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In recent years, extreme natural disasters have occurred frequently, causing a huge
impact on the power grid. In this paper, the method of purchasing and deployment
of resources of the distribution network is studied to improve the resilience of the
system from the perspective of pre-disaster defense. Considering the sequential game
relationship among resource providers, utilities, and extreme disasters, this paper
establishes a multi-stage extensive-form game model. To realize collaborative pre-
and post-disaster defense of the system, this model comprehensively considers pre-
disaster resource deployment, post-disaster reconfiguration and repair crew dispatch.
The efficient deriving method of non-inferior solution is designed stage by stage, and
the backward induction method is adopted to solve the overall game model efficiently.
The experimental results under multiple failure scenarios show the proposed method can
give a near-optimal pre-disaster resources purchase and deployment plan that takes into
account the characteristics of post-disaster recovery, effectively reducing the expected
power loss of the distribution system.

Keywords: resilience, distribution network, extensive-form game, defender-attacker-defender model, backward
induction method

1 INTRODUCTION

In recent years, the load power loss of the distribution network (DN) caused by extreme weather has
increased. In response to the major power outages caused by high-impact low-probability events,
researches have been conducted mainly on two aspects: pre-disaster preparation and post-disaster
restoration. Related studies show that remedy resources such as human resources and power supply
resources can help to improve the resilience of the DN. Thus, optimal planning and deployment
of such resources tend to be important, which may enhance the distribution system resilience with
affordable costs.

From the perspective of pre-disaster resource allocation and system strengthening, the asset
management of the power grid is studied in (Yeddanapudi et al., 2008) to seek the optimal
resource allocation scheme on the basis of ensuring the power grid revenue. A pre-disaster
allocation scheme of repair crew and power supply resources is proposed in (Wallnerström and
Hilber, 2013) considering the cost to minimize the power grid vulnerability index. Considering
uncertainties of failure scenarios, (Chang et al., 2020), established a two-stage model for pre-
storm DER allocation problem. Its efficiency is guaranteed by implementing sample average
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approximation method and Benders decomposition.
(Yuan et al., 2016). proposes a defender-attacker-defender
sequential game model, which regards the pre-disaster line
strengthening as the first stage of defense, the impact of disasters
on the DN as the second stage of attack.The adjustment of power
flow is regarded as the third stage of defense, which is used to
solve the pre-disaster line strengthening strategies under the
maximum disaster impact. A stochastic optimization model for
resilience-oriented planning of mobile emergency generators is
proposed in (Yuan et al., 2022), which can accelerate disaster
recovery and enhance the resiliency of the DN effectively. A two-
stage data-driven robust stochastic optimizationmodel of electric
buses preallocation is presented in (Li B. et al., 2021) where
electric buses are regarded as large-capacity mobile batteries
for emergency power supply.

In terms of post-disaster restoration, an island partition
method is designed in (Bie et al., 2017) for post-disaster DNs.
After the disaster occurs, the DN is divided into multiple
islanded microgrids, and then remote control switches are
controlled to perform network reconfiguration to support
loads as much as possible. (Bian and Bie, 2018). uses multiple
microgrids to improve the resilience of the DN. An energy
management strategy is designed within the microgrid which
controls energy exchange between microgrids. Considering
limited power supply resources in microgrids, a Markov decision
model is established in (Gao et al., 2016) to maximize the
profit of the islanded microgrid within the expected outage
duration by dynamic load shedding. Mobile energy supply
vehicles are essential in improving the resilience of the DN,
thus vehicle routing and scheduling strategies are proposed in
(Lei et al., 2019a; Lei et al., 2019b). Coordinating with traditional
restoration efforts, mobile energy supply vehicles enhance both
survivability and recovery performance of the DN. To minimize
customer intteruption cost, generation cost and mobile energy
supply vehicles-related costs, (Yao et al., 2019), established a
temporal-spatial model for transportation network and DN.

For loads that cannot be restored by network operations,
repair crews should be deployed to repair failed branches to
restore power supply. The impact of repair crew deployment
on improvement of the resilience of the DN is studied in
(Arif et al., 2020). The research divided crews into line repair
crew and roadblock removal crew. A crew dispatch model is
presented as a mixed-integer linear programming model that
minimizes the power loss in the DN. When the estimated repair
time of each faulty device is known and the control cost is
considered, a MIP-based optimal repair strategy is proposed
in (Arab et al., 2016) to minimize total power loss. To co-
optimize the repair, reconfiguration and distributed generation
dispatch, a two-stage method is proposed in (Arif et al., 2018b)
considering equipment resources. In order to fully account for
the uncertainty of repair time and demand, a two-stage stochastic
mixed integer linear program is developed in (Arif et al., 2018a).
A new decomposition approach, combined with the progressive
hedging algorithm, is developed for solving large-scale outage
management problems in an effective and timelymanner. Further
considering uncertainties such as the travel time of the repair
team and DERs, a novel multistage co-optimization model is

proposed in (Li J. et al., 2021) to seamlessly integrate the repair
crew dispatch with the distribution system restoration.

It is noted that most of the existing studies improve the
resilience of the DN from a single aspect, either by considering
the purchase and allocation of power supply resources before a
disaster, or by considering top-down repair and reconfiguration
after a disaster. However, in DN restoration, adequate remedy
resource preparation will contribute to a rapid and effective
restoration after disasters, while optimal restoration measures
after a disaster can help to reduce the cost of pre-disaster
remedy resource purchase. In addition, interactions between
pre-disaster and post-disaster resilience enhancement have
not been fully considered in the optimal decision against
disasters.

