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INTRODUCTION

Over the last two decades, unconventional natural gas resources from tight sandstone and shale
reservoirs have garnered substantial interest and have become a focal point for the oil industry and
global energy supplies. This is due to their substantial reserves and technological advancements in
producing unconventional resources. In comparison to conventional reservoirs, gas production from
ultra-low permeability unconventional reservoirs is driven by highly nonlinear flow equations and
involves a complex web of coexisting processes as a result of the presence of multi-scale fracture
networks and the heterogeneity of porous/fractured and stress-sensitive rocks. As a result, measuring
flow in unconventional gas reservoirs continues to be a significant difficulty.

This paper discusses mathematical numerical simulation methodologies for developing ultra-low
permeability reservoirs in order to ascertain the capacity of ultra-low permeability reservoirs and the
essential parameters affecting development yield. Additionally, the author discusses developments
and issues in the simulation of ultra-low-permeability reservoirs and seepage theory. Finally, the
merits and cons of evaluating ultra-low permeability reservoirs using physical properties and
mathematical simulations are discussed. The study reported in this article is expected to advance
the development of ultra-low permeability reservoirs in the future.

RESERVOIR NUMERICAL SIMULATION

Reservoir Numerical simulation is an important technical tool and a basic tool for reservoir
management such as oil field development programs, adjustment programming, and dynamic
forecasting. In a sense, reservoir numerical simulation is one of the important tools for modern
reservoir development (Rao et al., 2021b; Xu et al., 2021; Rao et al., 2022). In recent years, due to the
rapid development of computers, reservoir numerical simulation technology has made great
progress, especially in terms of calculation methods, program design, and image processing of
calculation results. Numerous scholars have enhanced the current conventional reservoir numerical
simulation techniques to investigate the nonlinear flow characteristics of fluids in ultra-low
permeability reservoirs (Rao et al., 2021a; Zhou et al., 2021). Currently, fluid flow in ultra-low
permeability porous media is a nonlinear flowwith aminimum starting pressure gradient. Therefore,
the classical Darcy’s law cannot perfectly represent the flow law in low-permeability reservoirs. The
numerical simulation software based on Darcy’s flow model has limitations in the application to
ultra-low-permeability reservoirs (Sheng et al., 2020). Although the variable permeability numerical
simulation method can accurately describe the nonlinear flow law of ultra-low permeability porous
media. It cannot yet reflect the continuity and smoothness of the equation of state. This numerical
simulation method is still in the research stage (Xu et al., 2022).
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CHALLENGES OF ULTRA-LOW
PERMEABILITY RESERVOIRS

Considering ultra-low permeability reservoirs are
unconventional (Figure 1), many of the procedures developed
for conventional reservoirs must be adapted but are not strictly
relevant, and new ways are being sought to improve them (Ding
et al., 2014). These include, but are not limited to, transient
capillary equilibrium, the measurement of the physical
parameters of ultra-low permeability reservoirs (i.e., rock and
fluid properties such as water saturation, capillary pressure, and
permeability), non-Darcy flow, and production prediction tools
(Arogundade and Sohrabi, 2012).

SIMULATING ULTRA-LOW PERMEABILITY
RESERVOIRS

Darcy’s law has long been considered the cornerstone of reservoir
flow mechanics. Ultra-low permeability reservoirs differ from
conventional reservoirs in the following ways (Jiang et al., 2012).
First, the physical properties of the reservoir are exceptionally poor.
Second, the oil recovery rate and oil recovery are very low. Due to the
compact rock structure of these low-permeability reservoirs, fluid
flow in the reservoir is impeded. As a result, the fluid flow does not
follow Darcy’s law (Yang et al., 2007; Mahani et al., 2018; Bartels
et al., 2019). Due to complex flow behavior, strong fluid-rock
interactions, and multi-scale heterogeneity, traditional Darcy’s
method-based models may not be applicable in general to
describe flow phenomena in unconventional gas reservoirs.

Blasingame (2008) pointed out that high velocities may be
important in shale gas production because gas flows mainly in
fractures towards the wellhead. Gas velocities may be particularly
high in areas close to wells.

In comparison to conventional reservoirs, the key to success in
Ultra-low Permeability reservoirs is to concentrate on the well’s size
rather than the field’s size. To accurately analyze well performance, it
is necessary to model hydraulic fracturing and estimate reservoir
flow. We will use numerical examples to illustrate well production
simulations in the vicinity of a single fracture or within an SRV.
Desorption of gases has been shown to be crucial in determining the
production capacity of shale gas deposits. This is because organic
surfaces in shales have a high capacity for adsorption of gas.Methane
molecules are mostly adsorbed on carbon-rich components,
i.e., horizons, which are often defined as total organic carbon in
Ultra-low Permeability reservoirs. As the sustained gas production
pressure in the reservoir falls, more adsorbed gas is liberated from the
solid into the free gas phase. Facilitates production and flow (Ding
et al., 2014).

The relative permeability of ultra-low permeability reservoirs is
usually influenced by the water injected during hydraulic fracturing.
The relative permeability changes when capillary forces are considered
(Helset et al., 1998; Sohooli, 2012). At a lower injection rate, it can
simulate the seepage flow of injected water under reservoir conditions
and reflect the determination of relative permeability more accurately
(Moghaddam and Foroozesh, 2017). Changing the temperature has
an effect on the thick oil and water phase percolation curves. When
the viscosity of the oil phase decreases, the relative permeability of
both oil and water increases, and the increase of injection flow rate
leads to higher relative repair permeability of oil layer and lower

FIGURE 1 | Two sets of relative permeability curves for matrix and fracture systems (Cheng, 2012).
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relative permeability of water layer, and the Corey equation is
modified by experimental data, and the accuracy of the equation is
verified by theoretical study, and the modified equation is more
consistent with the relative permeability curves of thick oil and water
than the Corey equation (Torabi et al., 2016).

PROSPECTS AND CHALLENGES

In comparison to conventional reservoirs, ultra-low permeability
reservoir exploration is in its infancy. As a result, there are still
numerous obstacles to overcome. There are no standard operating
procedures for several of the measurement techniques used to
determine the physical parameters of ultra-low permeability
reservoirs, such as permeability, water saturation, and so on.
Furthermore, these strategies are used in conventional reservoirs.

Commercial simulation software now includes modules
specialized for simulating ultra-low permeability reservoirs,
significantly increasing the accuracy of modeling ultra-low
permeability reservoirs. Although tremendous progress has been
made inmodelling ultra-low permeability reservoirs, major obstacles

remain. It is implausible to assume negative capillary pressures in
numerical models of ultra-low permeability reservoirs, in particular
with respect to transient capillary pressures.

Techniques for predicting ultra-low permeability reservoirs
require the application of decline curve analysis, another difficult
topic. This is because the methodologies used to predict the future
production profiles of conventional reservoirs have been shown to be
ineffective for ultra-low permeability reservoirs, and new techniques
are being developed and tested to reliably predict the future
production profiles of these reservoirs. Given that we now have
several years of production data from ultra-low permeability
reservoirs to use in predicting future longer-term production, the
current results are encouraging, but the oil and gas industrymay need
to wait a few more years to determine the accuracy and reliability of
these newly developed and subsequent production predictionmodels.
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