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Digital twin can well solve complex problems, especially in the case of mechanical failures.
Digital twin technology can be applied in 3D IoT smart factories, new smart city
construction, smart medical care, digital energy, digital archives, warehousing and
logistics visualization and other fields. Deep learning covers a wide range of
applications and is extremely common. This paper discusses the application of the
two in the risk prediction of coal and gas outburst strength. This paper firstly
describes the method of predicting coal and gas outburst intensity. For example, the
BP neural network algorithm applied to the prediction of coal and gas outburst intensity in
deep learning, the air flow control system model of digital twin for coal mines, and the risk
assessment algorithm of coal and gas outburst intensity in coal mines based on grey
relational analysis, and various ways to predict risk. And the system model is designed in
this paper. Combined with the Formula, this paper describes the process of predicting risk
in detail, and then conducts experiments based on digital twin and deep learning to predict
coal and gas outburst intensity. In this paper, digital twin is used to systematically design
coal and gas outburst intensity prediction, and a neural network prediction model based on
optimized quantum gate nodes is established. In this paper, the practical application
experiment and result analysis of the optimization algorithm in the coal and gas outburst
prediction model are carried out, and the conclusion is drawn. After QGNN is optimized by
the sdPSO algorithm, the error is extremely small, only 2.0914, and the specific value of the
prediction accuracy in practical applications is as high as 95%. The experimental data
verifies the feasibility of digital twin and deep learning technology in the prediction of coal
and gas outburst intensity.
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1 INTRODUCTION

Coal and gas outburst refers to coal outburst or gas outburst, which is a dynamic phenomenon in
the process of mine excavation and collection. Coal and gas outburst is a type of special gas
gushing phenomenon, that is, under the action of pressure, the broken coal and gas are suddenly
ejected in large quantities from the coal body to the mining space. The main manifestation of this
phenomenon is that in a very short period of time, a large amount of coal or gas will be erupted in
the mine. In the end, it forms a peculiarly shaped cavity, which also has certain effects on objects
in the mine, such as pushing mine carts and destroying facilities. The coal and gas erupted
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instantaneously in this phenomenon can fill hundreds or
thousands of meters of roadways under the action of wind.
Therefore, this phenomenon is very dangerous and is one of
the most threatening and destructive natural disasters in the
mine production process. In order to ensure the safe operation
and production of the mine and avoid more risks in the
process, it is necessary to analyze and study the
phenomenon of coal and gas outburst and make high-
precision predictions. At present, there is no thorough
research on this phenomenon, and the causes of coal and
gas outburst are very complicated. The traditional prediction
models developed on the market can only study the individual
outburst phenomena of coal and gas, and cannot interpret
complex and changeable scenarios, and the prediction
accuracy is not high. explaining the advantages of the
methods which they used (they need to compare it with
other methods) Therefore, the study of effective prevention
methods and related prediction techniques can greatly ensure
the safety of mine production and the safety of personnel. This
research has a great impetus to safety production.

The sdPSO prediction model tested in this paper is
extremely accurate. In addition, the relevant risk prediction
methods of coal and gas outburst intensity are discussed in
this paper. The system design based on digital twin has good
application prospects and has good guiding significance in
risk prediction. In this paper, a neural network prediction
model based on optimized quantum gate nodes is established
on the basis of the digital twin system. This method can
provide a novel research direction for coal and gas outburst
intensity prediction, and can also provide new ideas for digital
twin and deep learning application research.

2 RELATED WORK

XuJ said that there are large pulses and pulsations in the
process of coal and gas explosion. Five to six large pulses can
occur between single extensions. After each big pulse, there
are some accompanying pulses. In the process of explosion,
the pressure change and average impact force of each main
pulse showed a downward trend, but the cumulative energy of
acoustic emission first decreased and then increased, and the
increase rate reached 60% (Xu et al., 2018). ChengwuLI
showed that there is a good power relationship between
comparable pressure beams. The Formula for the pressure
relief ring and outlet port is R = 1.8886r 0.9351. The elastic
energy per unit volume of coal is 1.0–6.5 times the gas
expansion energy, accounting for 52%–87% of the total
energy. There is a positive linear correlation between soil
stress and burial depth (Chengwu et al., 2018). To achieve
digital twin vision, LiC uses the concept of dynamic Bayesian
networks to build a general probabilistic model for diagnosis
and prognosis, and illustrates the proposed method with an
example of fatigue crack growth in an aircraft wing. Dynamic
Bayesian networks integrate physical models and various
sources of contingent and epistemic uncertainty in crack
propagation prediction (Li et al., 2017). SchleichB proposes

a comprehensive reference model based on the skin model
shape concept as a digital twin of the physical product in
design and manufacturing. He addresses all
conceptualizations, representations, and implementations
covering models in their application throughout the
product life cycle (Schleich et al., 2017). WangJ established
a wind power range prediction model based on the multi-
output characteristics of BP neural network, and proposed an
optimization criterion considering the prediction interval
information. He then refined the model using a modified
particle swarm optimization (PSO) algorithm. The
simulation results of an example show that the proposed
wind power range prediction model can effectively predict
the output power range and provide decision-making basis
for power grid dispatchers (Wang et al., 2017a). XieR uses
elastic wave theory to analyze parameters such as density,
stress and strain that affect longitudinal and shear wave
velocity. He used the LM-BP neural network to fit the
experimental results and estimated the average relative
error to be 2.22% (Lü et al., 2017). However, these studies
basically have insufficient evidence and should be adjusted.

