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Load forecasting for industrial customers is essential for reliable operation decisions in the
electric power industry. However, most of the load forecasting literature has been focused
on deterministic load forecasting (DLF) without considering information on the uncertainty
of industrial load. This article proposes a probabilistic density load forecasting model
comprising convolutional long short-term memory (ConvLSTM) and a mixture density
network (MDN). First, a sliding window strategy is adopted to convert one-dimensional
(1D) data into two-dimensional (2D) matrices to reconstruct input features. Then the
ConvLSTM is utilized to capture the deep information of the input features. At last, the
mixture density network capable of directly predicting probability density functions of loads
is adopted. Experimental results on the load datasets of three different industries show the
accuracy and reliability of the proposed method.
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1 INTRODUCTION

The improvement of the demand-side electrical energy management is of critical importance to reliable
and economical operation of the modern power system (Wang et al., 2021a). Accurate short-term load
forecasting (STLF) can help the department of demand-side management to understand and analyze
electricity consumption behavior and further make intelligent control strategy to strengthen energy
management. In many developing countries, electricity consumption by industrial customers is the major
part of total electricity consumption on the demand side (Tan et al., 2020). For example, in China, about
67% of electrical energy is consumed by industrial customers (National Bureau of Statistics of the People’s
Republic of China, 2021). However, the complex electricity tariff rules (Wang et al., 2020) and the high
uncertainty of industrial loads make it difficult for industrial customers to make a correct electricity
strategy, which leads to excessively high electricity costs and non-essential losses. To solve the
aforementioned problems, industrial customers can adjust production planning in advance to improve
energy efficiency and economic benefits. Therefore, high-accuracy STLF for industrial customers is
urgently needed.

As a typical time series forecasting problem, many STLF methods have been a hot topic in academia
and industry (Cai et al., 2017; Hou et al., 2020a; Hou et al., 2020b; Cai et al., 2021; Hou et al., 2021), which
can be roughly categorized into statistical methods and artificial intelligence methods (Kuster et al., 2017).
Among them, the statisticalmethods (Zhao and Li, 2021; López et al., 2019) are difficult to handle load time
series with high randomness and non-linearity (Wang et al., 2021b) and usually result in low forecasting
accuracy. The artificial intelligence methods can be further divided into the shallow machine learning
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(Wang et al., 2021c) and deep learning (Ruan et al., 2021). These
methods have powerful non-linear processing capabilities, which
address the drawback of statistical methods. However, shallow
structure-based methods need additional feature extraction and
selection due to their poor performance in feature mining, so they
are not suitable to be implemented in different datasets (Afrasiabi
et al., 2020). In addition, the depth limitation of shallow machine
learning also restricts the forecasting accuracy.

Deep learning models can capture deep features from historical
load data through multi-layer non-linear mapping and can handle
various relevant factors. Jiao et al. (2018) used the long short-term
memory (LSTM) network to predict the load of non-residential
customers, which brings a significant improvement compared with
several shallow machine learning models. A single model suffers the
limitations of the algorithm and some accidental factors, resulting in
poor generalization performance (Fallah et al., 2019). Hence, Farsi
et al. (2021) adopted the combinedmodel of CNN-LSTM, which can
comprehensively utilize the information provided by each model to
improve the forecasting accuracy.

However, commonly used two-dimensional (2D) CNNs are not
suitable for one-dimensional (1D) time series data, while using 1D
CNN to learn time series faces the problem of overfitting, unless
increasing the number of CNN layers. Therefore, applying CNN to
the time series forecasting problem is suboptimal (Essien and
Giannetti, 2020). The convolutional LSTM (ConvLSTM) proposed
by Shi et al. (2015) has both powerful feature extraction capabilities of
CNN and excellent time sequence processing capability of LSTM, so
it can not only capture features but also perform well in sequential
learning. Essien and Giannetti (2020) established a deep ConvLSTM
encoder–decoder architecture for multistep machine speed
prediction. Experimental results show that the proposed method
has higher test accuracy (rootmean square error (RMSE) ranges from
64.23 to 64.93) than the deep LSTM and the CNN-LSTM
encoder–decoder models. In addition, ConvLSTM has been
successfully applied to time series forecasting problems such as
wind power forecasting (Sun and Zhao, 2020) and solar
irradiation forecasting (Hong et al., 2020). All the studies
described before prove that ConvLSTM has a significant
performance in forecasting time series data. Hence, applying
ConvLSTM to STLF is expected to improve the probability
forecasting accuracy of industrial customers.

The aforementioned approaches are implemented as point
forecasts, which only provide the future point value without
information about the associated uncertainty. To measure the
uncertainty of load and accommodate the risk brought by the
uncertainty of load, probabilistic load forecasting (PLF) gets more
attention in industrial applications (Zhang et al., 2019a). The existing
PLF methods can be divided into prediction intervals (PIs), quantile
prediction, and probabilistic density function (PDF) forecasting
according to the output form, and they provide the statistical
information of the future load. Among all methods, PDF
forecasting can fully reflect distribution information of future load
data, which provides far more information than other forms of PLF
(Xie et al., 2019), (Zhang et al., 2020). Therefore, PDF forecasting is an
essential tool to quantify uncertainty in load forecasting.

