting classification prediction.

4.2 DeiT Model
The DeiT model uses distillation to guide ViT to learn from
the teacher model, achieving better performance than the
teacher model and spending less training overhead than the
original ViT.

The method involves adding a distillation token after the input
patch tokens. This token is used for computing the first loss
function in the learned representation and the label of the teacher
model. The representation and ground truth corresponding to the
original class token are used for the second loss, and finally, the
learning results of the two tokens are used. After linear
transformation, they are used together as inferred embeddings.

There are two loss functions called soft loss and hard loss
shown given in the formula by Le et al. (2015) and Nguyen et al.
(2017), respectively.

Lglobal � (1 − λ)LCE(ψ(Zs), y) + λτ2KL(ψ(Zs/τ),ψ(Zt/τ)),
(7)

LhardDistill
global � 1

2
LCE(ψ(Zs), y) + 1

2
LCE(ψ(Zs), yt), (8)

where Zs and Zt are the logits of the student model and teacher
model, respectively; y is the ground truth label; yt is the value of
the teacher prediction; ψ(·) presents the softmax function; LCE

presents the loss function of cross entropy; and KL(·) is the
function calculating the KL divergence.

4.3 The Identification Process Based on
DeiT
The overall flow of the electric bike recognition model based on
DeiT presented here is shown in Figure 8. First, the high-
frequency voltage and current data of all kinds of electrical
appliances obtained are preprocessed. Subsequently, the
trajectory image is generated, pixelated, and encoded to build
a hybrid feature bitmap. Finally, the hybrid bitmap is used as an
input to the image classifier, and the DeiT model is used for
feature extraction and classification to complete the load
recognition task.

5 CASE STUDY

5.1 Training Data Gaining
Generally, the example verification of the nonintrusive load
identification algorithm uses standard load datasets, such as
BLUED and PLAID. The existing datasets released by
European and American scientific research institutes mainly
focus on households in these areas. Table 1 shows the main
features of the household load datasets with more number of
references.

Unfortunately, these datasets shown in the table are not well-
suited for verification in this study. There are three main reasons
for this. First, these existing load datasets lack the electric bicycle
data. Second, the supply mode, voltage amplitude, and grid
frequency for European and American users are quite different
from those in China and Southeast Asia. Finally, the cases in
which electric bicycle charging event happens under the ON-
STATE appliances are also missed in these datasets, so the ability
to identify the electric bicycles in more complex situations cannot
be tested.

In order to solve the problem of lacking effective load data, a
customized load data acquiring device which uses AD7685 from
ADI as the core sampling chip, shown in Figure 9, is designed to
use in this study. The schematic diagram of our device is shown in
Figure 10. The collected data mainly include current, voltage, and
active and reactive data at 1.6 kHz. Using this device, more than
507 pieces of data on electric bicycles and nearly 2,340 pieces of
data on other household appliances under independent working
were recorded separately. Meanwhile, 493 pieces of data on
electric bicycles working with other appliances at the same
time are also recorded.

The shortcomings of the load types of existing datasets and the
amount of data on self-built datasets are both considered. This
study adopts part data from UK-DALE which is most similar to
the operation of the Chinese distribution network and combines
the self-built datasets and UK-DALE as the training set, which
contain the electric bicycles under single and superposition
working condition. The detailed composition of the training
set is shown in Table 2, and the division of the dataset is
shown in Table 3. Focusing on identifying electric bicycles,
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the positive examples in the data set are electric bicycle data,
including electric bicycle superposition with other electrical
appliances. The counter-examples are various other electrical
appliances, including air conditioners and hairdryers. The final
DeiT algorithm is a binary classification model.

In this study, the ResNet18, ResNet50, and ViT models are
selected as comparative experiments, and Table 4 shows the
detailed characteristic of different models. ResNet18 and
ResNet50 are deep convolutional neural networks. Compared
with other fully connected neural networks, the CNN uses
convolutional kernels to greatly reduce the training parameters
and has high training efficiency.

It can be concluded from the aforementioned table that DeiT
has more model parameters than the CNN but far less than ViT,

and the speed of processing images is much faster than that of
ViT, while Table 5 shows the training strategy and
hyperparameter settings of the model. In addition, two hyper-
parameters for DeiT are set as λ � 0.1, τ � 3.