3 APPLICATION METHODS OF DIGITAL
TWIN AND DEEP LEARNING AND GREY
RELATIONAL ANALYSIS IN COAL AND GAS

3.1 BP Neural Network Algorithm Applied to
Coal and Gas Outburst Intensity Prediction
in Deep Learning
In the forward propagation of the signal and the back propagation
of the error, if the current output sample does not match the
desired sample, the sample needs to be sent to the error
propagation process. During error backpropagation, some
process sequences are completely opposite to forward
propagation (Jain et al., 2018). The output samples are sent
from the hidden layer to the input layer in a specific format,
and in the process are continuously propagated layer by layer, and
all errors are evenly distributed to each hidden layer unit. Finally,
the error signal of each hidden layer is retrieved and the weights
of each unit are corrected accordingly (Tang and Guan, 2017). In
order to make the final signal error reach the expected range or
acceptable range, it is necessary to iteratively update the two
processes of forward propagation and back propagation, and to
continuously modify the weights in the process (Abooali and
Khamehchi, 2019). The correction method is also the least
squares method. Figure 1 is the BP neural network model and
its function expression process.

In the transfer function, the logarithmic transfer function and
the tangent transfer function are both functions between linear
and nonlinear. They have both linear and nonlinear
characteristics. When using the sigmoid function in the output
layer of a BP neural network, its output will be limited between -1
and 1 (Chatterjee et al., 2017). The sigmoid function is convenient
for derivation, can compress data, and has the same amplitude
and is convenient for forward transmission. And if the purelin

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 8911842

Wang Coal and Gas Outburst Intensity

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


function is used in its output layer, its output will be unlimited.
Therefore, in the process of propagation, the Sigmoid function is
generally applied to the hidden layer to transmit the samples, and
then the purelin function is applied to the output layer to expand
the range of the final output samples (Peng et al., 2017).

Let the input vector be A � ( a1 a2 ... ak ... am )T, the
output vector of the hidden layer be
B � ( b1 b2 ... bv ... bn )T, and let the output vector of
the output layer be C � ( c1 c2 ... ci ... cl )T, the expected
output vector be X � (x1 x2 ... xi ... xl )T, and the
weight matrix from the input layer to the hidden layer is
denoted as W, then we can know
W � (w1 w2 ... wv ... wn ). In this case, the column
vector wv is the weight corresponding to the v th neuron in
the neural network. If the weight matrix from the hidden layer to
the output layer is Q, then Q � ( q1 q2 ... qi ... wk ) can
be known. Similarly, the column vector qi is the weight
corresponding to the i th neuron in the neural network, then
we can get:

Ci � f(neti), neti � ∑n
v�0
qvibk; i � 1, 2, ..., l (1)

bk � f(netv), netv � ∑m
k�0

wkvak; v � 1, 2, ..., n (2)

The transfer function is uniformly a unipolar Sigmoid
function, the unipolar sigmoid function features continuity
and derivation, namely f(a) � 1

1+ea, of course, a bipolar
Sigmoid function, namely f(a) � 1−e−a

1+e−a, can also be used to
establish a BP neural network model. At this time, if the
output value is different from the expected value, the error
can be set as λ, then:

λ � 1
2
(x − C)2 � 1

2
∑l
i�1
(xi − Ci)2 (3)

Substitute this error into the hidden layer to get:

λ � 1
2
∑l
i�1
[xi − f(neti)]2 � 1

2
∑l
i�1
⎡⎢⎢⎣xi − f⎛⎝∑n

v�0
qvibv⎞⎠⎤⎥⎥⎦2 (4)

Then expand the input and output layers to get:

λ � 1
2
∑l
i�1
[xi − f(neti)]2 � 1

2
∑l
i�1

⎧⎨⎩xi − f⎡⎣∑n
v�0
qvif(netv)⎤⎦⎫⎬⎭

2

� 1
2
∑l
i�1

⎧⎨⎩xi − f⎡⎢⎢⎣∑n
v�0
qvif⎛⎝∑m

k�0
wkvak⎞⎠⎤⎥⎥⎦⎫⎬⎭

2

(5)

It can be seen that the network error is a function of the
weights of each neural level, which means that adjusting the
weight is adjusting the error λ. The principle is to reduce the error
value, and the adjustment effect is proportional to the gradient of
the error, the negative sign in Formula (6) represents gradient
descent. It can be obtained:

