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In order to improve the accuracy of series arc fault detection and prevent fire accidents
caused by series arc fault, a series arc fault simulation experiment circuit was built to obtain
the low-frequency and high-frequency current waveform of series arc fault under different
loads. The kurtosis, waveform factor, crest factor, pulse factor, and margin factor of low-
frequency current waveform are extracted in the time domain. In the frequency domain, a
method based on variational mode decomposition and energy entropy is proposed to
extract the characteristic quantity of series arc faults. It was found that the energy entropy
of the intrinsic mode function component with the largest variance contribution ratio will
increase when a series of arc faults occur, and it was used as a characteristic quantity.
Characteristic vectors were constructed based on time–frequency characteristic
quantities, and the characteristic vector was trained based on the random forest
algorithm to obtain the diagnosis model and analyze the series arc fault diagnosis. The
analysis showed that the diagnostic accuracy of the model trained by the proposed
method was above 97%, and the fault recognition effect was remarkable, which provides
an important reference for the improvement of the series arc fault detection technology.

Keywords: series arc fault, IMF component, variational modal decomposition, energy entropy, random forest
algorithm

1 INTRODUCTION

According to the Fire Statistics Annual Report of China Fire Protection Association (CFPA) Shao
(2020), the number of electrical fires in China has been on the rise in recent years, and the proportion
of electrical fires ranks first among all types of fires, accounting for about 30%. Arc faults are one of
the leading causes of electrical fires. In low-voltage distribution lines, series of arc faults may occur
due to aging and damage of insulation of wires, poor connection of wires, or loose connection of
electrical equipment (Xiong et al., 2016). A large amount of heat will be generated when the series of
arc faults occurs in the line, which is easy to ignite combustible materials and lead to fire [Liu G. et al.
(2017), Lin et al. (2021), Liu G. G. et al. (2017)]. In serious cases, explosions will occur, endangering
personal safety. Therefore, in order to protect the safety of production and the safety of residents,
effectively solving low-voltage series of arc faults has become a research hotspot for scholars at home
and abroad.

The current series of arc fault detection technology has the problems of low detection ratio and
ineffective identification under mixed loads. In the field of series arc fault detection and diagnosis, the
detection methods for low-voltage series arc are mainly divided into two categories: 1) the arc is
detected by the radiation, energy, and temperature changes of the arc. 2) Detect series arc faults by
current and voltage waveform changes. Wang et al. (2019) and Xiong et al. (2017) used third-order
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and fourth-order Hilbert fractal antennas to detect
electromagnetic radiation (EMR) signals generated by DC arcs.
The experimental results show that EMR can be used as a
characteristic quantity to characterize a series of arc faults.
The Hilbert transform can parse the signal into an analytic
signal containing the instantaneous frequency and amplitude,
but the disadvantage is that the Hilbert transform is only suitable
for part of the frequency band of the electromagnetic radiation
signal, and the method is greatly affected by environmental
factors, and the positioning range is limited. Lala and Subrata,
(2020), Jiang et al. (2021), Chen et al. (2015), Jingjing and
Zhihong (2019), Miao et al. (2019) and Liu et al. (2019) took
the empirical mode decomposition (EMD) energy entropy as the
characteristic quantity of series arc fault. Although good results
are obtained, the EMD energy entropy is used as a characteristic
quantity, and there are end-point effects and modal aliasing. The
methods of arc fault detection using radiation, temperature, and
energy have great limitations, so the mainstream research
methods are still based on current and voltage waveforms for
arc identification. In the article by Chen et al. (2019),Qi et al.
(2017),Yu et al. (2020),Ma et al. (2021), Zhang et al. (2018), and
Gao et al. (2021), the wavelet transform is used to decompose the
current and voltage waveform, and the energy in different
frequency bands, the maximum value of detail signal in each
frequency band, and the low-frequency approximation coefficient
of adjacent periodic current are calculated as the characteristic
quantities of series arc faults. The wavelet transform is based on
the Fourier transform to refine the signal at multiple scales, and at
the same time overcomes the shortcomings such as the window
does not change with the frequency during local refinement;
however, the wavelet transform is not ideal for the situation where
the frequency bands of the useful signal and the noise overlap
each other, and the problem of spectral aliasing is prone to occur.
Karakose et al. (2018) and Cui and Tong. (2021) used S-transform
and generalized S-transform to detect pantograph–catenary
system arc faults and aviation arc faults, respectively. The
S-transform uses a Gaussian window function, and the
window width is proportional to the inverse of the frequency
and do not need to select window functions. The selection of the
function improves the defect of fixed window width, but the
feature quantity extracted by S-transform has the problem of
insensitivity to noise. This method is inaccurate in the frequency
domain resolution in the higher frequency range, and the
resolution is lower than that of the Fourier transform. The
series current is an electrical parameter that is easily obtained
in the traditional distribution line protection system. The
currents in the series loop are equal in magnitude. In
principle, the arc detection device can be installed at any point
in the loop, and the sampling position is not restricted by the
position of the arc in the loop. However, when the load terminal
voltage is used as the detection signal, the power terminal voltage
and the load terminal voltage are likely to introduce harmonic
interference, resulting in misjudgment. So most scholars abandon
the voltage and use the current signal as the target quantity for
feature extraction. In the article by Syafi’i et al. (2018),Zhang et al.
(2016), Karakose et al. (2018), Khafidli et al. (2018) and Wang et
al. (2017), characteristic quantities in the frequency domain are