Moreover, the hardware environment of the load
identification case study is briefly explained. The cases are
executed using a 64-bit computer with NVIDIA Quadro RTX
8000 graphics card, Intel(R) CoreTM i5-7300HQ CPU, and 6G
DDR4 memory. Also, Windows 10, Python 3.6, and Keras
comprise the software environment in this study.

5.2 Case 1
The first case is executed using the testing dataset 1 in Table 3 to
prove the effectiveness of this electric bicycle identification when

FIGURE 8 | Hybrid feature bitmap of electric bicycles.

TABLE 1 | Main differences between popular load datasets.

Dataset Location Voltage
amplitude (V)

Grid
frequency (Hz)

Sampling frequency Sampling
parameter※

Device
number

REDD Kolter and Johnso.
(2011)

United States 110 60 15 kHz (Agg) 0.5.1 Hz (Sub) V, P(Agg), P(Sub) 24

BLUED Anderson et al. (2012b) United States 110 60 12 kHz (Agg) 20 Hz (Sub) I,V NA
AMPds Makonin et al., (2016) Canada 110 60 1 min V, I, F, P, Q, S, etc 21
UK-DALE Kelly and
Knottenbelt. (2015b)

United Kingdom 230 50 16 kHz (I, V of Agg) 6s
(Agg&Sub); 1s (Agg)

P, I, V 5–54

GREEND Monacchi et al.
(2014)

Austria 220 50 1 Hz P 9

ECO Beckel et al., (2014) Switzerland 220 50 1 Hz P, Q 10
PLAID Gao et al., (2014) United States 110 60 30 kHz I、V 200
EMBED Jazizadeh et al. (2018) United States 110 60 12 kHz (Agg) 1–2 Hz (Sub) I, V, P, Q, F 40
DRED Nambi et al., (2015) Holland 220 50 1 Hz E, P (Agg& Sub) 12
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FIGURE 9 | Overall flow chart of this method. The physical picture of the data acquiring device.

FIGURE 10 | Schematic diagram of the data acquiring device.
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other appliances are in off-state in one household. The results of
case 1 are shown inTable 6. The results show that the DeiTmodel
has an accuracy of 98.41% for the identification of electric bicycles
without the interference of other electrical appliances, and the
results are almost perfect.

Because the data set is relatively small, the loss function of the
ViT model does not converge, the model fails completely, and the

TABLE 2 | Details of the self-built dataset.

Category Total Quantities Self-Build dataset UK-DALE

Inverter air conditioner 144 144 0
Fixed-frequency air conditioner 219 219 0
Kitchen ventilator 112 112 0
Electric baking pan 115 115 0
Hairdryer 559 459 100
Induction cooker 267 267 0
Rice cooker 628 528 100
Electric heater 168 118 50
Electric kettle 128 78 50
Microwave oven 400 300 100
Electric bicycles 507 507 0
Electric bicycles with hairdryer working 243 243 0
Electric bicycles with rice cooker working 250 250 0
Sum 3,740 3,340 400

TABLE 3 | Division of the self-built dataset.

Positive class Negative class Sum

Training dataset 459 images of electric bicycles and 447 images of electric bicycles with other electrical appliances
working

2,206 images of other electrical
appliances

3,112

Testing
dataset 1

48 images of electric bicycles 267 images of other electrical appliances 315

Testing
dataset 2

46 images of electric bicycles with other electrical appliances working 267 images of other electrical appliances 313

Models characteristics and hyperparameter settings.

TABLE 4 | Characteristic of different models.

Model Embedding dimension Training resolution Head Parameter (M) Layer Throughput (im/sec)

ResNet18 — 224 — 11 18 103
ResNet50 — 224 — 20.7 50 79.8
ViT 768 224 12 86 12 9
DeiT 384 224 6 22 12 50

TABLE 5 | Training strategy and hyper-parameter settings.

Model Optimizer Learning rate Learning rate
decay

Weight decay Warm-up epochs Batch size

ResNet18 SGD 0.1 cosine 0.0005 0 256
ResNet50 SGD 0.1 cosine 0.0005 0 256
ViT AdamW 0.003 cosine 0.3 3.4 4,096
DeiT AdamW 0.001 cosine 0.05 5 1,024

TABLE 6 | Results of case 1.

Accuracy (%) Recall (%) Precision (%) F1 score

Resnet18 97.14 95.83 86.79 0.9109
Resnet50 97.78 95.83 90.20 0.9293
ViT 50.16 54.17 16.15 0.2488
DeiT 98.41 97.92 92.16 0.9495
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final accuracy rate approaches random probability. Compared
with the traditional CNN deep learning model, the DeiT model
has better performance in all four indicators.