On PDF forecasting, He et al. (2017) used kernel-based support
vector quantile regression to generate complete probability

distribution of future values and then predicted PDFs according
to copula theory. He et al. (2019) developed the least absolute
shrinkage and selection operator-quantile regression neural
network (LASSO-QRNN) for electricity consumption forecasting.
As mentioned before, many PDF forecasting methods focus on
indirectly predicting PDF in current research, but the forecasting
errors of indirect forecasting models grow with each iteration,
resulting in low forecasting accuracy (Afrasiabi et al., 2021). It is
necessary to research the method of directly forecasting PDF. In
Zhang et al. (2020), an improved deep mixture density network
(MDN) was built to predict wind power of multiple wind farms, and
then a laconic and accurate PDF at each time step was produced. To
enhance the learning ability of MDN, He et al. (2019) combined the
deep learning approach and MDN to characterize PDF of wind
speed. This method can directly construct PDFs by processing raw
data and enhance forecasting accuracy and computational efficiency.
Afrasiabi et al. (2020) also merged the deep learning model into
MDN to directly predict PDFs of residential loads. In case studies, the
accuracy rates of median prediction were 10.024 and 6.694% in terms
of mean absolute percentage error (MAPE), respectively, which
demonstrated the effectiveness of the deep mixture model.

A critical issue is that although PDF forecasting techniques
based on MDN have been applied to wind power probabilistic
forecasting and residential load probabilistic forecasting, none of
themethodologies proposed so far are looking into industrial load
forecasting. The amount of literature on PLF of industrial loads is
quite limited. Berk et al. (2018) proposed an inhomogeneous
Markov switchingmethod to achieve PLF of industrial customers.
Da Silva et al. (2019) combined the bottom-up approach with
hierarchical linear models for PLF in the industrial sector. Due to
the continuous development of the industry and the increasing
variability of customers’ activities (Wang et al., 2021a), PLF that
can predict uncertain information is more suitable for industrial
load forecasting. Based on the aforementioned analysis, we
merged the deep learning model into MDN as a solution for
industrial load forecasting.

With the aim of directly learning the severe uncertainty of
industrial loads and providing accurate load forecasting results,
we developed a new deep mixture model based on ConvLSTM
and MDN. The model exploits the strengths of ConvLSTM in
feature extraction and sequence learning to learn deep features of
load data. ConvLSTM and MDN are combined by using a dense
layer to directly predict PDF. The main contributions of this
study are described as follows:

(1) This study introduces an emerging deep learning model into
the field of industrial load forecasting, namely, ConvLSTM.
Meanwhile, in order to make full use of the load and various
types of data related to the load, a simple input construction
method for ConvLSTM is proposed. ConvLSTM can extract
key features of these data well to improve the performance of
probabilistic forecast accuracy.

(2) The probability density function forecasting is new to the
industrial load forecasting literature. We built a novel
mixture model combining ConvLSTM and MDN. The
model aims to acquire full statistical information about
future industrial load consumption in the form of PDF.
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The proposed method can predict industrial loads with
strong non-linear relationship, high variability, and severe
uncertainty.

(3) Comprehensive case studies are conducted on load datasets
of different industrial customers and compared with multiple
state-of-art models. Experimental tests results show that the
proposed model has stronger robustness, better
generalization performance, and higher forecasting
accuracy. For instance, ConvLSTM improves the accuracy
of LSTM by more than 20%.

The rest of the study is organized as follows: Section 2 presents
basic knowledge about CNN, LSTM, convolutional LSTM, and
MDN. Section 3 analyzes the relevant characteristics of the load,
and the proposed ConvLSTM-MDN model and methodological
approach are introduced in Section 4. Numerical simulations
results are reported and discussed in Section 5. Finally, Section 6
concludes the study.

2 TECHNICAL PRELIMINARIES

2.1 CNN
CNN is a deep neural network with convolution operation, which
can extract features among input data with two advantages: local
perception and weight sharing. Therefore, CNN has less number
of parameters than ordinary neural networks. The typical CNN
consists of convolutional layers, pooling layers, and fully
connected layers. Convolutional layers employ a set of
learnable kernels to perform the convolution operation on
input data, in order to extract features or patterns from
inputs. Pooling layers can shrink the parameter dimensions
and control overfitting. Fully connected layers are put at the
end of a sequence of the layers, which can summarize features
extracted by previous layers to generate outputs.

2.2 LSTM
As a special variant of recurrent neural networks (RNNs), LSTM
can effectively surmount the problems of gradient vanishing and
gradient exploding when RNN learns long-term temporal
correlations. Based on the architecture of RNNs, memory cell
and three control gates are included in the architecture of the
LSTM to control information flow. The memory cell can
accumulate the state information and remain unchanged.
Three control gates, namely, input gate, output gate, and
forget gate, are used to record new information selectively and
clear previous information selectively, thus solving the long-term
dependence problem in sequence learning.