The pre-disaster deployment and post-disaster recovery
process described earlier consists of disaster attack and
network defense stages, thus the overall planning problem
can be modeled as a defender-attacker-defender (DAD)
model (Alguacil et al., 2014; Yuan et al., 2014). The DAD model
includes two defense stages: pre-disaster defense and post-
disaster restoration. Existing studies have shown that compared
with pure pre-disaster defense or post-disaster restoration, the
DAD model can better reduce system losses (Yao et al., 2007).
The DADmodel is often transformed into a trilevel optimization
model. Although it can guarantee a certain degree of optimality,
the efficiency is relatively low. Since in the DAD model, decision
makers make decisions sequentially, the problem can also be
modeled as an extensive-form game where players decide their
actions sequentially. In this work, to enhance the resilience of the
DN, we consider the extensive-form game relationship between
grid managers, social emergency resource providers, and natural
disasters. The contributions of this work are twofold:

1. An optimization model of pre-disaster resilience planning
of DN based on DAD is established, which considers
post-disaster restoration decisions. This model includes the
pre-disaster resource allocation model, the post-disaster
reconfiguration and repair crew dispatch model, and uses
mixed strategies to describe the uncertainty of natural
disasters. The model we proposed considers more measures
of disaster prevention and post-disaster restoration, and can
provide a pre-disaster defense plan that effectively reduces
defense costs and post-disaster losses.

2. A set of efficient solution methods for the above optimization
model is proposed. Firstly, the proposedmodel is transformed
into an extensive-form game, and the backward induction
method is used to solve it efficiently, which avoids the
problem of low computational efficiency in multi-level
optimization. Secondly, in the above game model, the post-
disaster restoration strategy needs to be solved repeatedly, and
the solution efficiency of this part becomes the performance
bottleneck of the overall optimization. To this end, we
propose a set of heuristic algorithms that can quickly generate
reconfiguration and repair strategies, greatly improving the
overall efficiency.

The proposed collaborative resilience planning strategy will be
used to guide grid managers in pre-disaster resource preparation
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decisions and also give post-disaster restoration strategies in
deterministic outage scenarios.

2 MODEL FORMULATION

Before a disaster occurs, the grid manager needs to purchase
emergency power supply resources from social emergency
resource providers and equip repair crews. Then, the grid
manager allocates emergency power supply resources to various
parts of the grid for use in post-disaster emergency power supply.
And then, when disaster strikes the DN, the DN is reconfigured
to restore power to the blackout area. Finally, for areas where
reconfiguration fails to restore, lines and devices need to be
repaired to restore power to the blackout areas or areas with
insufficient power supply capacity as soon as possible.

The time point for decision-making in this paper is before the
disaster, but the pre-disaster resource purchase and allocations all
take into account the impact of the post-disaster recovery process.
Gridmanagers need to develop restoration strategies for multiple
scenarios based on the representative disaster scenarios predicted
before the disaster, get the grid losses for each scenario, and finally
select the desired optimal emergency resource purchase, resource
allocation and staffing strategies.

2.1 Overall Game Model
The time sequence of the decision of each game player is
deterministic, and the decision at each stage will affect each other.
As shown in Figure 1, the game players are the social emergency
resource provider, the grid manager, and natural disasters. To
reduce the difficulty of pre-disaster defense decision-making, the
mixed strategy approach is adopted to deal with natural attacks.

The payoff of the power grid manager is the total cost and
power loss of the entire DN in the process of responding to the
disaster. The payoff of the social resource provider is the income
obtained by the emergency resources provided to the power grid
manager. It is designed according to the concept of zero-sum
game with power grid managers.

2.2 Pre-disaster Defense Planning Model
The pre-disaster defense planning includes three strategies,
namely 1) Power supply resource purchase, 2) Power supply
resource allocation, 3) Repair crew deployment. Consider a radial
DN containing N buses, and define the set of buses as N =
{1,2,…,N}. The set of normally closed branches is defined as
Ln = {(i, j)}, i, j ∈N , i ≠ j and the set of normally open branches
is defined as Lb = {(i, j)}, i, j ∈N , i ≠ j. For the grid manager, the
objective is to minimize the cost of power supply, repair crew
deployment and post-disaster power loss in the DN.

min
x,d,r

cx (x) + cr (r) + Lb (d, r)

s.t. ∑d = x
d ≥ 0

(1)

where x represents the total amount of power supply resources
purchased (unit: kWh) and r is the number of repair crews
deployed. d represents the allocation of power supply resources in

DN, while Lb(d, r) is the post-disaster power loss when the system
is equippedwith r repair crews and the allocation of power supply
resources is d.