Δqvi � −μ ϕλ

ϕqvi
; v � 0, 1, . . . , n; i � 1, 2, . . . , l (6)

Δwkv � −μ ϕλ

ϕwkv
; v � 0, 1, . . . , n; k � 1, 2, . . . , n (7)

The constant μ here represents the proportional coefficient,
the proportional coefficient reflects the learning efficiency, and
the error signal can be obtained by extrapolation:

γci � (xi − ci)ci(1 − ci) (8)

γbv � ⎛⎝∑l
i�1
γci qvi⎞⎠bv(1 − bv) (9)

The weight adjustment Formula of the algorithm is:

Δqvi � μγci bv � μ(xi − ci)ci(1 − ci)bv (10)

Δvkv � μγbvak � μ⎛⎝∑l
i�1
γci qvi⎞⎠bv(1 − bv)ak (11)

In the process of predicting the risk between coal and gas, BP
neural network will be used. At this time, it should be noted that
the dimensions and physical meanings of the collected data are
different (Xia et al., 2018). The limitation of BP neural network is
that the learning speed is slow, it is easy to fall into the local
minimum value, the selection of the number of network layers
and the number of neurons has no corresponding theoretical

FIGURE 1 | BP neural network model and its functions.
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guidance, and the network promotion ability is limited.
Therefore, it is necessary to unify the components of the input
samples at the beginning of network training, and it is necessary
to ensure that each input sample has the same status. In the
process of network training, the transfer function corresponding
to the neuron is a logarithmic function and a tangent sigmoid
function, and the output domain of the function is [0,1]. At
the same time, during the training process, the input data and
output data must be processed in advance to ensure that the
network converges quickly enough. Data preprocessing
includes data cleaning, data integration, data
transformation, and data reduction. When the components
of the mentioned samples are unified and the status is the
same, the maximum value amax and the minimum value amin

within the range can be determined, and the two values can be
transformed into a value with an interval of [0,1], common
Formula:

avg(ak) � ak − amin

amax − amin
(12)

It can be known from the obtained Formula that the input
data or output data is represented by ak, and the maximum and
minimum values of the sample data in the same situation are
amax and amin, respectively. The coal seam gas pressure,
content and other indicators belong to the quantitative
indicators in the input layer, and these indicators are
standardized to be included in the closed interval of [0,1].
However, the geological structure type index and the coal
damage type index belong to the qualitative description index
of the input layer, which cannot be actually calculated. There
are three basic types of basic geological structures: folds,
joints and faults. The linguistic values of these indicators
must be transformed into discrete quantitative values before
normalization. The structure of BP neural network for coal
and gas outburst is shown in Figure 2:

The four databases of spatial database, attribute database,
time database and knowledge database are combined into a
coal and gas explosion risk management system (Pan et al.,
2017). The gas explosion conditions are gas concentration,
sufficient oxygen content, and sufficient energy ignition
source.

The last knowledge database stores many kinds of data, such as
the relevant national policies, problem-solving models,
knowledge and experience of book materials, etc. (Nouh et al.,
2021). The structural design of the framework for the mentioned
coal and gas outburst risk prediction management system is
shown in Figure 3. Its main purpose is to realize the real-time
connection of attribute data and geographic data in the system (Li
et al., 2018).

3.2 The Wind Flow Control System Model of
the Digital Twin in the Coal Mine
In the wind flow control system, its physical space and
virtual space need to exchange information on the digital
twin of the wind flow control system (Zhuang et al., 2017).
The digital twin is also a new tool medium for current mine
wind flow regulation. The structure of the wind flow control
system based on digital twin is shown in Figure 4. The new
wind flow control system mainly applies the concept of
digital twin. In the digital twin wind flow control system,
the entities of the wind flow control system are divided into
two types, one is a physical entity and the other is a virtual
entity. At the same time, the system also includes twin data
and intelligent decision-making system (Ghassemzadeh
et al., 2021).

Air flow control device, air duct, monitoring system, gas
dust generation system and press-in fan constitute the
physical entity of the entire air flow control system (Wang
et al., 2017b). Among the components, the wind flow control
device is the core of the entire physical entity. Through the

FIGURE 2 | Structure of coal and gas outburst BP neural network.
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wind flow control device, it can achieve various functions,
such as adjusting the opening and closing size of the caliber,
controlling the movement and deflection of the air outlet, etc.
In addition, the physical entity also includes a gas dust
detection system, which is composed of multiple sensors
(dust sensor, gas sensor, wind speed sensor), a host
computer, and a data collector. It is mainly responsible for
real-time reading and collection of data such as dust
concentration, gas concentration and wind speed in
different areas of the entire mine (Bo et al., 2018). At the
same time, the system will also collect the data of the virtual
wind flow control system, and provide important guidance
for adjusting the wind flow control device.

