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1 INTRODUCTION

Due to the continuous advancement of the reform of transmission and distribution prices, higher
requirements have been placed on the accuracy of the annual investment plans of power grid
enterprises (Bin et al., 2017; He et al., 2018; Lv and Yang, 2020); moreover, the wide application of
information tools has also brought new challenges to improve investment management efficiency
(Jiang et al., 2019; Sha et al., 2021). However, a literature search revealed few studies on investment
management methods for infrastructure projects that satisfy the requirement of high-quality
development of power grids. The preparation of annual investment plans within power grid
enterprises only relies on manual experience, which is arduous to consider timing characteristics
and annual investment laws comprehensively. Consequently, there is an urgent need to possess a
research methodology suitable for the deduction of the investment scheduling of power grid projects
and explore the inherent laws and characteristics of the investment schedule. This article brings some
views on the deduction prediction methodology of power grid projects’ investment schedule
considering project properties.

2 PROJECT DURATION PREDICTION BASED ON NEURAL
NETWORK

The construction period of the power grid infrastructure project provides a reference for the
administrator to determine the deduction prediction for power grid infrastructure investment and
planning. The project duration is required to be no less than a reasonable duration. Thus for power
grid projects more petite than a reasonable construction period, the minimum value of the
reasonable construction period of each voltage level project is taken as the project construction
period. The appropriate construction period for the power grid project is 10–19 months for 110 (66)
kV projects, 13–22 months for 330 (220) kV projects, 15–24 months for 500 kV, and 16–25 months
for 750 kV.

The structure of the BP neural network is usually composed of three or more layers, namely, the
input layer, hidden layer, and output layer. The prediction of project duration based on the BP neural
network model is divided into the following steps: first, the BP neural network structure is reasonably
designed; second, the neural network is trained according to the historical data; and third, the trained
neural network is used for prediction. To predict the construction period of a power grid project, we
must use historical construction period data. The input layer variables mainly include factors that
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significantly impact the construction period. Therefore, in the
research, the voltage level, construction scale, construction
attributes, and region factors of the infrastructure project are
taken as the input to the network. The construction scale includes
the substation capacity and the line length, the construction
attributes consist of the project attributes and the engineering
attributes, and the regional characteristic comprises the area
where the project is located and whether it is in the urban
core area. The data samples need to be normalized before
establishing the prediction model, and the normalized data is
between 0 and 1.

3 ANALYSIS MEASURE OF POWER GRID
INVESTMENT SCHEDULE CURVES
SIMILARITY BASED ON DTW DISTANCE
The historical investment schedule curves data are
overwhelmingly large for power grid projects, which are still
being enlarged over time (Ma et al., 2018). The key of this
research is to fully extract the characteristic factors of the
massive historical investment schedule curves, investigate the
deduction prediction methodology suitable for the investment
schedule of power grid infrastructure projects, and then adjust the
investment project library to make up for the shortcomings in the
development of power grid. Nevertheless, several studies have
documented that most time sequences analysis methods,
including clustering algorithms, rely on distance measures.
While comparing two investment schedule time sequences, the
critical issue is how to deal with distortion, which is characteristic
of time sequences. Time sequences data are associated with each
other through time characteristics, which are different from
ordinary static data. That is, in investment schedule time
sequences data, the following data are affected by the previous
data. It is paramount to retain the time characteristics of the
investment schedule in data analysis and mining.

The traditional method of extracting quintessential
investment schedule curves of power grid projects is to
manually select a relatively centered and non-distorted corner
among all investment schedule curves. However, the method is
not universal and has a multitude of errors. In this article, a
quintessential investment schedule model of the power grid
projects is formulated by introducing the relevant theories and
technical means of data mining and considering factors such as
voltage level, construction scale, and construction attributes.

Time sequences distance or similarity measure is
indispensable in deduction prediction for power grid
infrastructure investment and planning, which is one of the
standards to measure the similarity between different
investment schedule curves and plays a critical role in the
time sequences data mining. Similarity measures refer to the
common shape in time series, which usually contain the common
trend shape or pattern subsequence with common similarity at
different time points. Different from Euclidean distance (ED),
where distance is measured strictly according to the time
sequences values corresponding to the exact moment,
Dynamic Time Warping (DTW) exploits the thought of

dynamic programming by adjusting the time sequence of the
relationships among different moments of the corresponding
element to obtain the optimal curve path, along this path of
the distance between time sequences is the smallest (Li et al., 2019;
Choi et al., 2020; Cai et al., 2021). This algorithm reasonably
measures the overall shape similarity among time sequences. In
comparison, DTW can better depict the general dynamic
characteristics of the curves and applies to the situation where
two curves have good overall similarities but are not completely
aligned on the time axis. Consequently, it can effectively make up
for the deficiency that ED only pours attention into the numerical
distribution characteristics of the corresponding moments of the
curves when describing the similarity of the investment schedule
curves. DTW not only realizes the distance measurement of
unequal time sequences but is robust to multiple shortcomings
of time sequences. The smaller the DTW distance, the more
similar the investment schedule curves. In this article, the
abnormal curves of the investment schedule are eliminated
with the DTW algorithm.

4 INVESTMENT SCHEDULE DEDUCTION
BASED ON K-SHAPE AND NEURAL
NETWORK
4.1 Insufficiency of K-Means Analysis
The distance measured in the classical clustering algorithm
K-Means is Euclidean Distance. For the investment schedule
curves, it is to calculate the sum of the squares of the investment
schedule difference at each moment. This method of only
calculating the investment schedule difference in the
corresponding dimension cannot capture high-dimensional
features, such as changes over time.