The estimation of Lb(d, r) is a key procedure. Due to the
uncertainty of natural disasters, power loss varies from scenario
to scenario. For a particular scenario s, post-disaster power loss of
the system is Ls(π;d, r) when taking π as the reconfiguration and
repair strategy. The objective of reconfiguration and repair is to
minimize the post-disaster power loss of DN, that is

min
π

Ls (π;d, r)

Ls (π;d, r) =
N

∑
i=1 ∫

T

0
wiPiδi,s,π (t;d, r)dt

(2)

where wi represents the weight of load at bus i, Pi is the power
demand of load at bus i and T indicates the time for the entire
system to be fully restored. δi,s,π(t;d, r) ∈ {0,1} is the power supply
state of load at bus i at time t under disaster scenario s when
there are r repair crews scheduled and the configuration of power
supply resources is d and the reconfiguration and repair strategy
adopted is π. One means the load is out of power, while 0 means
the load is powered normally.

In this paper, we adopt the idea of stochastic optimization,
using the expected scenario power loss as an estimate of Lb(d, r).
That is, the occurrence probability is naturally assigned to each
possible disaster scenario, and gridmanagers need to solve for the
expected pre-disaster optimal preparation scheme for all possible
disaster scenarios, and this approach better reflects the average
power loss in the DN:

Lb (d, r) = 𝔼s∼S (min
π

Ls (π;d, r)) (3)

The solution of the optimal post-disaster reconfiguration and
repair strategy is a NP-hard problem, which is inefficient to
solve, so a restoration plan is used as the optimal post-disaster
reconfiguration and repair strategy:

min
π

Ls (π;d, r) = inf{min
π∼Π(s)

Ls (π;d, r)} (4)

where Π(s) represents the set of reconfiguration and repair
strategies of disaster scenario s. At this point, the following
equation is satisfied:

Lb (d, r) = inf{𝔼s∼S (min
π∼Π(s)

Ls (π;d, r))} (5)

In order to improve the solution efficiency, the DN power loss
after performing the restoration strategy can be used as an
estimation of Lb(d, r):

Lb (d, r) ≈ 𝔼s∼S (min
π∼Π(s)

Ls (π;d, r)) (6)

The set of restoration strategies improves the solution
efficiency of post-disaster restoration and provides a robust
estimation of Lb(d, r) on the other hand, which can leave a certain
degree of flexibility for post-disaster restoration.
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2.3 Post-disaster Reconfiguration Model
For pre- and post-disaster co-optimization, the estimation of
the post-disaster power loss of DN in a single disaster scenario
is the key to the solution of the problem. Several studies
(Guikema et al., 2010;Nateghi et al., 2011) have used data-driven
and statistical methods for post-disaster power loss estimation
(Guikema et al., 2010; Guikema et al., 2006), but such methods
require a large amount of sample data, and on the other hand, it
is difficult to obtain a general loss assessment model applicable
to different DNs and different disaster scenarios. In addition,
coupled with the bias of historical data caused by climate change
and changes in the grid structure, the accuracy of the prediction
results obtained using statistical methods is often insufficient.
Therefore, we take an inferential calculation approach in this
paper to directly calculate the post-disaster power loss of DNs
under different restoration strategies.

The post-disaster restoration of DN can be divided into two
stages: firstly, the DN is reconfigured to restore power supply to
some of the loads rapidly followed by the need to dispatch repair
crews for restoration for loads that still cannot be restored using
reconfiguration, i.e., the reconfiguration and repair strategy π is
divided into reconfiguration and repair:

π = (πrc,πrr) (7)

where πrc represents the reconfiguration strategy and πrr is the
repair strategy.

When a disaster strikes the DN, resulting in the failure of
some lines in the DN, the set of failed branches in the DN after
the disaster is defined as Le = {(i, j)}, i, j ∈N , i ≠ j. At this time,
the set of available normally open branches is defined as Lb =
Lb −Le.

After failures of branches, some of the loads in the system
are disconnected from the substation, thus forming a set
of islanded microgrids denoted as M0 = {M1

0 ,…,M
m0
0 }. Each

islanded microgrid contains several buses in the DN, and
nodes connected to substations are not included in any
islanded microgrid. The system topology may change after the
reconfiguration. The set of islanded microgrids formed after
reconfiguration is noted as M1 = {M1

1 ,…,M
m1
1 }. Buses in the

islandedmicrogrids are the load buses with the risk of power loss,
and the set of such buses is denoted asM′, then we have:

M′0 =
m0

⋃
k=1

Mk
0 M′1 =

m1

⋃
k=1

Mk
1 (8)

The objective of the reconfiguration stage is to restore de-
energized loads in the system as much as possible by controlling
the switches after the allocation of emergency power supply
resources. The first objective is to perform the reconfiguration
to connect the de-energized loads to the DN feeders as much as
possible to restore such loads directly:

max
πrc
∑

i∈M′0

Pi − ∑
i∈M′

Pi (9)

The second objective is to form the largest possible islanded
microgrid using reconfiguration, i.e., to minimize the number

of islanded microgrids in the islanded microgrid set M1,
which facilitates the rapid restoration of large areas of islanded
microgrids during emergency repairs, and facilitates the use
of emergency power supply resources for the power supply of
islanded microgrids on the other hand, i.e. minπrc ‖M1‖ where
∥M1 ∥ denotes the number of elements inM1. Reconfiguration
strategy πrc represents the open/close status of branches
in Lb.

2.4 Post-disaster Repair Model
Consider the repair process after the reconfiguration, suppose
that there are r repair crews that need to repair ∥ Le ∥ failed
branches. Also, assume that only one fault point exists on each
failed branch, and the branch can be restored after the fault point
is fixed. The post-disaster repair problem is that r repair crews
are dispatched from the depot C. By reasonably arranging the
repair plan of the repair crews, the power loss of the system is
minimized when all ∥ Le ∥ faulty branches are fixed or the system
is fully restored.

