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Alternative renewable fuels like biomass have the potential to be considered for electricity
generation by replacing the utilization of fossil fuels and reducing the greenhouse gas
emissions into the environment. An integrated biomass gasification power plant is the best
suitable option to generate electricity from different biomass feedstocks. Several modeling
and simulation techniques have been utilized for the integrated biomass gasification power
generation process. These models are utilized to predict the power output from the
different gasifier types, designs, and feedstocks. In this study, An Artificial neural network
(ANN) model is developed to estimate the process parameters of the Integrated biomass
gasification power plant. This ANN model predicts the gasification temperature (T) and air
to fuel ratio (AFR) for the gasification process integrated with the power plant at the
atmospheric pressure. There is a total of ten input parameters such as moisture content of
biomass (M), volatile matter (VM), fixed carbon (FC), ash content (A), element composition
of carbon (C), oxygen (O), hydrogen (H), nitrogen (N), sulfur (S) and required power (KW) are
used to predict the two key gasification process parameters T and AFR. The data
generated from thermodynamic equilibrium model simulations are employed in the
developed ANN model for the different 86 biomass feedstocks. The proposed ANN
model was optimized for the Mean Squared Error (MSE) loss function and evaluated using
MSE and R score metrics. It is observed that the best predicted for a hidden layer size was
of 60 neurons. The best test score was achieved as an MSE score of 1,497 and test R
0.9976. This study can be implemented for any kind of biomass feedstock for the power
generation system.

Keywords: biomass gasification, power generation, artificial neural network, parameter prediction, logistic
regression

1 INTRODUCTION

In recent decades, the global energy demand and consumption have increased due to the rapid
increase in population and industrial developments, which have also raised environmental issues
worldwide (Hanchate et al., 2021). Fossil fuels provide about 80% of the world’s overall total energy
needs that cause significant environmental and health problems (Iea, 2011). Various energy sources,
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including renewable and non-renewable, are being taken into
consideration to help meet the world’s energy demand and
environmental issues (Anwar et al., 2021; Kanwal et al., 2021).
Combustion of primary conventional fossil fuel-based energy
sources is the leading cause of pollutant emissions into the
environment. Renewable energy options have the great
potential to overcome emission problems of carbon-based
energy systems to produce environmentally friendly clean fuels
(Mofijur et al., 2013b; Sansaniwal et al., 2017). Biomass is
considered one of the most suitable alternative energy
resources of green energy that has the great potential to
generate renewable energy in the form of electricity, bio-oil
(biodiesel), biohydrogen, and biogas (Mofijur et al., 2013a;
AlNouss et al., 2020; Ayub et al., 2022). Thermochemical and
biochemical technologies are being adopted mainly to produce
biofuels from biomass conversion (Wahlen et al., 2020; Tawfik
et al., 2021). The former technologies are more efficient as
compared to the biochemical technologies due to the fast
reaction time and high energy efficiency (Sansaniwal et al.,
2017). The biomass gasification process is one of the most
suitable thermochemical conversion methods to produce the
energy from the various biomass feedstocks for the different
integrated energy systems (Ayub et al., 2021).

Biomass gasification is recognized as a sustainable conversion
method since it produces clean syngas for effective heat and
power generation and utilization while emitting comparatively
less amount of pollutants (Mofijur et al., 2013a; Nguyen et al.,
2020). The syngas formed from biomass gasification mainly
consists of hydrogen (H2), carbon monoxide (CO), carbon
dioxide (CO2), water (H2O) vapors, methane (CH4), and
nitrogen (N2) (Ayub et al., 2020a). During the gasification
process, some minor products such as tar, solid char, nitrogen,
and Sulphur compounds such as NOx and SOx can be seen
alongside the primary components of syngas (Karmann et al.,
2019). The high composition of H2, low content of N2, the
minimal amount of impurities and contaminants, and high
heating value (HHV) of the syngas can all be used to

determine their suitability for use in thermal combustion
systems for power production (Gambarotta et al., 2018).