2.3 ConvLSTM
In order to satisfy the requirements of different tasks, various
modified versions are developed from LSTM. On the basis of
the fully connected LSTM (FC-LSTM) network, Shi et al.
replaced the FC layer operators in the state-to-state and input-
to-state transitions with convolution operators to obtain
ConvLSTM models with the complementary strengths of
LSTM and CNN models. Therefore, the network topology

of ConvLSTM enables it to perform convolution operation on
multidimensional data to capture the spatial and temporal
features rather than just temporal features. Figure 1 illustrates
the inner structure of the ConvLSTM. Similarly, the
ConvLSTM also uses the forget gate to decide which
information is to be “remembered” or “forgotten.”
Different from LSTM, the input matrix xt of ConvLSTM is
fed as image (i.e., 2D or 3D matrix). In the ConvLSTM, the
future cell state is determined by the input at the current time
step, output at the previous time step, and cell state at the
previous time step. The key formulas of the overall
ConvLSTM connections are shown in (1) to (5):

ft � σ(wxf pxt + whf p ht−1 + wcf+ct−1 + bf), (1)
it � σ(wxi pxt + whi p ht−1 + wci+ct−1 + bi), (2)
ot � σ(wxo pxt + who p ht−1 + wco+ct + bo), (3)
ct � ft+ct−1 + it+tanh(wxcpxt + whc p ht−1 + bc), (4)
ht � ot+tanh(ct), (5)

where t is the time step; f, i, o, and c represent forget gate, input gate,
output gate, and cell state, respectively; the variables x, h,w, and b are
input vector, output vector, weight matrix, and bias vector,
respectively; σ denotes the sigmoid activation function; tanh
denotes the hyperbolic tangent activation function; + denotes the
Hadamard product; and p denotes the convolution operator.

2.4 MDN
The MDN can predict PDFs of the target variables, which was
first introduced by Christopher M. Bishop in the 1990s. The
structure of MDN is composed of a Gaussian mixture model and
a feed-forward network. MDN uses Gaussian function as the
basic component and superposes a sufficient number of Gaussian
functions in a certain proportion to fit the final PDF. Gaussian
function enables the MDN to flexibly and accurately represent
arbitrary probability distributions (Zhang et al., 2019b). The
output variables of model are used to construct final PDFs,
which include mean, standard deviation, and proportion of
Gaussian distribution. Theoretically, when the mixing
coefficients and Gaussian parameters are correctly chosen,
MDN can approximate any PDF (Bishop, 1994).

For any given value of a, the Gaussian mixture model provides
a general form that approximates any conditional density
function p(yt|a). The equation is as follows:

FIGURE 1 | Inner structure of ConvLSTM.
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p(yt|a) � ∑K
k�1

πk(a, t)φ(yt

∣∣∣∣μk(a, t), ]k(a, t)),
∀t ∈ {1, . . . , T},∀k ∈ {1, . . . , K},

(6)

where K is the number of components in the mixture model;
πk(a, t), μk(a, t), and ]k(a, t) represent mixing coefficient, mean,
and standard deviation of the kth component, respectively. It
should be noted that the sum of mixing coefficients must be 1,
which can be achieved by controlling the output through the
softmax function. The softmax function is given by

∑K
k�1

πk(a, t) � 1, 0≤ πk(a)≤ 1 , (7)

αk(a, t) � exp(πk(a, t))∑K
l�1exp(πk(a, t))

. (8)

Similarly, to ensure that the variance is greater than or equal to
0, ]k(a) can be reformulated as follows:

βk(a, t) � exp(]k(a, t)). (9)
In order to control the output value of the MDNmodel within

reasonable bounds, the modified exponential linear unit (ELU)
activation function can be used as follows:

g(a) � elu(a) + 1. (10)
The loss function of standard MDN is maximum likelihood

method, which may lead the loss function to NaN value. The
reason is that the function approaches infinitesimal as the input
value approaches 0. To mitigate the possibility of NaN value, this
study employs continuous ranked probability score (CRPS) as the
loss function. CRPS is computed as the integral of the square,
which avoids infinitesimal or infinite situations.

3 ANALYSIS OF INDUSTRIAL LOAD
TEMPORAL RELEVANCY AND RELEVANT
FACTORS
3.1 Industrial Load Temporal Relevancy
Industrial load is time series data, so an essential element of it is time.
Temporal relevancy is important information that cannot be

ignored. In this study, some industrial load data is randomly
selected to perform Pearson correlation analysis on the load at
adjacent times and the adjacent daily load at the same time. The
analysis results are shown in Figure 2. It can be seen that the degree
of correlation between loads in both cases tends to weaken with the
increase of the time interval, that is, the load temporal relevancy
gradually weakens. Therefore, it is important to select historical load
data in a suitable time range as the input features of model.

3.2 Industrial Load Relevant Factors
This study considers two types of relevant factors: temperature
and calendar information. First, the influence of temperature on
load is analyzed by Pearson correlation coefficient. If the
correlation coefficient score is greater than 0.6, temperature is
selected as the input feature of the model. Taking the load data of
an industrial customer in 2018 as an example, the correlation
coefficient score is 0.827, which indicates a strong correlation.
Meanwhile, Figure 3 presents the load and temperature profiles.
It is obvious that the load increases with decreasing or increasing
temperature in winter and summer.