The set of fault points is denoted as F , and the set of depot
and fault points is F = F ∪ {C}. For a fault point u ∈ F , the time
consumed by a single repair crew for its repair is Drr

u .Assuming
that more than one repair crew is not allowed to repair a fault
point at the same time, that is, a fault point only supports a
repair crew to repair, the repair time of the fault point is Drr

u .
For two points u,v ∈ F , the traffic elapsed time between them is
Dt

u,v. Therefore, this multi-repair team and multiple fault points
problem can be modeled as a multi-traveling salesman problem
(mTSP). For any two points u,v ∈ F , xuv denotes a transfer
existence from point u to point v in the repair process, thus we
have:

∥F∥

∑
z∈F

xzv = {
1,v ∈ F
r,v = C

∥F∥

∑
z∈F

xuz = {
1,u ∈ F
r,u = C

xuv ∈ {0,1} ,xuu = 0,u,v ∈ F
∑

u∈S,v∉S
xuv ≥ 1,S ⊆ F ,S ≠ ∅

(10)

FIGURE 1 | Defender-attacker-defender model based on extensive-form
game.
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The transfer matrix X∥F∥×∥F∥ of point set F represents the
repair strategy πrr of DN after a disaster, whereX(u,v) = xuv. For a
fault point u, its start repair time and end repair time are defined
as tu,s and tu,e. When a fault point requires only one repair crew
for repair, we have tu,e = tu,s +Drr

u . A repair crew is located at point
ub ∈ F before repairing the faulty point u. Then, it satisfies ub =
find
k∈F
(xku ≠ 0). The relationship between the start of repair time of

fault point u and the end of repair time of ub is:

tu,s = tub,e +D
t
ub,u (11)

For the depot, its start and end repair time are zero by definition,
i.e. tC,s = tC,e = 0. By now, the restoration time of each failed
branch is obtained. If the branch corresponding to the fault point
u is (i, j), the restoration time of the branch (i, j) is:

t(i,j) = tu,e (12)

After obtaining the repair time of each faulty branch, the time
of each islandedmicrogrid or load connection to the distribution
feeder can be determined based on the topology of the system to
calculate the post-disaster power loss, as shown in Figure 2. The
solution method is: 1) For each islanded microgrid, depth-first
search for all its supply paths to reach the normal power supply
area. 2) Calculate the restoration time of a particular islanded
microgrid of each supply path, i.e., the latest restoration time of
all branches on the supply path. 3) The restoration time of the
islanded microgrid is the earliest restoration time among all its
power supply paths.

For an islanded microgrid Mm, if there are no
Mm power supply

paths for it to reach the normal supply area, denote the set of
power supply paths as:

OMm = {o1Mm,…,o
noMm

Mm } (13)

where onMm,n ∈ {1,…,no
Mm} represents a power supply path that

contains several branches. Therefore, the time forMm to connect
to the feeder is:

tM
m

e = min
o∈OMm

max
(i,j)∈o

t(i,j) (14)

The set of islanded microgrids is M1 = {M
1
1 ,…,M

m1
1 } after

the reconfiguration adopting strategy π∗rc. The amount of power
supply resource in islandedmicrogridMm is denoted as EMm, then
the objective of the post-disaster repair process is tominimize the
power loss by dispatching multiple repair crews:

min
πrr

Ls ((π∗rc,πrr) ;d, r)

=min
πrr
∑

Mm∈M
ReLU(tM

m

e (πrr ;d, r) − tM
m

b (d))

× ∑
i∈Mm

wiPi

(15)

tM
m

e (πrr ;d, r) = tM
m

e (X;d, r) = tM
m

e (16)

tM
m

b (d) = t
Mm

b =
EMm

∑
i∈Mm

Pi

(17)

ReLU (x) = {x,x ≥ 00,x < 0 (18)

where tM
m

b is the time for EMm to support the power supply of
Mm. It should be noted that Ls ((π∗rc,πrr);d, r) is equivalent to the
definition of Ls (π;d, r) above.

3 SOLUTION METHODOLOGY

In this section, the islanded microgrid identification strategy is
firstly introduced, which is a key aspect of the problem solution.
Then, the optimal or near-optimal strategies are solved for each
stage of the extensive-form game proposed in this paper using
backward induction method. Backward induction starts to solve
the proposed game model from the final stages, where the
decision maker at each stage chooses the optimal strategy until
the initial stage is reached. Therefore, this section presents the
solution methods in order from the back of the stage to the front.
Figure 3 shows the corresponding relationship between models
and solution methods.

FIGURE 2 | A diagram for branch repair time.
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FIGURE 3 | Optimization models and their corresponding solution methods.

3.1 Islanded Microgrid Identification
The identification of islanded microgrids in the DN is the basis
for the subsequent work in the reconfiguration of the DN, the
repair of failed lines, the calculation of load supply status, etc.The
DN is modeled as a graph, the nodes of the graph are the buses
of the DN, and the edges of the graph are the branches. Then
the problem of identifying the islanded microgrid is as follows:
given an undirected graph and all the edges in it, determine
whether the graph is a connected graph, and calculate the number
of connected graphs in the graph, each additionally connected
graph in the graph is one more islanded microgrid in the DN.