The wind flow control physical system needs to
continuously collect the data in the area in real time, and
then conduct a summary analysis to establish a huge data
analysis library to provide accurate data support for the
control of the entire system. The wind flow control
logistics system usually needs to collect multi-dimensional
data, such as wind speed, dust concentration and gas
concentration. Multi-dimensional, big data, multi-scale,
etc. are the main features of the system. Through this
system, the staff can not only control various real-time
data in the area, but also know the relationship and law
between the control parameters of the air outlet and the data
collected in a timely manner (Qi et al., 2017). The existence of
the wind flow control physical system enables the mine to
have a higher control over the stability and accuracy of the
entire wind flow control system. The data collected by the

wind flow control physical system is transmitted through the
communication device, and the data is processed and stored
through the relevant conversion device (Liu et al., 2021).
Effective and practical information is extracted from it to
realize the synchronized and coordinated operation of the
physical entity and the virtual entity of the wind flow control
system. Among the data required by the mine, the air outlet
parameter control data and the gas dust concentration
prediction data are also key. The data fusion of the two is
performed to obtain the fusion model in Figure 5. Based on
the obtained fusion data and model, the virtual entity of the
wind flow control system is continuously updated, optimized
and simulated, and finally the dynamic synchronization
between the physical entity and the virtual entity and the
intelligent wind speed control are achieved.

By establishing the relevant structural model, the movement
data of the air duct is calculated and collected, and the opening
and closing process of the air duct diameter can be simulated and
deduced by the three-dimensional modeling software of the
computer (Chen et al., 2017). In the process of model
calculation, the relationship between input and output is
established by continuously inputting the data of the shaft
rotation angle of the power gear to calculate the law between
it and the opening and closing size of the air duct. Figure 6 is the
aperture opening and closing structure of the single blade in the
wind flow regulating device. In this structure, the input member is
a motor, and the motor drives mechanical structures such as a
bevel gear, a lead screw nut and a pull rod to control the opening
and closing of the diameter of the air duct.

FIGURE 3 | Coal and gas outburst risk prediction management system.
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3.3 Risk Assessment Algorithm for Coal and
Gas Outburst Intensity in Coal Mines Based
on Grey Relational Analysis
When researching the monitoring system of the whole mine, the
method of grey relational analysis is used. Taking the mine
monitoring system as the object to establish the relevant
mathematical model, quantify the dynamic development
process of the whole system and carry out detailed analysis, so
as to find out the relevant factors, characteristics and
contradictions that have a significant impact on the system.
The calculation steps of grey relational analysis are to
determine the influencing factors of the system and the
behavioral feature vector, data preprocessing, calculation of
relational degree, relational degree analysis and sorting. The
grey relational analysis method can quantitatively analyze
various factors and their influence degrees, and this method
requires little information for the research samples but can
finally get more accurate research results. When the summary
data of coal and gas outburst is extremely limited and has a large

gray scale, it is very suitable to adopt the method of gray
correlation analysis, and it can also eliminate the interference
of human factors on the final result to a certain extent. The grey
relational analysis method is very suitable for the situation of
limited data, no typical law, large gray scale of data and human
interference (Weidong et al., 2018). By analyzing the similarity
between the behavior sequence of a system and the reference
sequence, we can judge the tightness of the relationship between
the two. The grey relational degree is used to map the degree of
similarity in this kind of situation. The higher the degree of
similarity between the two sequences, the higher the degree of
association between the two sequences. First determine the
reference series and the data comparison series of coal and
gas, and let the time series at this time be n, then we can get:

Ak � (ak(1), ak(2), . . . , ak(m)), k � 1, 2, . . . , n (13)
There are n factors in n time series, and secondly we give the

time series:

A0 � (a0(1), a0(2), . . . , a0(m)) (14)

FIGURE 4 | Structure of the digital twin wind flow control system.
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Ak is the subsequence, that is, the factor sequence of this risk
assessment system. Through a comprehensive analysis of the entire
system, a conclusive reference sequence and a comparison sequence
are obtained, and the resulting two sequences are then normalized
(Choi et al., 2017). That is, the operator acts on the two sequences,

converts them into dimensionless data with similar quantities, and
simultaneously converts the negative correlation factors in the process
into positive correlation factors. The sequence of formula (14) can be
used as a reference sequence (or referred to as a parent sequence).
Common normalization methods are as follows:

FIGURE 5 | Twin data information fusion model of coal mine airflow control system.

FIGURE 6 | Opening diameter and opening and closing mechanism of air flow control device in coal mine.
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1) Initial value transformation

Taking Ak � (ak(1), ak(2), . . . , ak(m)), k � 1, 2, . . . , n as the
behavior sequence of the factor Ak, and let V1 be the sequence
operator, we can get:

AkV1 � (ak(1)v1, ak(2)v1, . . . , ak(m)v1) (15)
ak(i)vk � ak(i)

ak(1), ak(1) ≠ 0, i � 1, 2, . . . , m (16)

At this time, V1 is the initialization operator. AkV1 is the
image of the behavior sequence under the initialization operator,
referred to as the initial value image. This kind of mapping is
called initializing transformation, and its advantage is that each
value is greater than 0, and the sequence has a common starting
point.