Calendar information includes working days, weekends and
holidays. Industrial loads relate to production plan and activities
of workers. Due to the work schedule, the load from Monday to
Friday and the load on the weekend are significantly different. In
addition, holidays are also an important factor. For example, in
China, during important traditional festivals such as the Spring
Festival, the National Day, and the Mid-Autumn Festival,
employees of most industrial enterprises rest. Therefore, we
cannot ignore the effect of calendar information on the load.

4 THE LOAD FORECASTING FRAMEWORK
BASED ON CONVLSTM-MDN MODEL

This study proposes a deep model for probability density
forecasting of industrial load, based on ConvLSTM-MDN. The
framework of the proposed method is established by three steps,
including data pro-processing, 1D time series to 2D matrices
transforming and probability density forecasting of industrial

FIGURE 2 | Load correlation of adjacent time to d (day) and t (time). (A) shows the Pearson correlation analysis results of adjacent daily loads, and (B) shows the
Pearson correlation analysis results of the load at adjacent times.
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load. Each step in the framework is introduced in the following
sections.

4.1 Data Pro-Processing
For load data of industrial customers, the main reasons for
missing data include acquisition equipment failures and signal
transmission interruption. In order to prevent missing data from
destroying the continuity of load data, the following method is
adopted: when the proportion of missing data on a certain day is
low, linear interpolation is employed to process these data.
Instead, all data for the day are deleted.

Then, in order to accelerate convergence speed of the model,
we use the min-max normalization (Farsi et al., 2021) method to
scale load data and temperature data to the range (0,1). Because
the calendar information is discrete data, we adopt One-Hot
encoding method to convert it into a form that can be processed
by deep learning algorithms. This studymarksMonday–Friday as
0 and weekends as 1. According to the actual holiday date of
industrial customer, the holiday is marked as 1, and other days are
marked as 0.

4.2 1D Time Series to 2D Matrices
Transforming
Although the ConvLSTM algorithm takes into account the
advantages of the CNN in feature extraction and the LSTM in
sequential learning, the use of ConvLSTM in industrial load
forecasting will face the problem of data dimension mismatch,
that is, the structure of standard ConvLSTM is not suitable for
directly processing load data which is 1D time series data. To
tackle this problem, we adopted a method to convert the 1D data
into 2D matrices that can be processed by ConvLSTM.

The load dataset is denoted as D = {l1, l2, . . ., lS} with K
instances per day; the temperature dataset, date dataset, and
holiday dataset are denoted as T = {T1, T2, . . ., TS}, W = {W1,
W2, . . ., WS}, and H = {H1, H2, . . ., HS}, respectively. We
reconstruct these time series into a series of 2D matrices
[N×M], where N is manually set, M is equal to (K+3), and

they are integers and greater than 2. The reconstruction
method is as follows.

First, construct the first matrix graph: The l1 to lK data on the
first day are the first row of the matrix. The lK+1 to l2K data of the
second day are the second row of the matrix. N days of data are
selected to construct the 2D matrix [N×K]. Then, temperature,
date type, and holiday corresponding to the moment of the first
column load are added to the matrix in order to obtain the first
2D matrix [N×M]. This matrix can be used to predict lN×k+1 data.
The first 2D matrix is as follows:

⎧⎪⎪⎨⎪⎪⎩
l1 / lK T1 W1 H1

..

.
1 ..

. ..
. ..

. ..
.

l(N−1)×K+1 / lN×K T(N−1)×K+1 W(N−1)×K+1 H(N−1)×K+1

⎫⎪⎪⎬⎪⎪⎭.

(11)
Second, other matrix graphs are constructed: a fixed-length

sliding window method of 1D time series load dataset (with a
length of N×K and one step size) is used to capture the other load
matrix. That is, the l2 to lK+1 data are the first row of the second
matrix. The lK+2 to l2K+1 data are the second row of the second 2D
matrix. N rows of data are selected to construct the second load
matrix. The second matrix is also obtained by adding
temperature, date type, and holidays to the load matrix in
order. The second matrix can be used to predict lN×K+2 data.

Finally, following the fixed-length sliding window method
described before, the last 2D matrix is obtained. A total of (S-
N×K) 2D matrices can be obtained. Figure 4 shows the diagram
of 2D matrix conversion.

4.3 Probability Density Forecasting of
Industrial Load
1) Hyper-Parameters Optimization

Hyper-parameters are important factors that directly influence
the prediction accuracy of models. In this study, the prediction
accuracy is largely related to ConvLSTM layer parameters

FIGURE 3 | Load and temperature profiles.
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(number of filters, kernel size) andMDN parameters (the number
of components). Too many filters will increase model training
time and result in overfitting. On the contrary, models may not
get good accuracy results. In addition, a larger kernel size can
capture better global features, but the amount of calculation will
slow down training process. A smaller kernel size can improve
learning speed, but may not capture features well. Similarly,
appropriate number of components can better fit PDFs.