In this paper, the solution idea is: start from any node in
the graph, use breadth-first traversal to search for nodes. If all
nodes in the graph can be traversed, then the graph is connected,
i.e., there is no island microgrid. Otherwise, the untraversed
nodes are randomly selected and searched again by breadth-first
traversal until all nodes in the graph are traversed. The total
number of connected graphs in the graph is obtained by counting
the number of traversals. Figure 4 shows the flow chart of the
algorithm. After the graph connectivity identification and the
number of connected graphs is calculated, the connected graphs

FIGURE 4 | Flowchart of DN islanding microgrid identification.

that do not contain any substation nodes (i.e., the root nodes of
the DN) are islanded microgrids.

3.2 Post-disaster Repair Crew Dispatch
Strategy Solution Method
In the previous section, the mTSP was used as the basis for
modeling the post-disaster repair problem. TSP is a typical NP-
hard problem, which is difficult to have an effective algorithm
for an efficient solution. In this study, the post-disaster repair
is located in the last stage of the game decision, which requires
efficient solution performance.Therefore, a variety of preplanned
repair strategies are manually designed to approximate the
optimal repair solution as much as possible.

For a particular disaster scenario, the particle swarm
algorithm can give a near-optimal solution to themTSP.However,
the efficiency of PSO is relatively low, especially when the
number of particles increases, the number of particle dimensions
increases or the number of iterations becomes larger. As the last
stage of the game, the algorithm for post-disaster repair requires
efficiency. Therefore, it is necessary to find a more efficient
post-disaster repair algorithm.

Compared to algorithms such as PSO, which require
exploration and iterative search of the entire strategy space,
greedy algorithms can quickly obtain a satisfactory solution.
Greedy algorithms make optimal choices based on the current
situationwithout considering the overall status.Therefore, it saves
a lot of time in exploring the entire space. This subsection uses
greedy algorithms to design three preplanned repair strategies
to improve the efficiency of the post-disaster solution while
ensuring optimality as much as possible.

Distance-based greedy algorithm: r repair crews choose to
repair the closest r fault points near the depot. After each repair
crew has finished repairing, it will choose the nearest fault point
that has not been repaired to repair until all the faults are
fixed.

Effect-based greedy algorithm: First of all, we define the repair
effect as the value of load restored by the system after a fault point
is repaired. Generally speaking, after repairing a fault point, the
corresponding faulty line is repaired and an islanded microgrid
is connected to the distribution substation and the normal power
supply is restored. If an islanded microgrid Mm is connected to
the substation after a fault point is repaired, then the repair effect
of this point is∑i∈MmwiPi. This algorithmmeans to start from the
depot and r repair crews select r fault points with the largest repair
effect to repair. After a crew has finished repairing, continue to
repair a fault point with the largest repair effect until all fault
points are fixed. If multiple points have the same repair effect, the
distance-based greedy algorithm is then used.

Efficiency-based greedy algorithm: Based on the greedy
algorithm based on repair effect, the concept of repair efficiency
is introduced by further considering the elapsed time of repairing
a fault point. For a certain repair crew, the repair time of a fault
point is the sum of the road travel time and the repair time.
If a fault point is repaired after the isolated microgrid Mm is
connected to the DN feeder and the repair time of this point is
Tr , then the repair efficiency of this fault point is ∑i∈MmwiPi/T r .
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Thegreedy algorithmbased on the repair efficiency is that r repair
crews choose fault points with the highest repair efficiency until
all fault points are repaired. If there are multiple fault points with
the same repair efficiency, the distance-based greedy algorithm is
used.

Generally speaking, no greedy algorithm can guarantee the
satisfactory effect of emergency repair after a disaster. However,
choosing the one with the highest effect among the three greedy
algorithms can often achieve a satisfactory repair effect while
maintaining high efficiency. In an outage scenario s, three sets of
emergency repair strategy plans constitute Π(s).

3.3 Post-disaster Reconfiguration
Strategy Solution Method
The reconfiguration strategy of the DN is shown in Figure 5.
For reconfiguration objective 1: use reconfiguration to restore the
power-loss load as much as possible, that is, by controlling the
available backup lines in the system, changing the topology of the
DN, and connecting the power-loss islandedmicrogrid to theDN
substation as much as possible. The steps are:

(1–1): Calculate the DN islanding partition after the disaster,
and identify the formed islanded microgrids.

(1–2):Determinewhether there is an available backup line that
can connect the islandedmicrogrid to themain feeder of the DN;
if not, the reconfiguration cannot restore the power-loss load,
and the reconfiguration objective 1 is completed; if so, go to step
(1–3);

(1–3): Traverse all the islanded microgrids in the system and
check whether there is an available backup line that can be
restored. If so, select the backup line with the shortest power
supply path from the main feeder of the DN to close, and restore
the islanded microgrid;

(1–4): Return to step (1–2);
For reconfiguration objective 2: minimize the number of

islanded microgrids concentrated in islanded microgrids, that

is, after reconfiguration objective 1 is completed, connect each
islanded microgrid as much as possible to form a large islanded
microgrid. The steps are:

(2–1): Traverse all any two islanded microgrids that are not
connected to DN substations;

(2–2): Check whether there is an available backup line that
can connect the two islands and if so, close the switches of the
corresponding backup lines to connect the two islands to form a
larger islanded microgrid; if there is no backup line for merging
islandedmicrogrids, the reconfiguration objective 2 is completed.