Given the defect that the ED of the investment schedule curves
of power grid projects is arduous to reflect the high-dimensional
characteristics of the curves, the kernel method can be utilized for
optimization (Tang et al., 2019), in which the investment
schedule curves are nonlinearly mapped into a high-
dimensional feature space and then are clustered in the new
high-dimensional feature space, increasing the probability of
linear separability. Therefore, this clustering algorithm can
calculate the distance according to the high-dimensional
characteristics of the investment schedule curves, and the
effectiveness of clustering is also optimized. However, this
process is exceedingly cumbersome if the low-dimensional
data is directly mapped to the high-dimensional space through
a mapping function, and the calculation is performed in the high-
dimensional area. A significant limitation of this approach is
determining the kernel function, the data sparsity, and
computational complexity.

4.2 Investment Schedule Curves Clustering
Some missions in the investment schedule time sequences
analysis of power grid projects obtain a set of time sequences
depending on the average sequence, which is the basis of the
deduction prediction methodology for power grid infrastructure
investment. The uncomplicated method of extracting average
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sequences is to calculate the arithmetic mean of the
corresponding coordinates of all sequences, and the K-Means
algorithm is adopted. The K-shape algorithm is different from
K-Means in calculating the center of clusters and measuring the
distance, having the characteristics of high precision and
efficiency (Paparrizos and Gravano, 2017). The deduction
prediction framework of power grid infrastructure investment
and planning based on machine learning is proposed and
presented in Figure 1.

The cluster centroids are calculated by cross-correlation statistics.
Cross-correlation is a statistical measure that we can use to
determine the similarity of two investment schedule curves. We
assume that there are series �x � (x1, ...xn) and �y � (y1, ...ym) with
different lengths and n < m, and zeros are added to the end of �x to
make it the same length as �y. �y is kept fixed, and �x is plotted to
compute the inner product with the corresponding points of �y in
turn. The cross-correlation coefficient is defined as follows:

CCω( �x, �y) � Rω−m( �x, �y) ω � {1, 2, ...2m − 1}, (1)

where Rω−m( �x, �y) is calculated as follows:

Rk( �x, �y) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑m−k

l�1
xl+k · yl k≥ 0

R−k � ( �y, �x) k< 0 .

(2)

Here, R is used to calculate the similarity of x and y at each
step, and the greater the value of R, the more similar the two
sequences are.

4.2.1 Normalized Cross-Correlation
Normalized Cross-Correlation (NCC) is used to describe the
correlation between two samples, and the value range is (-1, 1).
The smaller the NCC value, the less similar the two samples are; the
larger the NCC value, the more similar the two samples are. The
coefficient normalization is defined as follows:

NCC( �x, �y) �
CCω( �x, �y)																

R0( �x, �x) · R0( �y, �y)√ . (3)

4.2.2 Shape-Based Distance
The smaller the shape-based distance (SBD) value is, the higher
the sequence similarity is, and vice versa. The value range of SBD
is between 0 and 2, and 0 means that the time sequences are
entirely similar. The shape-based distance is defined as follows:

SBD( �x, �y) � 1 −max
ω

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ CCω( �x, �y)																
R0( �x, �x) · R0( �y, �y)√ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (4)

4.2.3 Time Sequences Centroid Calculation Based on
SBD Distance Metric
The centroid of the investment schedule curves is also a time
sequences line. Here the centroid calculation is regarded as an
optimization problem whose goal is to confirm the minimum
sum of the squares of distances from other time sequences. Since
cross-correlation intuitively captures the similarity, not the
incompatibility, the centroid calculation sequence is
represented as the maximum square similarity to all other
time sequences.

The distance metric and centroid calculation of the K-shape
make it significantly better than K-Means. Initially, we randomly
assign the input sequences of the investment schedule to clusters
and then compute the centroid of each group. Then, the
clustering method is achieved by iteration, and each iteration
is divided into two steps. In the first step, each investment
schedule sequence is compared with all the calculated
centroids and is assigned to the cluster with the nearest
centroid. The second step is to update the cluster centroids.
These two steps are repeated until the algorithm converges or

FIGURE 1 | Proposed deduction prediction framework of power grid infrastructure investment and planning.

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 8934923

Wu et al. Machine Learning Driven Deduction Prediction

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


the maximum number of iterations is reached. Through this
iterative process, K-shape minimizes the sum of squared
distances and manages to generate uniform and well-separated
clusters.

4.3 Investment Effectiveness Deduction
According to the estimated put into operation time in the
project library, combined with the schedule rules, the
milestone plans for construction are scheduled. At the same
time, based on the deduction predicted outcomes of the power
supply capacity, capacity-load ratio, “N-1”, new energy
consumption (Ming et al., 20202020; Husin et al., 2021;
Zhang et al., 2022), and other project investment benefits
(Spyrou et al., 2017; Chen et al., 2020), the grid investment
projects database is interactively adjusted until the expected
goals are met, and the project investment plans are obtained.
Here, BP neural network is also used for prediction, with
project properties as the input and investment benefits as
the output.

5 DISCUSSION AND CONCLUSION

The deduction of the investment schedule of power grid
projects is a complex task with extensive data, heavy
workload, and high technical requirements. Primary project
information data such as voltage level, construction scale,
construction attributions, and location are imported for the
neural network to predict the project duration. Then the

quintessential investment schedule curves are obtained by
clustering the historical investment schedule curves with the
K-shape algorithm. Finally, the investment schedule curve of
the selected projects in the next year is mapped to the
quintessential investment schedule curve of the
corresponding category through the construction period.

Power grid projects are characterized by significant
investments, long construction periods, and large reserve
quantities. Scientific and practical deduction prediction
methodology for power grid infrastructure investment and
planning can help the company to reasonably arrange the
power grid project library and investment allocation plan,
improve the company’s construction investment efficiency,
and play a crucial role in ensuring the steady development of
power grid and promoting the company’s investment planning
and construction process.
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