Therefore, we applied the grid search method for the hyper-
parameter optimization. The grid search method loops through
all selectable candidates to find the optimal parameters set. This
method is simple to implement and has great versatility. It is
described as follows: Given the possible values of three hyper-
parameters, then find the optimal set of hyper-parameters that
minimizes the validation loss. Table 1 shows the search space of
the three hyper-parameters in ConvLSTM layer and MDN. The
other benchmark models included in this study use the similar
approach to optimize the model hyper-parameters.

2) ConvLSTM-MDN Model

The converted 2D matrices are used as the input data of the
model. The input set is a dimensional tensor with (Y, 1,N,M, 1) size,
whereY is the number of samples. Themodel designed in this study is
composed of ConvLSTM layer, flatten layer, dense layer, and MDN.
The number of three layers is 1. The activation function of
ConvLSTM layer is a rectified linear unit (ReLU). The flatten
layer is a transition layer which can flatten the multidimensional
array into a linear vector. The dense layer is used to extract the
association between the previous features, and the activation function
of dense layer is linear function. Afterward, the hidden layers
mentioned earlier are merged into MDN to output the
approximated parameters (m mean values, m standard deviation,
and m mixing coefficients) in parallelized manner, where m is the
number of components in the MDN model. The future PDFs are
obtained according to the approximated parameters. Furthermore,
the loss function of the model is CRPS.

FIGURE 4 | Diagram of 1D time series to 2D matrix transforming.

TABLE 1 | Hyper-parameters of ConvLSTM layer and MDN.

Layer Parameter(s) N of 2D matrix Value

ConvLSTM Filters 15, 30, 45, 60, 75, and 90
Kernel size 2 (2×2)

3 (2×2), (3×3)
..
. ..

.

d (2×2), (3×3), . . ., (d×d)

MDN Number of components — 3, 4, 5, 6, 7, 8, 9, and 10
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3) Evaluation Metrics

To evaluate the deterministic forecasting performance of the
proposed model, two commonly used evaluation metrics are
adopted in this work, which are RMSE and MAPE. RMSE can
measure the deviation between the forecasted and the actual
value. But it is sensitive to data that fluctuates greatly in short
time. MAPE measures the accuracy by calculating the relative
error between the forecasted value and the actual value, which can
solve the problem of RMSE. If the actual value is zero, MAPE
cannot be calculated. The advantages of two evaluation metrics
can be leveraged. The aforementioned evaluation metrics are
defined as follows:

RMSE �
������������
1
n
∑n
i�1
(ŷi − yi)2√

, (12)

MAPE � 100%
n

∑n
i�1

∣∣∣∣∣∣∣∣ŷi − yi

yi

∣∣∣∣∣∣∣∣. (13)

Furthermore, we select CRPS as probabilistic evaluation
metrics to evaluate the performance of predicted PDF. CRPS
is widely used in the field of probabilistic forecasting, which can
comprehensively assess the calibration and sharpness of the
forecasted PDF. CRPS is expressed as follows:

CRPS � 1
n
∑n
i�1

∫+∞

−∞
[F�(x) − F(x)]2dx. (14)

The general research framework based on the ConvLSTM-
MDN model is visualized in Figure 5.

5 CASE STUDY

The proposed model is tested on three different types of industrial
customers to assess the feasibility of the probabilistic forecasting
method in load forecasting for industrial customers. Two industrial
datasets are collected from a nonferrous metal smelting industry and
a medical industry in Hunan Province, China, with a temporal
resolution is 15-min interval. Another dataset is retrieved from
the Irish Smart Metering Electricity Customer Behaviour Trials
(CBTs) (Commission for Energy Regulation (CER), 2012).
Temperature data are acquired from the National Oceanic and
Atmospheric Administration (NOAA) website. After converting
the aforementioned data into 2D matrices by using the fixed-
length sliding window method mentioned in Subsection 4.2, the
input dataset of themodel is obtained. Then, 70% of the input dataset
is dedicated to training, 10% for validating, and 20% for testing.

For the sake of comparison, eight different models are integrated
into the MDN to construct PDFs with the same dataset, including
linear regression (LR), autoregressive integrated moving average
model (ARIMA), SVR, random forest (RF), feedforward neural

FIGURE 5 | Load forecasting framework based on the ConvLSTM-MDN model.

TABLE 2 | Hyper-parameters of the contrast models.

Model Hyper-parameter(s) Value

ARIMA-MDN (p, d, q) (2, 0, 1)
SVR-MDN Kernel function RBF

Penalty coefficient 1
RF-MDN Trees 80
FFNN-MDN FFNN layer, units 1, 120
LSTM-MDN LSTM layer, units 1, 120
2D-CNN-MDN Convolutional layer 1

Filters, kernel size 60, (2×3)
Max-pooling layer 1

2D-CNN-LSTM-MDN Convolutional layer 1
Filters, kernel size 45, (2×3)
Max-pooling layer 1
LSTM layer, units 1, 60

TABLE 3 | Forecasting results of each N.