(2–3): Return to step (2–1).

3.4 Pre-disaster Resource Purchase and
Allocation Solution Method
For a specific disaster scenario s, post-disaster reconfiguration
and repair can be performed. Considering the disaster scenario
set S , according to the problem modeling, the expected disaster
scenario loss is used as an estimate of the power loss Lb(d, r)
caused by the disaster. ∥ d ∥ buses are selected as candidate buses
for resource allocation where d represents the resource allocation
amount on these candidate buses. If the unit costs of power supply
resources and repair crews remain unchanged, the optimization
problem of the pre-disaster power supply resource purchase
allocation and the number of repair crews is:

min
x,d,r

cxx + crr + Lb (d, r)

s.t. ∑d = x
d ≥ 0

(19)

where cx is the unit cost of power supply resources, cr is
the unit cost of repair crews. This optimization problem is a
standard nonlinear optimization problem, which can be solved
by sequential quadratic programming or active-set algorithm.

FIGURE 5 | DN reconfiguration strategy.
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FIGURE 6 | Post-disaster outage scenarios (A): Scenario A, (B): Scenario B (Scenario A after reconfiguration).

4 CASE STUDY

To test the performance of the solution at each stage, this part
adopts the method from a single scenario to multiple scenarios
and from reconfiguration and repair to the pre-disaster resource
purchasing. This paper uses the standard IEEE 33-bus DN case
to test the method and conducts numerical experiments on
MATLAB 2018b.

Using the Batts typhoon model and the line vulnerability
model given in (Panteli et al., 2017), several scenarios are
randomly generated.The parameters of the DN are as follows. All
load buses are divided into five important levels, and the losses
caused by power outages are $1–5/h respectively. Each branch in
the system corresponds to a fault repair time, which is a random
number within 0–5 h; if a branch breaks in a disaster scenario,
the repair time is a pre-generated random number. The travel
time between each fault point in the system is a random number
within 0–3 h generated randomly.

4.1 Post-disaster Reconfiguration and
Repair Results in a Single Disaster
Scenario
Consider a specific disaster outage scenario A, as shown
in Figure 6. After the post-disaster DN reconfiguration, the
obtained post-disaster DN is denoted as scenario B. Set bus 3,
20, and 31 in the DN as candidate nodes for resource allocation.
In this single-scenario test, bus 3, 20, and 31 are configured
with power supply resources of 1,000, 5,000, and 1,000 kWh,
respectively, and the number of repair teams is 3.

Firstly, the analysis of DN reconfiguration operation is carried
out. In scenario A, the system cannot directly restore the load
through reconfiguration, that is, there is no closing operation
of the normally open switch under reconfiguration objective
1. Considering reconfiguration objective 2, the seven islanded
microgrids in scenarioA can be partiallymerged, and three island
microgrids can be formed by closing the switches on branch
25–29, 8–21, and 12–22.

Then, considering the repair measures in the outage scenarios
A and B, respectively, the particle swarm algorithm and three
greedy algorithms are used for post-disaster repair, and the results
are shown inTable 1. It can be seen that after the reconfiguration,
the power loss of the system after the disaster is greatly reduced.
This shows the effectiveness of post-disaster reconfiguration. On

the other hand, since the reconfiguration strategies in scenario A
are all operations for reconfiguration objective 2, it also shows the
necessity of reconfiguration objective 2. When reconfiguration
objective 2 exists, since the system forms an island microgrid
as large as possible, it is possible to restore the load in a larger
area with fewer repairs during the repair process, and at the same
time, it also expands the range of electrical load power supply that
power supply resources provide.

In addition, the analysis of several post-disaster repair
strategies is carried out. It can be seen from Table 1 that the
PSO can obtain the smallest post-disaster power loss in scenario
A, and the PSO and the greedy algorithm based on repair
effect and repair efficiency in scenario B can obtain the optimal
post-disaster loss. The repair order in the table represents the
respective repair order of the three emergency repair crews. In
scenario B, only five faulty lines are listed in the emergency repair
lines of several greedy algorithms. This is because both ends of
some faulty lines are connected to the same islanded microgrid
after the system reconfiguration, and repair of such lines will not
give any extra power restoration, so such faulty lines are excluded
from the repair calculation to improve the solution efficiency.

At the same time, it can be found that in scenario B, although
the PSO and the greedy algorithm based on the repair effect
and repair efficiency can all obtain the same power loss after the
disaster, the repair order of the faulty lines is different. This is
because in scenario B, when the faulty branches 2–3, 19–20, and
30–31 are repaired, the system will be restored to power, and
subsequent branch repair operations will have no effect on the
power loss of the system after a disaster. In the three schemes,
three repair crews were dispatched to the three faulty branches
2–3, 19–20, and 30–31 at first. Therefore, the restoration process
of the system under the three schemes is completely the same, so
the post-disaster losses are the same.

In addition, although the post-disaster loss obtained by PSO
is the best among several repair strategies, the effects of several
greedy algorithms are always quite close to PSO. Considering
that in the post-disaster repair calculation of scenarios A and B,
PSO takes about 1 min to solve a single time, while the solution
time of several greedy algorithms is on the order of 10–2 s, that is,
the artificially designed plan can greatly improve the efficiency of
the solution. If there is a plan among several artificially designed
repair strategies that can approach the repair effect obtained
by PSO, it is possible to consider using artificially designed
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TABLE 1 | Repair strategy for a single scenario.