The biomass gasification process is divided into four steps due
to the apparent complexity of the chemical processes involved:
biomass drying, pyrolysis, oxidation, and reduction (Mohapatra
and Phale, 2021). The biomass feedstock is heated in the first step
at a very low-temperature range (100°–150°C) to remove the
moisture contents. At the second step, this feedstock is heated at
high temperatures (150°–700°C), the pyrolysis phase, and turned
into volatile and solid carbon-rich components, commonly called
char or unconverted byproducts. At this point, a high viscosity
black liquid called tar is formed that contains heavy components
of organic and inorganic materials. Finally, the gasifier undergoes
oxidation and reduction reactions, converting solid char, heavy
organic, and volatile components into syngas at extremely high
temperatures (800°–1,100°C) (Ayub et al., 2020b). The biomass
gasification process and stages involved are schematized in
Figure 1.

Many researchers have presented studies for the efficiency
improvement of the biomass gasification process. The biomass
properties, reactor design, and operational conditions are the key
factors that determine gasifier efficiency, product gas
composition, and overall system effectiveness in the
gasification process. Moisture content (MC), volatile matter
(VM), ash (A), fixed carbon (FC), and elemental composition
of organic and inorganic components are all the key components
that influence feedstock characteristics (Ferreira et al., 2019).
Inside the gasifier, exceedingly complex thermochemical
processes have also been observed. As a result,
experimentation could provide practical information about the
optimum process parameters and appropriate feedstock of
selected biomass for the reactor, but they take a lot of time
and are more expensive than modeling (Binns and Ayub, 2021).
When it comes to numerical modeling, Biomass gasification
models are divided into kinetic-based models (Inayat et al.,
2012), computational fluid dynamic (CFD) models (Liu, 2014),
thermodynamic equilibrium models (Zainal et al., 2001), and
artificial neural network (ANN) models (Li et al., 2019). There is
also a research dimension making progress in resolving CFD
model to predict via machine learning using physics informed
neural networks (Rafiq et al., 2022a; Rafiq et al., 2022b), that has
the potential to make CFD predictions tasks faster from days to
just seconds.

Kinetic models have been formulated on the basis of the
reaction kinetics taking place within the reactors.
Consequently, formulating more realistic models requires a
detailed understanding of gasification processes and phase
conversion transfer mechanisms. These models have the ability
to estimate syngas gas composition, the temperature of the
reactor, and gasification efficiency (Dang et al., 2021). CFD
models are more complicated as compared to the kinetic and
thermodynamic modeling approaches because they require a very
long computing time and comprehensive knowledge about the
reactions involved. Comprehensive numerical evaluations of
feedstock components, mechanism of fluid flow, mass and
energy transport, chemical expressions, particle structure and
dimensions, and a set of parametric correlations and equations

FIGURE 1 | A schematic of downdraft gasifier.
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were accomplished employing CFD models. Various previous
studies concentrated on equilibrium models, artificial neural
networks, and other empirical or semi-empirical models that
allow for quick computation, parametric analysis, and
optimization of the gasification process to avoid the
complexity and errors accompanying kinetic and CFD models
(Kumar and Paul, 2019). Thermodynamic equilibrium models
are categorized into stoichiometric and non-stoichiometric
equilibrium models (Zainal et al., 2001). These models are
based on the equilibrium constants of the gasification
reactions involved, or the composition of syngas is calculated
based on the Gibbs free energy minimization method. These
models are simpler and provide faster computation than the
kinetic and CFD models (Ayub et al., 2021). ANN models are
developed based on the mathematical principles that correlate
the input and output streams to predict the required output.
An ANN model impersonates the functioning of the human
brain to process the data quickly and effectively based on a
system of neural networks provided to the model some human
attributes. The application of ANN models for the biomass
gasification process or integrated power generation system is
very limited. Generally, input data set of ultimate and
proximate analysis or process parameters are required to
predict the outcomes. Hence, these models are more
appropriate as compared to complex reaction-based
problems. These models can be applied to the different
types of reactor configurations (Li et al., 2018). Yucel et al.
(2019) employed the ANN networks to estimate the
gasification product gas composition from the biomass
gasification process data. Li et al. (2018) presented a study
based on the ANN model for the biomass gasification
processes considering the heating rate and reactor length to
predict the hydrogen composition. However, ANN models are
not very attractive options for biomass gasification processes
or integrated power generation systems due to the limitation of
experimental data. Safarian et al.(2020a) developed the ANN
model for power generation, and the data is generated from the
integrated thermodynamic equilibrium model. They predicted
the net power output from various biomass feedstocks under
the equilibrium conditions.