Only focusing on monitoring the electric bicycles, the electric
bicycle identification model based on DeiT is a binary
classification model, explaining whether the turn-on device is
an electric bicycle. It presents advantages in the accuracy of
identifying compared with the multiclassification model.
Figure 11 shows the accuracy bars of the DeiT classifier
model with two to seven classes. Also, it is obvious that the
accuracy of electric bicycles is decreasing with the increase in
classification types.

5.3 Case 2
The second case is executed using the testing dataset 2 in Table 3
to test the accuracy of the electric bicycle identification model
when multiple appliances are working together. The results of the
model on testing dataset 2 are shown in Table 7. The results show
that the identification accuracy of the DeiT model under the
superposition condition reaches 96.17%, which is lower than that
of the single condition. The main reason is that the fluctuation of
the superposition electrical appliance will still have a certain
influence, but it still exceeds 95%, which can meet the
requirements of NILM.

According to the results of case 2, the ViT model still fails
completely, and the accuracy of the electric bicycles under the
superposition state of other models is generally reduced, but the

DeiT model still achieves the best performance, and the four
indicators are better than the CNN.

6 CONCLUSION

This study proposes a newmethod for identifying and sensing the
electric bicycle-based hybrid feature bitmap and DeiT. The main
process is divided into three steps. First, adapting the complex
superposition work situation, the original V–I trajectory is
improved by using the current differences as mapping
parameters. The second step is the construction of the hybrid
feature bitmap for the V-△I trajectory. Finally, the electric bicycle
identification model based on DeiT is established. Tests
conducted in two cases have shown that the rate of successful
identification is above 95% and strong robustness for handling
the impact of the simultaneous working by multi appliances. It is
believed that the proposed method makes electric bicycle
monitoring more applicable.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

Conceptualization, KF and QH; methodology, KF; software, ZD;
validation, KF, HC, and LG; formal analysis, KF, PW, and HX;
investigation, YH; resources, HC; data curation, GL;
writing—original draft preparation, KF, ZD, and PW;
writing—review and editing, KF, QH, PW, and HX;
supervision, YH; project administration, QH; All authors have
read and agreed to the published version of the manuscript.

FIGURE 11 | Accuracy of electric bicycles under the two to seven classification DeiT model.

TABLE 7 | Results of case 2.

Accuracy (%) Recall (%) Precision (%) F1 score

Resnet18 94.25 89.13 75.93 0.8200
Resnet50 94.57 89.13 77.36 0.8283
ViT 49.84 52.17 15.09 0.2341
DeiT 96.17 93.48 82.69 0.8776

Frontiers in Energy Research | www.frontiersin.org June 2022 | Volume 10 | Article 89639811

Huang et al. Electric Bicycle Load Monitoring

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


FUNDING

This study received funding from the National Key Research and
Development Program of 411 China-Technology Boosts Economy
2020Key Topic (Grant number 2020YFF0426410) and, the Science

and Technology Project of State Grid Jiangsu Electric Power
Company (Grant number J2021057). The funder was not
involved in the study design, collection, analysis, interpretation
of data, the writing of this article, or the decision to submit it for
publication. All authors declare no other competing interests.

REFERENCES

Anderson, K. D., Ocneanu, A., Benitez, D., Carlson, D., Rowe, A., and Bergés, M.
(2012b). “BLUED: A Fully Labeled Public Dataset for Event-Based Non-
intrusive Load Monitoring Research,” in Proceedings of the 2nd KDD
Workshop on Data Mining Applications in Sustainability (SustKDD),
August 12, 2012 (Beijing, China, 1–5.