N of 2D matrix Evaluation metrics

Median CRPS (%)

RMSE (kW) MAPE (%)

2 19.717 2.813 13.475
3 19.052 2.605 12.774
4 19.094 2.708 13.192
5 21.795 3.016 15.385
6 20.555 2.813 14.086
7 24.123 3.802 18.519

The bold values indicate the minimum value of each evaluation metrics, that is, the best
forecasting effect.
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network (FFNN), LSTM, 2D-CNN, and 2D-CNN-LSTM. The
hyper-parameters of all models are given in Table 2. The first to
sixth model in the contrast models directly use 1D time series data as
the input data. The rest of model use 2D matrices as input data. The
activation function of the neural network in all models is ReLU.
Adam Optimizer is used to optimize the network parameters to
minimize loss function. The number of components in the MDN
network of all contrast models is 3.

5.1 Experiment 1: Load Forecasting of the
Nonferrous Metal Smelting Industrial
Customer
The nonferrous metal smelting industry data collected between 1
March 2018 and 31 August 2018 are selected for a short-term

probability density function forecasting case study. After converting
a 1D time series to 2D matrices, the input dataset is split into three
parts for training (1 March 2018 to 6 July 2018), validation (7 July
2018 to 24 July 2018), and testing (25 July 2018 to 31 August 2018).

5.1.1 2D Matrix Size Analysis
According to the conversionmethod described in Subsection 4.2, the
size of converted 2D matrix is [N×M]. From Section 3.1, we know
that temporal relevancy between loads weakens as the time interval
increases. Since theM of the matrix is fixed, time length of historical
load is determined byN. Too largeNmay result in longer processing
time and running out of memory. On the contrary, too small Nmay
lead to insufficient extraction of information. Therefore, we need to
select an appropriate value ofN. Considering the processing time, we

FIGURE 6 | ConvLSTM-MDN model predictive distribution and real values for a day at (A) 8:00 and (B) 16:00 in experiment 1.

FIGURE 7 | PIs under different confidence levels obtained by the proposed ConvLSTM-MDN model in experiment 1.
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set the value range of N to [2,7] in this study. By comparing the
optimal result corresponding to eachN, theNwithminimum error is
selected as the finalN. The result corresponding to eachN is shown in
Table 3.

It is observed that the most accurate results are obtained when
N = 3, that is, the RMSE, MAPE, and CRPS values are lower than
the other values of N. When N = 7, the three error are the largest.
The difference between the error of other N is little. Furthermore,
the optimal hyper-parameters (filters, kernel size, and the number
of components in the MDN) of the model corresponding toN = 3
are 30, (2 × 2), and 3.

5.1.2 Forecasting Result
After determining the size of 2D matrix and hyper-parameters of
the model, training set and validation set are used to train the
model to obtain the optimal model. Finally, the testing set is input
into the optimized ConvLSTM-MDN model to forecast PDFs of
industrial load. Figure 6 shows the predicted PDFs for two
different times of a day in the testing set and associated real
values. Figure 6A,B show the PDFs for peak hours and off-peak
hours, respectively. As shown in the figures, real values are very
close to the peak of the PDF curve, especially real value in

TABLE 4 | Load forecasting evaluation on the testing set.

Time From 25-Jul-2018 to 31-Aug-2018

Evaluation metrics Median CRPS (%) Forecasting time(s)

RMSE (kW) MAPE (%)

LR-MDN 53.616 10.028 40.391 0.050
ARIMA-MDN 52.296 9.690 40.376 0.459
SVR-MDN 42.826 7.681 32.897 0.523
RF-MDN 34.196 5.816 24.496 0.500
FFNN-MDN 33.184 5.640 23.125 0.574
LSTM-MDN 28.628 4.554 21.002 0.140
2D-CNN-MDN 28.625 3.989 19.622 0.180
2D-CNN-LSTM-MDN 23.707 3.600 17.418 0.401
Proposed model 19.051 2.604 12.774 0.606

The bold values indicate the minimum value of each evaluation metrics, that is, the best forecasting effect.

FIGURE 8 | Load forecasting profiles of all models in experiment 1.

TABLE 5 | Forecasting results of each N

N of 2D matrix Evaluation metrics

Median CRPS (%)

RMSE (kW) MAPE (%)

2 17.870 2.372 13.517
3 17.520 2.371 13.433
4 17.404 2.343 13.283
5 17.865 2.414 13.702
6 18.094 2.487 13.993
7 18.692 2.593 14.545

The bold values indicate the minimum value of each evaluation metrics, that is, the best
forecasting effect.
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Figure 6B almost coincides with the peak, which indicates that
the sharpness of predicted PDF is clear.

Taking two sample days in testing set as an example, the PIs under
different confidence level obtained by the proposed ConvLSTM-
MDN framework are shown in Figure 7. As presented in Figure 7,
the PIs under a higher confidence level can cover the PIs under a
lower confidence level. In addition, the PIs under different confidence
levels and real values of the load have similar fluctuation. Since the PIs
under a low confidence level is narrower than the PIs under a high
confidence level, the small number of real loads falls outside the PI
with lowest confidence level. The PIs becomes narrower when the
value of load rises or falls rapidly, and the PIs for peak hours
become wider.