— Scen. A Scen. B

Distance-based greedy Power loss 54490.70 21456.06

Repair order
<16–17,10–11,7–8> <16–17>

<9–15,30–31> <19–20,7–8>
<19–20,5–6,2–3> <30–31,2–3>

Effect-based greedy Power loss 27490.71 10570.30

Repair order
<2–3,10–11> <2–3>

<5–6,19–20,16–17> <19–20,7–8>
<30–31,7–8,9–15> <30–31,16–17>

Efficiency-based greedy Power loss 27490.71 10570.30

Repair order
<2–3,10–11> <2–3>

<5–6,19–20,16–17> <19–20,7–8>
<30–31,7–8,9–15> <30–31,16–17>

PSO Power loss 26035.61 10570.30

Repair order
<2–3,10–11> <2–3,7–8>

<5–6,16–17,9–15> <19–20,16–17>
<30–31,7–8,19–20> <30–31,5–6, 9–15,10–11>

repair strategies to replace PSO and perform upper-level resource
allocation and purchase calculations.

4.2 Post-disaster Reconfiguration and
Repair Results in Multiple Scenarios
Consider the comparison of emergency repair effects of several
post-disaster repair crew dispatch algorithms. 10 disaster
scenarios are randomly generated, and each scenario has a
randomly generated resource allocation status. Three greedy
repair strategies and PSO are used to solve the post-disaster
repair, as shown in Figure 7.

It can be seen that in the 10 scenarios, PSO obtained
the smallest power loss after the disaster. At the same time,
the optimal repair effect among the three greedy post-disaster
repair algorithms can closely approach the repair effect of PSO.
Considering that the artificially designed repair strategy has

FIGURE 7 | Comparison of repair effects of repair crew dispatch algorithms.

high solution efficiency and good solution effect, it is used
instead of PSO to solve problems such as upper-level resource
allocation.

4.3 Pre-disaster Defense Planning Result
in a Single Scenario
In disaster scenario A, after reconfiguration, the scenario is first
converted to scenario B. The greedy repair strategy is selected as
the execution strategy for post-disaster repair. This subsection
considers solving the optimal allocation of resources before the
disaster. Consider the post-disaster power loss when the power
supply resources are between 0 and 10 MWh and the number of
repair crews is between 1 and 3. The power supply resources are
changed at intervals of 1 MWh.

As shown in Figure 8A,B, after taking reconfiguration
measures, the power loss can be significantly reduced. Compared
with simply increasing resources, reconfiguration has a better
loss reduction effect, which proves that considering post-disaster
decision-making can reduce redundancy in pre-disaster resource
deployment.

In Figure 8, with the increase of the total amount of system
power supply resources, the power loss of the system after the
disaster will be reduced; at the same time, the increase in the
number of repair crews can effectively help reduce the power
loss after the disaster. In addition, the total amount of power
supply resources and the number of repair crews have the
effect of diminishing marginal revenues. As the total amount of
power supply resources increases, that is, the number of repair
crews increases, the reduction rate of post-disaster losses will
correspondingly decrease.

Figure 9 shows the optimal resource allocation scheme
obtained under different total power supply resources and the
number of repair crews in scenario B. As shown in Figure 9,
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FIGURE 8 | Power loss of scenario (A) and (B).

FIGURE 9 | Optimal power supply resource allocation in scenario B.

there are two overall trends in the optimal resource allocation
of the system: 1) Downstream buses tend to get more resources
allocated; 2) The increase in the number of repair crews helps to
reduce the variance of each resource allocation bus.

For trend (1), it can be seen that bus 31 located downstream
of the system tends to get more resource allocation. The reasons
are as follows. The time for the downstream bus to restore
power supply is generally later than that of the upstream
bus. Allocating more power supply resources to it can help
it maintain a longer power supply when the power is lost
and reduce the power loss. According to trend (2), it can be
seen that with the increase in the number of repair crews, the
resource allocation of downstream buses that originally allocated
more resources gradually decreased, and the resources allocated
to upstream buses that originally allocated fewer resources
gradually increased. The variance of the resource allocation has
a decreasing trend.The reasons are as follows. When the number
of repair crews increases, multiple repair crews can be assigned
to different upstream and downstream buses to carry out repairs
at the same time, so the time for the upstream and downstream
buses to restore power supply will be closer, and the downstream
nodes do not need extra power supply resources.

FIGURE 10 | Optimal resource allocation in multiple disaster scenarios.

4.4 Pre-disaster Resource Purchase and
Repair Crew Planning Result for Multiple
Scenarios
A single disaster scenario is often difficult to accurately reflect
the impact of the disaster, so it is necessary to evaluate multiple
disaster scenarios to find the optimal resource purchase and
repair crewplanning before the disaster. 100 disaster scenarios are
generated, that is, the size of the scenario set S is 100. Similarly,
buses 3, 20, and 31 are set as candidate buses for resource
allocation.

For these 100 disaster scenarios, post-disaster reconfiguration,
and the optimal repair strategy of the greedy repair strategy set
under the given resource and repair crew planning are solved.
On a machine configured with Intel Xeon CPU, using MATLAB
2018b to solve the pre-disaster and post-disaster collaborative
optimization in these 100 scenarios, it took 14498.89 s.