In this study, an ANN model is developed and implemented
for an integrated thermodynamic equilibrium power generation
system to predict the required power’s critical influencing
gasification process parameters that have not been predicted
before through ANN. This study aims to estimate the process
conditions like gasification temperature (T) and air to fuel ratio
(AFR) through ANN model development by using 86 different

biomass samples for the larger dataset of 1,032 observations.
Moreover, this developed ANN model was tested and validated
against the original data set, which has shown the effective
utilization of the ANN model for the integrated biomass
gasification power generation system to predict the critical
process parameters. The model is optimized using the Mean
Squared Error (MSE) loss function and evaluated our proposed
model using two evaluation metrics, i.e., MSE and R score, using a
hidden layer with 60 neurons. This model can be used for any
kind of biomass feedstocks for the integrated power generation
system.

This article is organized in the following sections. The
proposed method is detailed in Section 2, whereas results and
discussion are covered in Section 3. In the final section of the
article, the conclusion of the study has been presented.

2 PROPOSED METHODS

Artificial Neural Network (ANN) (McCulloch and Pitts, 1943) is
proposed to estimate the parameters of the biomass gasification
system. The proposed model consists of an input layer, a hidden
layer, and an output layer. The following sections cover the details
of each component in detail.

2.1 Model Architecture
The ANN model is developed based on the thermodynamic
equilibrium model simulated with ASPEN Plus integrated
power generation systems. There are 1,032 data points of 86
different biomass feedstocks utilized in the ASPEN Plus model to
estimate the power generation for the specific operating
conditions (Safarian et al., 2020a; Safarian et al., 2020b). In
this study, an ANN model for the downdraft biomass
gasification process integrated with a power generation system
is developed to estimate operating conditions-gasification

FIGURE 2 | Matlab ANN setup and configuration.

FIGURE 3 | ANNmodel architecture to estimate the process parameters
for the integrated downdraft biomass gasification process with a power
generation system.
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temperature (T) and air to fuel ratio (AFR)- for the required
power output. This ANNmodel is developed and implemented in
MATLAB utilizing Neural Network Toolbox, as shown in
Figure 2.

Figure 3 presents the structure of the developed ANN model
to predict operating conditions such as gasification temperature
(T) and air to fuel ratio (AFR). All the ANN schemes have only
one input layer containing ten input variables: moisture content
(M), volatile matter (VM), fixed carbon (FC), Ash content (A),
the elemental composition of carbon (C), oxygen (O), hydrogen
(H), nitrogen (N), sulfur (S) and power (KW) produced and one
hidden layer and one output layer containing process parameters
or operating conditions that are gasification temperature (T) and
air to fuel ratio (AFR).

We employ one hidden layer employed empirically,
considering the size and complexity of the dataset. We
conducted various experiments with hidden layer sizes and
reported the observations explained in the results section. The
best selection of model consisted of the hidden layer size of 60
neurons. Therefore, we have considered a single hidden layer with
varying nodes from 10 to 120. The model early stopped at various
epochs for various hidden layer sizes to keep from overfitting. We
recorded epochs and obtained Mean Squared Error (MSE). The
layer configuration is listed in Table 1.

2.1.1 Multi-Target Regression
Machine Learning classifiers usually support only one target
variable. Regression models have a real value target, while
classification models have a binary or multivalued target. The
multiple regression model is one in which multiple independent
variables are used to predict a dependent variable. Multi-target
regression (Reyes and Ventura, 2019) is the term used when there
are multiple dependent variables. If the target variables are
categorical, then it is called multi-label or multi-target
classification, and if the target variables are numeric, then
multi-target (or multi-output) regression is the name
commonly used.

2.1.2 Activation Function
The Rectified Linear Unit (ReLU) (Agarap, 2018) is an activation
function for tensor output and makes the model training process
nonlinear. In the convolution process, output tensors may
contain positive and negative values, so before forwarding the
output to the next layer, an activation function is applied. Positive
values of ReLU remain unchanged, while negative values are
converted to 0 values. The procedure is called rectification. From
a range of negative and positive values, a non-saturating function

f(x) � max(0, x) returns zero or a positive value. Negative
values are removed from the output feature map. During the
convolution process, it increases the nonlinearity of the model
without affecting the quality of classification in receptive fields.
ReLU function can be expressed as follows.

Y(x, y) � { 0, if X(x, y)< 0
X(x, y), otherwise

(1)

For a specific neuron at x and y positions, X (x, y) is the input
to ReLU, and Y (x, y) is the output of ReLU activation.