5.1.3 Comparisons Analysis
The forecasting result comparisons between the proposedmodel and
contrast models are all provided in Table 4, with the best
performance being highlighted. In the table, the forecasting effect
of statistical method integrated into the MDN obviously worse than
machine learning algorithms integrated into the MDN, and shallow
machine learning algorithms worse than deep learning algorithms.
For deep learning algorithms, the model combining 2D-CNN and
LSTM can achieve better performance than LSTM and 2D-CNN
alone for forecasting. The ConvLSTM, which leverages the strengths
of CNN and LSTM, performs better than 2D-CNN-LSTM. For
instance, the RMSE improvement rates is 19.64%, the MAPE
improvement rates is 27.67%, and the CRPS improvement rates

FIGURE 9 | ConvLSTM-MDN model predictive distribution and real values for a day at (A) 8:45 and (B) 23:00 in experiment 2.

FIGURE 10 | PIs under different confidence levels obtained by the proposed ConvLSTM-MDN model in experiment 2.
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is 26.67%. It indicates that ConvLSTM can better capture features of
industrial load. In addition, the application of ConvLSTM network
to the load forecasting of industrial customers is feasible and
effective. Compared with comparison models, the proposed

model achieves the most accurate results, which shows the
superiority of the model in PLF and DLF. Above all, it can be
concluded that the ConvLSTM-MDN model is effective for solving
the load forecasting problem of industrial customers.

In order to clearly display the prediction results of all models,
the load of 2 days in the testing set is selected for further analysis,
as shown in Figure 8. It is observed that the load of industrial
customer in experiment 1 has strong volatility and high
nonlinearity, which brings challenges to all models. According
to curves in the figure, contrast models have large deviations from
the real load, but the proposed model in this study generally fits
and catches the trend of actual load.

5.2 Experiment 2: Load Forecasting of
Medical Industrial Customer
In this experiment, the load data of the medical industry from 1
March 2018 to 31 August 2018 are used to run simulations.

TABLE 6 | Load forecasting evaluation on the testing set.

Time From 28-Jul-2018 to 31-Aug-2018

Evaluation metrics Median CRPS (%) Forecasting time(s)

RMSE (kW) MAPE (%)

LR-MDN 53.308 9.231 65.224 0.705
ARIMA-MDN 33.045 5.725 30.018 1.945
SVR-MDN 50.035 7.692 41.837 0.949
RF-MDN 51.780 8.285 46.491 0.466
FFNN-MDN 25.141 3.072 17.822 0.061
LSTM-MDN 22.499 2.956 16.804 0.374
2D-CNN-MDN 22.719 3.091 17.434 0.693
2D-CNN-LSTM-MDN 22.018 2.736 16.078 0.281
Proposed model 17.404 2.343 13.283 1.768

The bold values indicate the minimum value of each evaluation metrics, that is, the best forecasting effect.

FIGURE 11 | Load forecasting profiles of all models in experiment 2.

TABLE 7 | Forecasting results of each N.

N of 2D matrix Evaluation metrics

Median CRPS (%)

RMSE (kW) MAPE (%)

2 0.407 15.986 0.194
3 0.406 14.972 0.191
4 0.393 14.516 0.183
5 0.415 18.867 0.205
6 0.417 16.916 0.202
7 0.435 17.910 0.215

The bold values indicate the minimum value of each evaluation metrics, that is, the best
forecasting effect.

Frontiers in Energy Research | www.frontiersin.org April 2022 | Volume 10 | Article 89168011

Wang et al. Short-Term Forecasting for Customers Industrial

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Similarly, the approximate time range of testing set is from 25 July
2018 to 31 August 2018.

5.2.1 2D Matrix Size Analysis
According to the comparison inTable 5, themost accurate results are
obtained whenN = 4. Although the values of three evaluationmetrics
fluctuate with the change of N, the fluctuation range is small, that is,
the difference between the maximum and minimum of RMSE,
MAPE, and CRPS is 1.288, 0.25, and 1.315, respectively. It reflects
the stability of themodel under different input features. Furthermore,
in the case ofN= 4, filters, kernel size and the number of components
are 75, (2 × 2), and 3.

5.2.2 Forecasting Result
Figure 9 shows the PDFs of the peak hour (Figure 9A) and off-
peak hour (Figure 9B) of a day in the testing set and the
associated real values. It can be observed from the figure that
real values all falls near the peak of the PDF curve, especially real
value in Figure 9B is the closest to the peak. It indicates that the
high forecasting accuracy of the proposed model.

Figure 10 shows the PIs under different confidence level
obtained by the proposed ConvLSTM-MDN model and real

values in two sample days. It can be seen that a few real
values fall outside the PI with lowest confidence level, and all
real values fall within the PI with highest confidence level. The PIs
under all confidence levels and real values of the load have similar
fluctuation trend, which shows that the proposed model can
capture the dynamic changes of the load.