As shown in Figure 10, the two trends in resource allocation
mentioned in the previous subsection are more pronounced
under multiple disaster scenarios. This also shows that when
performing resource allocation of the DN,more resources should
be appropriately allocated to the candidate buses for resource
allocation downstream of the DN.
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FIGURE 11 | Post-disaster power loss.

FIGURE 12 | Total resource acquisition cost.

Considering the cost of resource purchase and repair crew
planning, the unit price cx of power supply resources is set
to 1$/kWh, and the unit price cr of the repair crew is set to
5000$per repair crew. The optimal resource purchase and repair
crew planning solution under 100 scenarios is carried out, and
the results are shown in Figures 11, 12.

In multiple disaster scenarios, the total amount of system
power supply resources and the number of emergency repair
crews still have the effect of diminishing marginal revenues.
On the premise of considering the cost, this shows that the
pre-disaster resource preparation is not the better with more
resources and repair crews. It is necessary to balance the cost and
the repair effect.

The optimal resource purchase amount in 100 disaster
scenarios is 4 MWh, and the number of repair crews configured
is 2. In addition, it is found that there is a trade-off relationship
between the optimal resource purchase amount and the
configuration of the number of repair crews. As the number of
repair crews increases, the optimal resource purchase amountwill
decrease accordingly. For example, with 1, 2, and 3 repair crews,
the optimal resource purchases are 6, 4, and 3 MWh, respectively.

This shows that grid managers need to make reasonable choices
in power supply resources and repair crew planning when funds
are limited.

Therefore, under the 100 disaster scenarios, the optimal pre-
disaster resource purchase and repair crew planning scheme is
as follows: the system manager can purchase 4 MWh power
supply resources and deploy two repair crews. The optimal
allocation scheme is equipping bus 3, 20 and 21 with 0, 0.635
and 3.365 MWh resources respectively. After a disaster, the
system can use the post-disaster reconfiguration and repair
strategy proposed in this paper to implement the optimal post-
disaster restoration in a specific scenario according to the actual
disaster.

4.5 Pre-disaster Resource Purchase Game
Results in Multi-Disaster Scenarios
In the case of multi-disaster scenarios, the resource purchase
decision of the grid manager is given when the resource
price of the resource provider is fixed. From the perspective
of economics, rational people consider marginal benefits,
and when resource pricing is variable, resource purchasing
and selling decisions will change. Therefore, this subsection
presents the pre-disaster resource purchase game results in
the multi-disaster scenario from the perspective of marginal
revenue.

First, consider the deployment strategy of the number of
repair crews. As shown in Figure 13, the marginal revenue of
deploying the second repair crew is above $6823, so when the
cost of deploying the second repair crew is below $6823, it is
reasonable to deploy it. In the same way, the marginal revenue
of deploying the third repair crew is between $1711–2585. When
the cost of deploying the third repair crew is more than $2585,
it is not cost-effective to deploy three repair crews. From the
perspective of marginal revenue, it is also verified that in the
previous subsection, when the unit price of the team is $5000,
it is optimal to deploy two repair crews.

Secondly, consider the purchase strategy of the power supply
resources. As shown in Figure 14, with the increase of the total

FIGURE 13 | Marginal revenue of repair team deployment (100 scenarios).
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FIGURE 14 | Marginal revenue of purchase of power supply resources (100
scenarios).

amount of resources purchased by the grid manager, its marginal
revenue decreases, and the speed of marginal revenue decreases
when different repair crews are deployed. If the resource pricing
curve is known, the optimal system resource purchase amount
can be found by finding the intersection of the resource pricing
curve and themarginal revenue curve. Resource purchase is cost-
effective only when the marginal revenue is greater than the
resource price. If two emergency repair crews are deployed, as
shown in Figure 14, the intersection of the resource pricing curve
and the system marginal revenue curve is between 3 and 4, then
the optimal purchase amount of power supply resources for the
system is 3 or 4 MWh. After the resource purchase amount is
determined, the resource allocation curve shown in Figure 10
can be used to determine the allocation scheme of power supply
resources in the system.

5 CONCLUSION

This paper builds an extensive-form game model for pre-disaster
resilience planning considering post-disaster decision-making
of DNs, which comprehensively considers pre-disaster resource
purchase, resource allocation, repair crew deployment, post-
disaster DN reconfiguration and fault repair. A post-disaster

reconfiguration scheme of the DN with two objectives is
proposed, a multi-traveling salesman problem model for post-
disaster repair crew dispatch is constructed, and a PSO-based
repair strategy and three greedy repair strategies are designed to
improve the efficiency of solving post-disaster repair strategies.
In the pre-disaster prevention stage, considering the impact of
post-disaster restoration methods on the pre-disaster planning,
the ideology of mixed strategy in strategic game is used to
deal with the uncertainties of natural disasters and reduce the
difficulty of pre-disaster optimization. The backward induction
method is used to solve the extensive-form game model stage
by stage, and the coordinated optimization and restoration
scheme of the DN under deterministic disaster scenarios is
obtained. The proposed model is tested on the IEEE 33-bus
case, and the near-optimal pre-disaster power supply resource
purchase and repair crew deployment plan are given, which can
effectively reduce the resource preparation cost and loss of power
loss.
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