2) Mean transformation

Also let Ak � (ak(1), ak(2), . . . , ak(m)), k � 1, 2, . . . , n be the
behavior sequence of the factor Ak, and let V2 be the sequence
operator, then (Wang et al., 2017c):

AkV2 � (ak(1)v2, ak(2)v2, . . . , ak(m)v2) (17)
ak(i)v2 � ak(i)

Ak
, Ak � 1

m
∑m
i�1
ak(i), i � 1, 2, . . . , m (18)

V2 at this time is the averaging operator.

3) Interval value transformation

Also let Ak � (ak(1), ak(2), . . . , ak(m)), k � 1, 2, . . . , n be the
behavior sequence of the factor Ak, and let V3 be the sequence
operator, then:

AkV3 � (ak(1)v3, ak(2)v3, ..., ak(m)v3) (19)

akv3 �
ak(i) −min

k
ak(i)

max
k

ak(i) −min
k

ak(i), i � 1, 2, . . . , m (20)

At this time, V3 can be used as a value operator.

4) Inverse transformation

Taking V3 as the Ak sequence of actions, and let V4 be the
sequence operator, then:

AkV4 � (ak(1)v4, ak(2)v4, ..., ak(m)v4) (21)
ak(i)v4 � 1 − ak(i), i � 1, 2, . . . , m (22)

At this time, V4 can be used as the inverse operator.

5) Reciprocal transformation

Let Ak � (ak(1), ak(2), . . . , ak(m)), k � 1, 2, . . . , n be the
behavior sequence of Ak, and let V5 be the sequence operator,
then:

AkV5 � (ak(1)v5, ak(2)v5, . . . , ak(m)v5) (23)

ak(i)v5 � 1
ak(i), i � 1, 2, . . . , m (24)

At this time,V5 can be used as an inversion operator. Next, the
grey correlation degree of the risk assessment of coal and gas
outburst intensity can be calculated:

A′k �
a′k(i) −min

k
a′k(i)

max
k

a′k(i) −min
k

a′k(i), k � 0, 1, 2, . . . , n (25)

The difference sequence at this time is as follows:

Δk(k) �
∣∣∣∣a′0(i) − a′k(i)

∣∣∣∣,Δk � (Δk(1),Δk(2), . . . ,Δk(m)), k
� 1, 2, . . . , n

(26)
The maximum difference and minimum difference are

expressed as:

N � maxkmaxiΔk(i) (27)
n � minkminiΔk(i) (28)

It can be got,

λ0k(i) � n + μN

Δk(i) + μN
, k � 1, 2, . . . , n (29)

λ0k � 1
m
∑m
i�1
λ0k(i), k � 1, 2, . . . , n (30)

According to the relevant information obtained from the
analysis, based on the principle of establishing the risk
prediction index of coal and gas outburst, and guided by the
comprehensive action hypothesis, the coal and gas outburst risk
prediction index system was successfully established. Formula
(29) and formula (30) represent the correlation coefficient and
the correlation degree, respectively. This paper also uses the
method of grey relational analysis to determine the key factors
causing coal and gas outburst through specific analysis of relevant
factors, and makes a rigorous evaluation of the indicators. The
key factors obtained by using the grey relational analysis method
are the predictors needed in this paper, such as gas pressure, gas
content, coal seam failure type, etc.

4 PREDICTION EXPERIMENT OF COAL
AND GAS OUTBURST INTENSITY BASED
ON DIGITAL TWIN AND DEEP LEARNING
AND PARTICLE SWARM OPTIMIZATION
ALGORITHM

4.1 Design of Coal and Gas Outburst
Intensity Prediction System Based on
Digital Twin
Based on the Unity3D engine, on its special tool, the system is
designed and developed on the Unity3D engine tool with
reference to the operation mode and composition of the
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digital twin wind flow control system. The Unity3D engine
supports multiple format import, high-performance lighting
system, AAA-level image rendering engine, realistic particle
system, etc. In order to realize the parametric control of the
wind flow control device, C language will be used to write and
develop related control scripts, and at the same time, the control
interface of the whole system will be designed and developed. On
this basis, the entire air flow control system can perform complete
particle simulation of dust and gas, and at the same time, the air
flow control intelligent decision-making system can also realize
the intelligent operation of the air flow control device.

The functions of the digital twin wind flow control system
are as follows:

1) Particle simulation: In the system, the actual movement of
gas, dust, etc. can be simulated. The dust or gas
concentration in the monitoring area can be identified,
so that the difficult-to-observe substances can be presented
on the display with a special rendering simulation method.