5.2.3 Comparisons Analysis
Table 6 shows the evaluation metrics of all models on the testing set.
The performance of deep learning algorithms integrated into the
MDN significantly outperform the performance of shallow machine
learning algorithms and statistical method integrated into the MDN
in the term of all metrics. Among contrast models, the 2D-CNN-
LSTM-MDN model has the best forecasting results. But compared
with the 2D-CNN-LSTM-MDN model, the ConvLSTM-MDN
model has the minimum errors, which indicate that the proposed
model improves the forecasting accuracy. Although the forecasting
time is the longest, it is acceptable in practical application with the
popularization of cloud computing.

Figure 11 shows the comparison between the prediction
results and actual values for 2 days in the testing set. It is
observed that the proposed model can better fit the trend of

TABLE 8 | Load forecasting evaluation on the testing set.

Time From 21-Oct-2010 to 31-Dec-2018

Evaluation metrics Median CRPS (%) Forecasting time(s)

RMSE (kW) MAPE (%)

LR-MDN 0.684 86.362 0.523 0.450
ARIMA-MDN 0.961 111.577 0.775 0.845
SVR-MDN 0.749 84.804 0.531 0.846
RF-MDN 0.584 81.013 0.464 0.654
FFNN-MDN 0.475 19.321 0.240 1.102
LSTM-MDN 0.496 18.106 0.249 0.744
2D-CNN-MDN 0.521 33.586 0.303 0.746
2D-CNN-LSTM-MDN 0.425 20.494 0.218 0.884
Proposed model 0.393 14.516 0.183 0.393

The bold values indicate the minimum value of each evaluation metrics, that is, the best forecasting effect.

FIGURE 12 | ConvLSTM-MDN model predictive distribution and real values for a day at (A) 10:00 and (B) 13:00 in experiment 3.
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actual load, and other models have large deviations from the real
load, especially the LR-MDN model.

5.3 Experiment 3: Load Forecasting of the
Irish Industrial Customer
In this experiment, public dataset small-to-medium industrial
customer collected from Irish is from 1 January 2010 to 31

December 2010 with a 30-min interval. According to the
splitting rules, the approximate time range of testing set is
from 21 October 2010 to 31 December 2010.

5.3.1 2D Matrix Size Analysis
Table 7 shows the minimum error for each N. This experiment
also achieves the best forecasting result when N = 4, which is the
same as experiment 2. In the case of N = 4, filters, kernel size and

FIGURE 13 | PIs under different confidence levels obtained by the proposed ConvLSTM-MDN model in experiment 3.

FIGURE 14 | Load forecasting profiles of all models in experiment 3.
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the number of components are 15, (2 × 2), and 3. There is a
significant difference between Irish industrial load and other
industrial loads, for example, the maximum values of the three
industrial loads are 8.257 kWh, 971.2 kWh, and 785.4 kWh.
Therefore, the value of the evaluation metrics in this
experiment is completely different from the evaluation metrics
in the previous two experiments.

5.3.2 Forecasting Result
Figure 12 shows the PDFs of the peak hour and off-peak hour of a
day in the testing set and the associated real values. It can be
observed from the figure that the real value in Figure 12A is the
closest to the peak. Figure 13 shows the PIs under different
confidence level and real values in two sample days. In order to
better display the forecasting result, we adjust the value of
confidence level. As the value of confidence level decreases,
real values that falls outside the PI increases. In addition, The
PIs under all confidence levels can capture the dynamic changes
of the load.

5.3.3 Comparisons Analysis
Table 8 shows the evaluation metrics of all models on the testing
set. The results of shallow machine learning algorithms are far
inferior to deep learning algorithms. Among all the models, the
proposed model has the best forecasting performance. Figure 14
shows the comparison between the prediction results and actual
values for 2 days in the testing set. It can be seen that contrast
models are quite different from the real load, and the proposed
model can better fit the trend of actual load.

6 CONCLUSION

In this study, we propose a new probabilistic forecasting method,
which can capture the uncertainty of a single industrial customer’s
load. By restructuring the load and various relevant factors into
2D matrices using a sliding-window approach, the forecasting
model—ConvLSTM-MDN—was applied to the short-term
probability forecasting problem of industrial loads. In order to
verify the performance of the proposed method, this study builds
the classical statistical methods, state-of-the-art deep- and shallow-
based models for comparison, and conducts numerical simulations
in three experiments. The following results were noted.

1) For three completely different industrial customers, the
experimental results of 2D matrix size analysis show that
the best forecasting results are obtained when N is 3 or 4.
Therefore, when N is in the range of (3, 4), the historical load
of a reasonable time interval can be obtained as input feature,

which can not only ensure the forecasting accuracy but also
reduce the training time.

2) The proposed model takes full advantage of the capabilities of
ConvLSTM in feature extraction and sequence learning and
the capabilities of MDN in describing uncertainty. The final
results show that the model can effectively improve the
forecasting accuracy of industrial load. For example,
15–60% improvement in accuracy compared to deep-based
models.

3) The hybrid model used in this study is not complex, and a
variety of external factors are considered, which is beneficial to
be extended to various industrial customers. The forecasting
results for three industrial customers show that the model
generalizes well.

In our future work, we will study how to reduce computational
demand and training time when the value of N increases.
Moreover, the feature factors affecting industrial customer
such as electricity price will be considered to improve
forecasting accuracy.
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