extracted by fast Fourier transform, and the amplitude of the
harmonic component and the all-phase spectrum is taken as
characteristic quantities. However, the disadvantage is that the
amount of calculation is large, and the Fourier transform has
defects in the analysis of non-stationary time-varying signals,
extracting feature quantities in the time domain is good for fault
arc diagnosis of a single load line but not very good for circuits
with mixed loads. In the article by Lin et al. (2020) and Cui et al.
(2021), the series arc fault current waveform is analyzed in the
time domain, and the periodic amplitude, the correlation, and the
continuity between adjacent periodic current samples, the zero-
rest time of the current, and the zero-rest time proportional
coefficient of the two periodic currents are calculated as the
characteristic quantity. However, it is not good to extract
characteristic quantities in the time domain for circuits with
different load mixtures. EMD energy entropy as a characteristic
quantity has a modal aliasing problem.

In view of the above shortcomings and considering the actual
low-voltage series arc fault detection requirements and the
realization of the method application in the protection device,
this article proposes an arc fault detection method based on
time–frequency feature fusion. The specific contributions are as
follows:

1) Simulate the series arc fault of different load types and mixed
load types, and extract the low-frequency and high-frequency
current waveforms when the load is working normally and
when the series arc fault occurs. Feature quantities are
extracted for low-frequency current components in the
time domain.

2) Aiming at the extraction of high-frequency current
component features, a series of arc fault feature extraction
method based on VMD and energy entropy is studied.

3) Use the random forest algorithm to train and diagnose the
extracted feature quantities.

4) Optimize the random forest algorithm to train the diagnostic
model to improve its recognition rate and correct rate.

This article is organized as follows: Section 2 conducts low-
voltage series arc fault experiments, collects low-voltage AC
current data, and performs waveform analysis; Section 3
introduces the extraction method of arc time-domain feature
quantity and the feature extraction method based on VMD to
extract energy entropy; in Section 4, we build a random forest
algorithm training diagnosis model, propose an arc fault
diagnosis algorithm, and conduct sum simulation verification;
the final conclusions are summarized in Section 5.

2 SERIES ARC FAULT SIMULATION
EXPERIMENT

2.1 Experimental Environment
It is difficult to obtain the current waveform of series arc faults
from actual distribution wires because of the uncertainty of the
occurrence time and location of series arc faults. This article sets
up a series of arc fault simulation experiment environments,
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which are composed of a power supply, series arc generator,
signal acquisition module, and loads inspection (General
Administration of Quality Supervision, 2014). The schematic
diagram of the series arc fault simulation experiment is shown
in Figure 1.

In this article, an arc generator is chosen to simulate the
generation of arc faults. The series of arc generator is mainly
composed of two electrodes. One electrode which is regarded as
a mobile electrode is a carbon-graphite rod with a diameter of 6 ±
0.5 mm. The arc burning end of the electrode is made into a tip and
equipped with a sliding block. The clearance between the two
electrodes can be controlled by adjusting the horizontal adjusting
knob. The other can be a 6 ± 0.5-mm-diameter copper rod set as a
fixed electrode. The arc ends of both electrodes should be kept clean

to allow for repeatability of arcing. The two electrodes are
connected in series by wire, with one end connected to a load
and the other to the power supply. A stable arc can be formed by
adjusting the horizontal adjustment knob so that the two electrodes
are separated at proper distances. The schematic diagram of the
device is shown in Figure 2. The physical map is shown in Figure 3.