Anderson, K., Berges, M., Ocneanu, A., Benitez, D., and Moura, J. (2012a). “Event
Detection for Non-intrusive Load Monitoring,” in IECON 2012-38th Annual
Conference on IEEE Industrial Electronics Society, October 25–28, 2012
(Montreal, QC), 3312–3317. doi:10.1109/IECON.2012.6389367

Baptista, D., Mostafa, S., Pereira, L., Sousa, L., and Morgado-Dias, F. (2018).
Implementation Strategy of Convolution Neural Networks on Field
Programmable Gate Arrays for Appliance Classification Using the Voltage
and Current (V-I) Trajectory. Energies 11, 2460. doi:10.3390/en11092460

Beckel, C., Kleiminger,W., Cicchetti, R., Staake, T., and Santini, S. (2014). “The Eco
Data Set and the Performance of Non-intrusive Load Monitoring Algorithms,”
in Proceedings of the 1st ACM International Conference on Embedded Systems
for Energy Efficient Buildings (Build Sys 2014), November 3–6, 2014
(Memphis, TN), 80–89. doi:10.1145/2674061.2674064

Berges, M., Goldman, E., Matthews, H. S., Soibelman, L., and Anderson, K. (2011).
User-centered Nonintrusive Electricity Load Monitoring for Residential
Buildings. J. Comput. Civ. Eng. 25, 471–480. doi:10.1061/(asce)cp.1943-5487.
0000108

Bouhouras, A., Gkaidatzis, P., Chatzisavvas, K., Panagiotou, E., Poulakis, N., and
Christoforidis, G. (2017). Load Signature Formulation for Non-intrusive Load
Monitoring Based on Current Measurements. Energies 10, 538. doi:10.3390/
en10040538

Buddhahai, B., Wongseree, W., and Rakkwamsuk, P. (2018). A Non-intrusive Load
Monitoring System Using Multi-Label Classification Approach. Sustain. cities
Soc. 39, 621–630. doi:10.1016/j.scs.2018.02.002

Chang, H. H., Lee, M. C., and Chen, N. (2015). “Feature Extraction Based Hellinger
Distance Algorithm for Non-intrusive Aging Load Identification in Residential
Buildings,” in 2015 IEEE Industry Applications Society Annual Meeting,
Addison, October 18–22, 2015 (Addison, TX), 1–8. doi:10.1109/IAS.2015.
7356778

Chang, H. H., Lian, K. L., and Su, Y. C. (2013). Power-spectrum-based Wavelet
Transform for Nonintrusive Demand Monitoring and Load Identification.
IEEE Trans. Industry Appl. 50, 2081.

De Baets, L., Dhaene, T., and Deschrijver, D. (2018). “VI-based Appliance
Classification Using Aggregated Power Consumption Data,” in 2018 IEEE
international conference on smart computing (SMARTCOMP), June 18–20,
2018 (Taormina, Italy), 179–186. doi:10.1109/smartcomp.2018.00089

Dosovitskiy, A., Beyer, L., and Kolesnikov, A. (2020). An Image Is Worth 16x16
Words: Transformers for Image Recognition at Scale. arXiv preprint arXiv:
2010.11929.

Fang, K., Huang, Y., and Huang, Q. (2020). “An Event Detection Approach Based
on Improved CUSUM Algorithm and Kalman Filter,” in 2020 IEEE 4th
Conference on Energy Internet and Energy System Integration (EI2)
(Wuhan, China.

Gabaldón, A., Ortiz-García, M., Molina, R., and Valero-Verdú, S. (2014).
Disaggregation of the Electric Loads of Small Customers through the
Application of the Hilbert Transform. Energy Effic. 7, 711–728. doi:10.1007/
s12053-013-9250-6

Gao, J., Giri, S., Kara, E., and Bergés, M. (2014). “PLAID: A Public Dataset of High-
Resoultion Electrical Appliance Measurements for Load Identifification
Research: Demo Abstract,” in Proceedings of the 1st ACM Conference on
Embedded Systems for Energy-Effiffifficient Buildings, November 3–6, 2014
(Memphis, TN), 198–199. doi:10.1145/2674061.2675032

Gao, J., Kara, E. C., and Giri, S. (2015). “A Feasibility Study of Automated Plug-
Load Identification from High-Frequency Measurements,” in 2015 IEEE global
conference on signal and information processing Orlando,USA.