2.2 Training Method
Our network is fed by the ten best input parameters, including M,
VM, FC, A, C, O, H, N, S, and KW, while T and AFR are output
parameters. First, the data are normalized by limiting the values
to 0 and 1. Following normalization, 80% of the data were
allocated for training, 10% for validation, and 10% for testing
and evaluation. . For training data selection, we used the hold-out
(Sammut and Webb, 2011) strategy.

A maximum of 500 training epochs were used to train the
model. The training system was configured to stop when there is
no further improvement to using an early stopping (Prechelt,
1998) technique with early-stopping patience of ten epochs.
Levenberg-Marquardt optimizer (Moré, 1978) with a learning
rate of 0.001 was used. Performance was optimized based on the
choice of learning rate. Then, we optimized MSE as a loss
function during training, which is a metric for regression
prediction systems. A complete list of simulation parameters is
listed in Table 2.

2.3 Dataset and Exploratory Data Analysis
The dataset consists of 1,032 experiments recorded for 86
feedstock available from (Safarian et al., 2020a). We conduct
exploratory data analysis of the values from the experiments
for more insights about the data. Table 3 lists down the
dataset statistics for each input component: M, VM, FC, A, C,
O, H, N, and S, as well as precondition adjustment parameters: T
and AFR.

Figure 4 depicts the inter-parameter correlation density. The
parameter correlation matrix shows the correlation between each
pair of parameters. The parameter correlation is measured before
the task execution. A strong correlation exhibits a high degree of
dependency of input parameters on each other. To best

TABLE 1 | Proposed model layer configuration.

Layer (type) Shape Param #

Input (10) -
h1 (Dense) (60,10) 660
output (Dense) (2,60) 122
Total params - 782
Trainable params - 782

TABLE 2 | Simulation parameters.

Param name Value (range)

Model type Artificial neural network
Model category Multivariate Regression
Activation method ReLU, Linear
Run Epoch 500
Stopping patience 10 epochs
Optimization Algorithm Levenberg-Marquardt Algorithm
Learning rate 0.001
Loss method MSE
Evaluation score MSE, R
Training method Hold out
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understand the relation between parameters, we compute the
inter-parameter correlation heatmap as presented in Figure 5.

3 RESULTS AND DISCUSSION

3.1 Evaluation Metrics
A Mean Squared Error (MSE) (Sammut and Webb, 2011) and R
score (Ribas et al., 2013) were used to evaluate the proposed

model. The evaluation metrics are expressed in the following
equations.

MSE � 1
n
∑n
i�1
(Yi − Ŷ i)2 (2)

R2score � 1 − ∑n
i�1(Yi − Ŷ i)2

∑n
i�1(Yi − Ŷi)2 (3)

TABLE 3 | Dataset statistics.

M VM FC A C O H N S KW T AFR

mean 14.43 75.38 17.79 6.84 47.69 38.44 5.86 1.01 0.16 148.53 1,050 2.03
std 13.5 7.22 4.91 7.98 4.37 6.21 0.88 1.2 0.23 87.26 335.57 0.21
min 2.5 47.8 0.5 0.1 27.33 11.18 2.94 0.1 0 0 600 1.8
25% 7.2 73.1 15.8 2.7 45.92 37.83 5.53 0.38 0.09 80.37 825 1.8
50% 8.75 76.8 17.6 4.2 48.43 39.74 5.88 0.66 0.1 148.78 1,050 2
75% 12.1 80.4 20 7.8 50.5 42.12 6.07 1.16 0.19 208.31 1,275 2.3
max 62.9 86.3 37.9 46.3 55.8 46.95 9.77 9.27 1.29 436.79 1,500 2.3

FIGURE 4 | Dataset inter-parameters correlation.
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The values of �Y and Ŷ represent the predicted value and mean
value of Y, respectively.

3.2 Model Validation
A model performance evaluation is presented in Table 4. As
the model is optimized to minimize MSE loss, we compute
train and test set metrics to show overfitting and bias. The
applied dataset showed excellent performance. The scatter
plot in Figure 7 compares predicted values with actual test
values. Testing, validation, and training plots showed a

significantly stable output with minor outlier predictions,
whereas most of the data were predicted correctly and
followed the optimal line.

Table 4 shows the test MSE and R score for various hidden
layer sizes. We observe that the given observation is best predicted
for a hidden layer size of 60 neurons. The best score achieved
reads as a test MSE score of 1,497 and test R 0.9976. Therefore, we
recommend a network size of 60 neurons at the hidden layer.
Figure 6 graphically plots the loss behavior for different neurons
at the hidden layer.