2) Intelligent regulation: By analyzing the monitoring data
collected in each area, the wind flow regulation virtual
system can give relevant warnings to gas and dust. And
when the concentration of gas and dust is about to exceed
the warning concentration, the parameters of the wind flow
are appropriately adjusted through the intelligent control
system.

3) Motion control: The operator can manually adjust the
parameters of the air outlet, so that the air outlet can make
corresponding physical movements under the driving of the
parameters. This function is convenient for operators to be
familiar with the principle and provides certain convenience
for related experiments.

4) Scenario display: By establishing a virtual simulation model, it
provides operators with more operational cognition, such as

parameter adjustment, sensor configuration, and air outlet
control.

5) Regional monitoring: The configuration of related sensors of
wind speed, gas and dust is changed by the operator in real
time, so that the real-time data of each region can be
graphically embodied. It can predict the changing trend of
each region, and provide guarantee and basis for various
control actions.

The system development process is shown in Figure 7. In the
digital twin wind flow control system, the user interface is mainly
developed and designed using the UGUI class controls in
Unity3D. The system’s user interface and related structures of
virtual entities are shown in Figure 8.

The digital twin wind flow control system is essentially the
mutual mapping of parameters and their corresponding physical
entities. In the system, through the obtained various monitoring
data, the modification of the parameters is guided, and the change
of the parameters drives the physical entity to carry out

FIGURE 7 | System development process.

FIGURE 8 | The construction of the virtual entity of the digital twin mine
wind flow control.
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corresponding movement changes, so as to realize the intelligent
operation of the entire wind flow control device. At the same
time, it changes the wind direction and speed in real time, thereby
reducing the gas and dust concentrations in various areas of the
entire mine.

The digital twin wind flow control system mentioned in the
article is mainly designed and developed through the Unity3D
engine tool. The system can establish the relationship model
between the control system and the control device, and establish
related simulation models for gas and dust. Under the relevant
experiments and verification, the obtained data and conclusions
are added to the model, so that the completeness of the entire
system is improved.

4.2 Neural Network Prediction Model Based
on Optimized Quantum Gate Nodes
The fusion of quantum theory with neural networks has given
birth to the quantum gate node neural network, which is a new
type of neural network and a very common quantum neural
network. Quantum theory reveals the basic laws of the
microscopic material world and lays a theoretical
foundation for atomic physics, solid state physics, nuclear
physics and particle physics. It can well explain the atomic
structure, the regularity of atomic spectrum, the properties of
chemical elements, the absorption and radiation of light, etc.
Quantum logic gates are represented using unitary matrices.
Just as common logic gates generally operate on one or two
bits, common quantum gates also operate on one or two
qubits. In this network, various types of information are
transmitted through quantum revolving gates and
controlled NOT gates. Thanks to the blessing of quantum
theory, the network has greater computing advantages. The
structure of the quantum gate node neural network is shown in
Figure 9:

Let the quantum gate node neural network input be
|a1〉, |a2〉, ..., |au〉, the output of the hidden layer be
|b1〉, |b2〉, ..., |bh〉, and the neural network output be
|c1〉, |c2〉, ..., |cv〉. Among them, u, h, v, represents the number of
their respective nodes. At this time, the number of spatial training
samples in the dimensional Euclidean space is set to u, and at �
[ at1 ... asu ]T is the serial number of the training samples at this
time. Let it contain T0 training samples, then the quantum state
input can be calculated by the conversion Formula:

∣∣∣∣λtk〉 � cos{2π(atk −mk)
nk −mk

}|0〉 + sin{2π(atk −mk)
nk −mk

} (31)

Where the unknown is a normalization constant. At this time, the
Formula of the quantum state input |λt〉 is:

∣∣∣∣λt〉 � [ ∣∣∣∣λt1〉 ...
∣∣∣∣λtu〉 ]T (32)

|λtk〉 � cos(ωt
k)|0〉 + sin(ωt

k)|1〉 · k � 1, 2, ..., u, where ωt
k is the

qubit probability argument of the training sample. At this time,
according to the quantum revolving gate and multiple controlled
controlled NOT gates, we can calculate:∣∣∣∣bti〉 � cos(ϕt

i)|0〉 + sin(ϕt
i)|1〉, i � 1, 2, . . . , h (33)∣∣∣∣ctz〉 � cos(ϕt

z)|0〉 + sin(ϕt
z)|1〉, z � 1, 2, . . . , v (34)

ϕti and ϕtz represent the qubit probability argument of the hidden
layer and the output layer respectively. When the qubit state of
the actual output is |1〉, the actual output can be calculated as:

bti � ∏u
k�1

sin(ωt
k + θki) (35)

ctz � ∏h
k�1

sin
⎧⎨⎩sin−1⎧⎨⎩∏u

k�1
sin(ωt

k + θki)⎫⎬⎭⎫⎬⎭∏h
i�1

sin(bti + εiz) (36)