Hart, G. W. (1992). Nonintrusive Appliance Load Monitoring. Proc. IEEE 80,
1870–1891. doi:10.1109/5.192069

Hassan, T., Javed, F., and Arshad, N. (2013). An Empirical Investigation of VI
Trajectory Based Load Signatures for Non-intrusive Load Monitoring. IEEE
Trans. Smart Grid 5, 870

Jazizadeh, F., Afzalan, M., Becerik-Gerber, B., and Soibelman, L. (2018).
“EMBED: A Dataset for Energy Monitoring through Building Electricity
Disaggregation,” in Proceedings of the 9th ACM International Conference
on Future Energy Systems (e-Energy ’18), June 12–15, 2018 (Karlsruhe,
Germany), 230–235. doi:10.1145/3208903.3208939

Kelly, J., and Knottenbelt, W. (2015b). The uk-dale Dataset, Domestic Appliance-
Level Electricity Demand andWhole-House Demand from Five uk Homes. Sci.
Data 2, 150007. Article No. 150007. doi:10.1038/sdata.2015.7

Kelly, J., and Knottenbelt, W. (2015a). “Neural Nilm: Deep Neural Networks
Applied to Energy Disaggregation,” in Proceedings of the 2nd ACM
International Conference on Embedded Systems for Energy-Efficient Built
Environments (BuildSys ’15), November 4–5, 2015 (Seoul South Korea),
55–64. doi:10.1145/2821650.2821672

Kolter, J. Z., and Johnson, M. J. (2011). “Redd: a Public Data Set for Energy
Disaggregation Research,” in The 1st SustKDD Workshop on Data Mining
Applications in Sustainability (San Diego, USA, 1–6.

Le, X. C., Vrigneau, B., and Sentieys, O. (2015). “l1-Norm Minimization Based
Algorithm for Non-Intrusive Load Monitoring,” in 2015 IEEE International
Conference on Pervasive Computing and Communication Workshops
(PerCom Workshops), March 23–27, 2015 (St. Louis, MO), 299–304. doi:10.
1109/PERCOMW.2015.7134052

Li, C., Liang, G., and Zhao, H. (2021). A Demand-Side Load Event Detection
Algorithm Based on Wide-Deep Neural Networks and Randomized Sparse
Backpropagation. Front. Energy Res. 9, 586. doi:10.3389/fenrg.2021.
720831

Liu, Y., Liang, Z., and Huang, J. (2022). A Non-intrusive Motor Load Identification
Method Based on Load Transient Features. Front. Energy Res. 10, 858–969.
doi:10.3389/fenrg.2022.858969

Makonin, S., Ellert, B., Bajić, I. V., and Popowich, F. (2016). Electricity, Water, and
Natural Gas Consumption of a Residential House in Canada from 2012 to 2014.
Sci. Data 3, 160037–160112. doi:10.1038/sdata.2016.37

Monacchi, A., Egarter, D., Elmenreich, W., D’Alessandro, S., and Tonello, A. M.
(2014). “Greend: an Energy Consumption Dataset of Households in Italy and
Austria,” in Proceedings of IEEE International Conference on Smart Grid
Communications (SmartGridComm), November 3–6, 2014 (Venice, Italy),
511–516. doi:10.1109/smartgridcomm.2014.7007698

Nambi, S. N. A. U., Lua, A. R., and Prasad, R. (2015). “LocED: Location-Aware
Energy Disaggregation Framework,” in Proceedings of the 2nd ACM
International Conference on Embedded Systems For Energy-Efficient Built
Environments (BuildSys ’15), November 4–5, 2015 (Seoul, South Korea, 45–54.
doi:10.1145/2821650.2821659

Nguyen, T. K., Dekneuvel, E., Jacquemod, G., Nicolle, B., Zammit, O., and
Nguyen, V. C. (2017). Development of a Real-Time Non-intrusive
Appliance Load Monitoring System: An Application Level Model.
Int. J. Electr. Power . Energy Syst. 90, 168–180. doi:10.1016/j.ijepes.
2017.01.012

Ruano, A., Hernandez, A., Ureña, J., Ruano, M., and Garcia, J. (2019). NILM
Techniques for Intelligent Home Energy Management and Ambient
Assisted Living: A Review. Energies 12, 2203. doi:10.3390/en12112203

Su, D., Shi, Q., Xu, H., andWang, W. (2019). Nonintrusive LoadMonitoring Based
on Complementary Features of Spurious Emissions. Electronics 8, 1002. doi:10.
3390/electronics8091002

Frontiers in Energy Research | www.frontiersin.org June 2022 | Volume 10 | Article 89639812