FIGURE 5 | Parameter correlation heatmap.

TABLE 4 |MSE loss at various neurons at the hidden layer. Bold values represent
the best configuration for the model.

Model: Artificial neural network

Optimizing Algorithm: Levenberg-Marquardt Algorithm

Hidden layer size Early Stop Epoch Best? MSE (test) R (test)

10 61 - 3,549 0.9948
20 77 - 3,091 0.9952
30 58 - 2859 0.9952
40 50 - 3,310 0.9949
50 26 - 1913 0.9972
60 16 Yes 1,497 0.9976
70 16 - 1953 0.9972
80 45 - 4,049 0.9939
90 15 - 4,868 0.9929
100 16 - 6,160 0.9908
110 15 - 3,603 0.9942
120 14 - 3,662 0.9948 FIGURE 6 | Loss plot at various number of neurons at the hidden layer.
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We trained the model using a dataset split of 80% training,
10% validation, and 10% test set. We collected loss plots for each
of the splits, as shown in Figure 7. Here (A) represents the
training split, (B) depicts the validation split scatter plot, and (C)
shows the test split performance. All of the split plots were
generated at an optimal layer size of 60 neurons with dataset
splits described earlier in this section.

The proposed model training, validation, and test performances
are depicted in Figure 8. Where (A) plots theMSE loss over running
epochs, it is evident that the model performed a smooth training
without any overfitting and underfitting. Similarly, (B) depicts the
error histogram with 20 bins, where sample instances are the highest
concentration peak at zero with a small error spread.

The performance of the developed model is measured using
standard performance metrics, i.e., MSE and R score. It is evident
that the proposed model fits the presented data and estimates the
process parameters. We record the bias and weights of the best-
performing model in Supplementary Table S1 with a bi-color
heatmap for the quick perception of the model states.

The dataset employed is obtained by using the ASPEN Plus
process simulator which is widely used for near-perfect process
parameters and production environment simulations. Data
reliability is highly dependent on experiments conducted to
generate data and the process design and conditions. Since the

dataset is peer-reviewed in a recent research article (Safarian et al.,
2020a; Safarian et al., 2020b) therefore, we consider it safe to
believe the reliability. We use actual data for training and
validation, and we have tested our predictions on a subset of
actual data separated using the holdout model evaluationmethod.

3.3 Practical Implications
The ANN models are historically known to perform best when
sufficient data is present, whereas physical sciences lack experimental
data due to the nature of experiments and the efforts required in
collecting the data. Inspired by evolving influence and successful
track record of artificial intelligence and machine learning in
physical sciences, we have introduced the proposed model. We
expect this approach to be more progressive and succeed by
employing larger datasets and trying new approaches. Our
proposed has significant benefits over the conventional physical
science experimental approach to predict process parameters
without trivial experiments for new materials. This approach
makes it more useful in further study of biomass gasification for
power generation and a good start for the production environment
to try starting parametric conditions of temperature and air to fuel
ratio. The recommended parameters from the model can save setup
time andmaterials and reduce overheads in initializing an integrated
gasification process for power generation.

FIGURE 7 | Scatter plot for (A) training (B) validation, and (C) test dataset distributions.

FIGURE 8 | (A) Training history and (B) error histogram.
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4 CONCLUSION

An ANN model is developed for the integrated biomass
gasification power plant in this study. Gasification
temperature (T) and air to fuel ratio are the two key process
parameters that influence the efficiency of the gasification
process and the power output. Therefore, an ANN model is
proposed to predict these process parameters to increase the
efficiency of the integrated biomass gasification power
generation system. For this purpose, 1,032 simulated data
points for the 86 biomass feedstocks are used to develop,
train, test, and validate the developed ANN Model. In this
model, 80% of the data were allocated for training, 10% for
validation, and 10% for testing and evaluation. It is observed
that the given observation is best predicted for a hidden layer
size of 60 neurons. The best test score was achieved as an MSE
score of 1,497 and test R 0.9976. Therefore, we recommend a
network size of 60 neurons at the hidden layer. We further
suggest to employ the proposed approach for pre assessment of
process parameters to quick start the biomass gasification
production process. The model intend to increase the
productivity and save the fuel and time to smoothen out the
biomass gasification production.
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