FIGURE 9 | Quantum gate node neural network.
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θiz is the quantum state conversion value of the input layer and
the hidden layer, and εiz is the quantum state conversion value of
the hidden layer and the output layer of the neural network. At
this time, the network error ξ of QGNN is:

ξ � 1
2
∑T0

t�1
∑v
z�1

(ntz − ctz)2 (37)

ntz is the expected output and ctz is the actual output. Next, build
the sdPSO-QGNN coal and gas outburst risk level prediction
model, and the optimization principle is shown in Figure 10:

Select multiple test functions with different characteristics to
carry out related analysis and verification, and compare the final
results with the standard particle swarm optimization algorithm,
so as to evaluate the performance of the particle swarm
optimization algorithm from multiple angles. Particle swarm
optimization algorithm is a random search algorithm based on
group cooperation developed by simulating the foraging behavior
of birds. Among all the selected functions, the test functions such
as Rastrigin, Griewank, and Sphere exhibit nonlinear
characteristics. Genetic algorithm is a global optimization
algorithm, but it also has the disadvantage that it may fall into
local extreme value. The Rastrigin function can test the global
search ability of the genetic algorithm. At the same time, the
nonlinear characteristics of these functions are in line with the
trend of coal and gas outburst prediction index data. Therefore,
the variables of two of these functions are uncorrelated in order to
compare and analyze related algorithms. In order to compare the

optimization performance of the algorithm, when optimizing the
test functions, the sub-dimension evolution particle swarm
optimization algorithm and the standard particle swarm
optimization algorithm are used for optimization respectively.
The dimension of the test function is set to three-dimensional and
the performance of the two algorithms is analyzed and compared,
so as to effectively verify the performance of the algorithm. In this
case, in addition to setting the dimension to three and limiting the
maximum number of iterations to 1,200, the global optimal
values of the three functions are all 0. The parameters of each
function are shown in Table 1.

In the parameter environment of the standard function, the
PSO algorithm and the sdPSO algorithm are run 72 times
respectively. Then, the performance of the two algorithms is
compared by comparing the optimal solution, the number of
iterations of the optimal solution, the average optimal solution,
the success rate of optimization, and the average number of
iterations. The minimum iteration times of the three functions
under the two algorithms are shown in Table 2:

By comparing the optimal solution and the minimum number
of iterations of the two algorithms, it can be seen that both can
find the optimal solution of the function. At this time, the value of
the minimum number of iterations of the two algorithms is also
low, which verifies that the two algorithms have an effective
optimization effect on the three types of standard test functions.
Comparing the optimization success rates of the two algorithms,
it can be seen that both algorithms have a 100% success rate when
optimizing the Sphere function. However, in the optimization of
the other two functions, the success rate of the PSO algorithm
cannot meet the expected requirements, and there is a large gap
with the sdPSO algorithm. This shows that the sdPSO algorithm
has better performance when optimizing multimodal functions.
The average number of iterations and the average optimal
solution of the PSO algorithm and the sdPSO algorithm are
shown in Table 3.

The analysis and comparison of the average optimal solutions
of the two algorithms shows that when optimizing the Sphere
function, the average optimal solution of the PSO algorithm is
lower than that of the sdPSO algorithm. But in the optimization
of the other two test functions, the average optimal solution of the
PSO algorithm is higher than that of the sdPSO algorithm. It can
be concluded that the sdPSO algorithm has better optimization
ability when optimizing multimodal functions. The optimization
curves of the three functions in the three-dimensional state are
shown in Figure 11:

Next, the same operation is used to obtain the curve in its
dimensional state, as shown in Figure 12:

FIGURE 10 | Particle evolution diagram.

TABLE 1 | The parameter values of the three functions.

test function The value range
of each dimension

population size Convergence accuracy

Sphere [−99,99] 120 1E-10
Rastrigin [−12,12] 120 1E-06
Griewank [−12,12] 120 1E-06
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TABLE 2 | Minimum number of iterations for three functions under two algorithms.

test function algorithm Optimal solution Minimum
number of iterations

Optimization
success rate (%)

Sphere PSO 4.39E-11 114 100
sdPSO 6.21E-11 120 100

Rastrigin PSO 1.16E-07 132 26.73
sdPSO 9.22E-07 114 86.32

Griewank PSO 6.03E-07 141 13.35
sdPSO 2.18E-07 108 64.66

TABLE 3 | Average number of iterations for three functions under two algorithms.

test function algorithm average optimal solution Average
number of iterations

Sphere PSO 4.02E-11 181
sdPSO 6.02E-11 242

Rastrigin PSO 7.26E-07 165
sdPSO 5.48E-07 553

Griewank PSO 5.41E-07 114
sdPSO 4.46E-07 336

FIGURE 11 | Three-dimensional optimization curves for three functions (among them, (A) is the Sphere function, (B) is the Rastrigin function, and (C) is the
Griewank function).
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Because the sub-dimension evolution strategy takes each
dimension of the particle as a breakthrough, and performs
mutation operation on the sub-dimension with poor diversity,
the dimension of the standard test function is set to 3-
dimensional and 10-dimensional to compare and analyze the
performance of the two optimization algorithms. Therefore, the
sdPSO function performs better when optimizing functions,
especially multimodal functions.