Huang et al. Electric Bicycle Load Monitoring

https://doi.org/10.1109/IECON.2012.6389367
https://doi.org/10.3390/en11092460
https://doi.org/10.1145/2674061.2674064
https://doi.org/10.1061/(asce)cp.1943-5487.0000108
https://doi.org/10.1061/(asce)cp.1943-5487.0000108
https://doi.org/10.3390/en10040538
https://doi.org/10.3390/en10040538
https://doi.org/10.1016/j.scs.2018.02.002
https://doi.org/10.1109/IAS.2015.7356778
https://doi.org/10.1109/IAS.2015.7356778
https://doi.org/10.1109/smartcomp.2018.00089
https://doi.org/10.1007/s12053-013-9250-6
https://doi.org/10.1007/s12053-013-9250-6
https://doi.org/10.1145/2674061.2675032
https://doi.org/10.1109/5.192069
https://doi.org/10.1145/3208903.3208939
https://doi.org/10.1038/sdata.2015.7
https://doi.org/10.1145/2821650.2821672
https://doi.org/10.1109/PERCOMW.2015.7134052
https://doi.org/10.1109/PERCOMW.2015.7134052
https://doi.org/10.3389/fenrg.2021.720831
https://doi.org/10.3389/fenrg.2021.720831
https://doi.org/10.3389/fenrg.2022.858969
https://doi.org/10.1038/sdata.2016.37
https://doi.org/10.1109/smartgridcomm.2014.7007698
https://doi.org/10.1145/2821650.2821659
https://doi.org/10.1016/j.ijepes.2017.01.012
https://doi.org/10.1016/j.ijepes.2017.01.012
https://doi.org/10.3390/en12112203
https://doi.org/10.3390/electronics8091002
https://doi.org/10.3390/electronics8091002
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Touvron, H., Cord, M., and Douze, M. (2021). “Training Data-Efficient Image
Transformers and Distillation through Attention,” in International Conference
on Machine Learning (PMLR), July 18–24, 2021) (Virtual) 139, 10347–10357.

Vaswani, A., Shazeer, N., and Parmar, N. (2017). “Attention Is All You Need,” in 31st
Conference on Neural Information Processing Systems (NIPS 2017), December 4–9,
2017 (Long Beach, CA), 6000–6010.

Wang, A. L., Chen, B. X., Wang, C. G., and Hua, D. (2018). Non-intrusive Load
Monitoring Algorithm Based on Features of V-I Trajectory. Electr. Power Syst.
Res. 157, 134–144. doi:10.1016/j.epsr.2017.12.012

Young, K., Wang, C., Wang, L. Y., and Strunz, K. (2013). “Electric Vehicle Battery
Technologies,” in Electric Vehicle Integration into Modern Power Networks
(New York, NY: Springer), 15–56. doi:10.1007/978-1-4614-0134-6_2

Zoha, A., Gluhak, A., Imran, M. A., and Rajasegarar, S. (2012). Non-intrusive Load
Monitoring Approaches for Disaggregated Energy Sensing: A Survey. Sensors
(Basel) 12, 16838–16866. doi:10.3390/s121216838

Conflict of Interest:Authors QH, KF, ZD, HC, and YH are employed by State Grid
Jiangsu Electric Power Co., Ltd, LG is the postgraduate student of the School of
Automation of Nanjing University of Science and Technology, Author PW is
employed by Nanjing University of Science and Technology as an associate

professor, and Author HX is employed by Xi’an XD Power Systems Co. Ltd.
All authors declare no other competing interests.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Huang, Fang, Ding, Cheng, Huang, Geng, Wang and Xu. This is
an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other
forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Energy Research | www.frontiersin.org June 2022 | Volume 10 | Article 89639813

Huang et al. Electric Bicycle Load Monitoring

https://doi.org/10.1016/j.epsr.2017.12.012
https://doi.org/10.1007/978-1-4614-0134-6_2
https://doi.org/10.3390/s121216838
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

	A Non-Intrusive Residential Electric Bicycle Load Monitoring Method Based on Hybrid Feature Bitmap and DeiT
	1 Introduction
	2 Charging Process and the V-△I Trajectory of Electric Bicycles
	2.1 Charging Process of Electric Bicycles
	2.2 V-△I Trajectory of Electric Bicycles

	3 Building the Hybrid Feature Bitmap
	3.1 The Linear Interpolation and Pixelization of the V-△I Trajectory
	3.2 Mixed Feature Bitmap

	4 The Identification Model Based on Data-Efficient Image Transformers
	4.1 Transformer and ViT
	4.2 DeiT Model
	4.3 The Identification Process Based on DeiT

	5 Case Study
	5.1 Training Data Gaining
	5.2 Case 1
	5.3 Case 2

	6 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