The signal acquisition module is composed of a current
transformer and a filter amplifying circuit and is responsible for
collecting arc current signals. The current is converted into a
voltage signal through a current transformer and a sampling
resistor, then filtered and amplified by the circuit, and finally,
the current signal is sampled using an oscilloscope. For the
acquisition of the current signal, the low-frequency and high-
frequency mutual inductors are used to collect the low-frequency
and high-frequency current waveforms, respectively. The low-
frequency mutual inductor collects the low-frequency current
and outputs the low-frequency current component signal
through the low-pass filtering and amplifying circuit. The low-
pass filtering circuit consists of an RC low-pass filter. The cut-off
frequency is configured according to 1/2πRC to about 1 kHz. The
high-frequency mutual inductor collects the high-frequency
current and outputs the high-frequency current component
signal through the high-pass filtering and amplifying circuit.
The high-pass filtering circuit consists of an RC high-pass filter,
and the cut-off frequency is configured to be about 1 kHz.

According to GB/T31143-2014 “General Requirements for
Series Arc Fault Detection Device (AFDD)" issued by the
General Administration of Quality Supervision, Inspection and
Quarantine of the People’s Republic of China in 2014, it is
stipulated that AFDD must meet the inhibitory load shielding
test. Seven shielded loads are specified in the standard; they are
vacuum cleaners, switching power supplies, motor loads with
capacitive start (such as vacuum cleaners and compressors),
electronic light regulators, resistive loads, electric drill loads, and
halogen lamps. Therefore, resistance, electric kettle, electric drill,
and vacuum cleaner are taken as the loads. The main hardware
configuration required for the experiment is shown in Table 1.

2.2 Experimental Process
Experiments were carried out at room temperature, the power
supply is connected to the arc generator through the isolated power
supply, the other end of the arc generator is connected to the load,

FIGURE 1 | Schematic diagram of the series arc fault simulation
experiment circuit.

FIGURE 2 | Schematic diagram of the series arc fault generator.

FIGURE 3 | Physical map of the arc fault generator.

TABLE 1 | Main hardware configuration of the series arc fault experiment.

Name Model and parameter

The power supply 220 AC
The base 70 cm*60 cm*5 cm
Copper rod φ6 mm
Low-frequency current transformer DL-CT1005 APL 2000/1
High-frequency current transformer (custom) Ratio 2000/1
Resistance 220 V/0–50 Ω
Vacuum cleaner ZL100-TA 220 V/1000 W
Electric kettle 220 V 1500 W
Electric drill 220 V/700 W 50/60 Hz
Oscilloscope Tektronix/TBS2000B

Frontiers in Energy Research | www.frontiersin.org June 2022 | Volume 10 | Article 8892733

Zhao et al. Arc Fault Diagnosis

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


and the wire of the load end passes through the mutual inductor.
The current signal enters the signal acquisitionmodule through the
sampling resistor, and the output end of the signal acquisition
module is connected to the oscilloscope. The waveform displayed
by the oscilloscope is the voltage value, which actually reflects the
current waveform in the line. The field diagram of the series arc
fault simulation experiment is shown in Figure 4.

The horizontal adjustment knob of the arc generator is adjusted
to control the generation of the arc. The sampling frequency of the
oscilloscope is set at 62.5 kHz, and the sampling time of each group
of waveforms is 320 ms, with a total of 16 cycles. The experiment
obtains the low-frequency and high-frequency current waveforms

of resistors, electric kettles, electric drills, and vacuum cleaners
during normal operation and arc faults, as well as the current
waveforms of switching power supplies and electric drills at the

FIGURE 4 | Field diagram of the series arc fault simulation experiment.

FIGURE 5 | Current waveform of the electric kettle: (A) low-frequency
waveform. (B) High-frequency waveform.

FIGURE 6 | Current waveform of the resistance: (A) low-frequency
waveform. (B) High-frequency waveform.

FIGURE 7 | Current waveform of the vacuum cleaner: (A) low-frequency
waveform. (B) High-frequency waveform.
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moment of startup. For the convenience of subsequent data
analysis, the collected data are normalized in MATLAB. Figures
5–8 show the low-frequency and high-frequency arc current
waveform of four cycles under different loads.