4.3 Practical Application Experiment and
Result Analysis of Optimization Algorithm in
Coal and Gas Outburst Prediction Model
For group coal mines with complex geological structure,
there are strong pressure and in-situ stress inside.
Therefore, it often occurs phenomena such as top drilling,
injection holes, etc. A certain amount of samples are selected
from coal mines, and the samples are crushed and then
screened to obtain 0.14–0.32 mm coal powder. The
obtained pulverized coal was compressed for 2 h using a
pressure of 120 Mpa, and finally a sample of 48 × 48 ±
0.24 mm was obtained and sealed for preservation. With
the assistance of 8 GB running memory, the relevant
algorithms are written in the MatlabR2020b environment

to build the sdPSO-QGNN gas outburst risk level prediction
model. Real-time data was obtained from this coal mine and
historical data were aggregated, and a total of 24 non-
prominent and outburst data sets were obtained. 48 groups
were selected to test the prediction model, and the remaining
datasets were used to train the prediction model. The input of
the quantum gate node neural network was set to five
dimensions, and the output was set to four dimensions.
Initialize the parameters of the PSO algorithm: the
learning factors are 1 and 2, the maximum number of
iterations is 240, the number of particles is 40, and the
maximum flight speed is 1. The sdPSO algorithm is also
initialized: the learning factor is 2, the maximum number of
iterations is 240, the number of particles is 40, and the inertia
weight is 1. The prediction model is trained with the
remaining samples, and the energy function obtained by
QGNN after optimization by the PSO algorithm and the
sdPSO algorithm changes with the number of iterations as
shown in Figure 13:

It can be seen that the value of the energy function
optimized by the sdPSO algorithm is significantly lower
than the corresponding value optimized by the PSO
function. Moreover, it can be seen from the Formula
calculation that after the QGNN is optimized by the sdPSO

FIGURE 12 | Optimization curves for three functions in 10-dimensional state.
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algorithm, the output result has a lower error, and the error is
2.0914. The error of the output result after optimization by
PSO algorithm is 3.1613.

The test sample is added, and after normalization, the input
matrix of the quantum state is obtained. In this prediction

model, the learning step size is set to 0.001, and the maximum
number of iterations of this model is set to 2,800. From this
data, a comparison between the predicted and actual values of
coal and gas outburst intensity is obtained.

According to the comparison results in Figure 14, the
predicted values of coal and gas outburst intensity are very
close to their actual values. Therefore, the sdPSO-QGNN
optimal prediction model has a strong ability to deal with
nonlinear data, and has a very obvious advantage in
regression analysis. Comparing the prediction level and the
pre-actual level, it can be seen that the two almost coincide.
In the analysis and research of coal and gas outburst
phenomenon, the prediction accuracy rate of 90% is high-
precision prediction. The specific value of the prediction
accuracy in this paper is as high as 95%, indicating that the
optimal prediction model of sdPSO-QGNN has a very high
prediction accuracy.

5 DISCUSSION

Coal and gas accidents occur frequently in mines, which seriously
threatens the safe collection of coal mines. The frequent occurrence of
accidents has also brought a lot of obstacles to the development of the
whole society and economy. Therefore, the outburst prediction of coal
and gas is a top priority. High-precision prediction can bring
extremely significant help to the safety of mine production, and
can also avoid the occurrence of many accidents. This paper
focuses on the research on the prediction system of coal and gas,
which has the characteristics of nonlinearity and complexity.
Therefore, particle swarm optimization algorithm needs to be used
to optimize the prediction. For this model, this paper adopts a variety
of example methods to verify multi-dimensionality, and analyzes the
experimental results. In the three-dimensional state and ten-
dimensional state, the performance of the algorithm proposed in
this paper is relatively superior, and in the prediction model, the
algorithmproposed in this paper is also very accurate in predicting the
coal and gas outburst intensity.

FIGURE 13 | Neural network energy iteration steps under two algorithms.

FIGURE 14 | Prediction accuracy of sdPSO-QGNN prediction model on
coal and gas outburst intensity.
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6 CONCLUSION

It can be seen from the experiments in this paper that the sdPSO
algorithm is significantly better than the PSO algorithm in the
comprehensive performance of optimization. The sdPSO-QGNN
outburst prediction model is used to predict the outburst of coal
and gas, which has higher accuracy and greater advantages. In
this paper, training samples and test samples are used to train the
model, and the final prediction accuracy reaches 95%.
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