At 0.04 s, the series arc generator simulates the occurrence of
series arc faults, that is, the waveform of the first two cycles is in a
normal working state, and the series arc faults occur in the last two
cycles. It can be seen from the waveform figure that when the electric
kettle and resistance work normally, the low-frequency current
waveform is a sine wave of 50 Hz, and the high-frequency current
signal waveform has a small number of high-frequency pulses.When
a series of arc faults occurs, the low-frequency waveform appears and
has burrs at the peak, while the high-frequency waveform changes
obviously and there are a large number of high-frequency pulses.
When the electric drill and vacuum cleaner work normally, the low-
frequency current waveform has the “flat shoulder,” which is similar

to the low-frequency waveform when the series arc fault occurs
between the electric kettle and the resistance. At the same time, the
high-frequency current signal waveform also has a small number of
high-frequency pulses. When a series of arc faults occurs, the low-
frequency waveform changes dramatically, burrs increase, waveform
amplitude decreases, waveform distortion is serious, the high-
frequency waveform amplitude increases, and there are a large
number of high-frequency pulses.

3 CHARACTERISTIC EXTRACTION OF
SERIES ARC FAULTS
3.1 Analysis of Time Domain Characteristics
of Series Arc Faults
Time domain characteristics refer to the description of signal
waveform with time as a variable, which is an important indicator

FIGURE 8 | Current waveform of the electric drill: (A) low-frequency
waveform. (B) High-frequency waveform.

TABLE 2 | Time-domain characteristic expressions.

time-domain
characteristic quantity

Expression

Kurtosis X1 � E(xi−μ)4
σ4

Waveform factor
X2 � 1

N

�������
1
N∑N

i�1 |xi |2
√
∑N

i�1 |xi |
Crest factor X3 � xmax−xmin�������

1
N∑N

i�1 |xi |2
√

Pulse factor X4 � 1
N
xmax−xmin∑N

i�1 |xi |
Margin factor X5 � xmax−xmin

(1N
��
|xi |

√
)2

TABLE 3 | Average time-domain characteristic values of low-frequency current
waveform.

Load State X1 X2 X3 X4 X5

Electric kettle Normal 1.493 1.111 2.912 3.237 3.556
Fault 1.463 1.102 3.065 3.387 3.697

Resistance Normal 1.533 1.125 3.065 3.450 3.902
Fault 1.541 1.119 3.336 3.728 4.181

Electric drill Normal 4.516 1.349 6.467 7.943 12.151
Fault 3.680 1.327 6.676 8.845 12.353

Vacuum cleaner Normal 1.995 1.213 4.062 4.590 4.990
Fault 2.297 1.151 5.213 6.062 6.725

FIGURE 9 | High-frequency current component of the electric kettle: (A)
normal. (B) Series arc fault.
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to measure signal characteristics. Characteristic quantities in the
time domain are usually divided into dimensionless and
dimensional characteristic quantities. Dimensionless
characteristics are not sensitive to the change of load and can
more intuitively represent the status information of normal
operation and fault of load. Kurtosis is often used in the field
of bearing fault diagnosis. It has nothing to do with bearing speed

and size, etc. It is sensitive to impact signals and is suitable for the
description of surface damage faults. It can be seen from the arc
fault current waveform diagram in Figures 3–6 that the current
waveform will be distorted and high-frequency pulses will appear
when an arc fault occurs. These signals are similar to impulse

FIGURE 10 | (Continued).
FIGURE 10 | (Continued). VMD decomposition results of normal high-
frequency current waveform: (A) IMF1 component. (B) Spectrum of IMF1. (C)
IMF2 component. (D) Spectrum of IMF2. (E) IMF3 component. (F) Spectrum
of IMF3. (G) IMF4 component. (H) Spectrum of IMF4.
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signals. Therefore, this article uses kurtosis as a waveform time
domain feature to calculate. The waveform factor is the ratio of
the effective value to the rectified average value.When an arc fault
occurs, the waveform of the low-frequency current component
will be distorted, the periodicity will be destroyed, and both the
effective value and the rectified average value will change, so its
shape factor can be calculated. The crest factor is defined as the
ratio of the peak-to-peak value to the effective value of a signal.

When an arc fault occurs, the low-frequency current component
will appear “burr,” and its peak-to-peak value will become larger,
so the arc fault can be described by calculating the change in the
value of the crest factor. The impulse factor refers to the ratio of
the peak value of the signal to the rectified average value. Similar

FIGURE 11 | (Continued).
FIGURE 11 | (Continued). VMD decomposition results of high-frequency
current components of series arc fault: (A) IMF1 component. (B) Spectrum of
IMF1. (C) IMF2 component. (D) Spectrum of IMF2. (E) IMF3 component. (F)
Spectrum of IMF3. (G) IMF4 component. (H) Spectrum of IMF4.
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to the crest factor, arc faults can also be described by the pulse
factor. The margin factor is the ratio of the peak value of the
signal to the rms amplitude. Crest factor, impulse factor, and
margin factor, like kurtosis, are all indicators used to detect
whether there is a shock in a signal. In this article, kurtosis,
waveform factor, crest factor, pulse factor, and margin factor are
selected as five dimensionless indexes for time domain
characteristic extraction. Low-frequency current waveform of
two cycles, i.e., 20 ms, and 2,500 points of sampling points N

were selected as an analysis sample. Kurtosis, waveform factor,
crest factor, pulse factor, and margin factor of low-frequency
current waveform were calculated in the time domain, and the
five characteristic quantities were marked as X1, X2, X3, X4, and

FIGURE 12 | (Continued). FIGURE 12 | EMD decomposition results of high-frequency current
components of series arc fault: (A) IMF1 component. (B) Spectrum of IMF1.
(C) IMF2 component. (D) Spectrum of IMF2. (E) IMF3 component. (F)
Spectrum of IMF3. (G) IMF4 component. (H) Spectrum of IMF4. (I) IMF5
component. (J) Spectrum of IMF5. (K) IMF6 component. (L) Spectrum of
IMF6. (M) IMF7 component. (N) Spectrum of IMF7. (O) IMF8 component. (P)
Spectrum of IMF8. (Q) IMF9 component. (R) Spectrum of IMF9.
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X5 in turn. The expression of each time domain characteristic
quantity is shown in Table 2.

InTable 2, xi represents the current sample at the ith sampling
point, i = 1,2,3..., N; μ is the mean of xi, σ is the standard deviation
of xi, and E represents the mathematical expectation. The time
domain characteristic quantities of 100 samples were calculated
for each load. Table 3 shows the average time domain
characteristics values of different loads.

It can be seen from Table 2 that the crest factor, pulse factor,
and margin factor of each load increase when a series of arc faults

occurs compared with normal operation. The value of the
waveform factor decreases when a series of arc faults occurs.
For kurtosis, the values of electric kettles and electric drills will
decrease in the event of a series of arc faults, and the values of
resistance and vacuum cleaners will increase. Under the condition
of a single load, the threshold value can be set to determine
whether the series of arc faults occurs. But in the actual line, load
condition cannot be determined in advance, and threshold setting
will be difficult. It can be seen that the high-frequency current
waveform changes dramatically when series arc faults occur, and
more series arc fault characteristics can be obtained in the high-
frequency waveform, so it is necessary to analyze the high-
frequency current waveform.

3.2 Analysis of Frequency Domain
Characteristics of Series Arc Faults
It is impossible to calculate the characteristic values of the high-
frequency current waveform in the time domain because the
waveform of the high-frequency current waveform is very drastic.

FIGURE 12 | (Continued).

FIGURE 12 | (Continued).
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Therefore, characteristic extraction is carried out in the frequency
domain.

VMD is a novel adaptive and completely non-recursive signal
analysis method provided by Dragomiretskiy and Zosso. (2014) for
EMD’s sensitivity to noise and signal sampling. To establish and
solve the variational problem as the core, based on the classical
Wiener filter, Hilbert transform and mixes as the basis of expansion
solution, intrinsic mode function, and their respective central
frequencies are obtained through each intrinsic mode function to
reconstruct the signal. The reconstructed signal can smoothly
reproduce the input signal. VMD is the sum of the input signal

f(t) decomposed into K sub-signals (i.e., IMF components) and the
remainder:

f(t) � ur(t) +∑K

k�1uk(t), (1)
where uk(t) is the kth IMF component, and ur(t) is the remainder.

The IMF component is a function of amplitude and frequency
modulation:

uk(t) � Ak(t) cos(φk(t)), (2)
where φk(t) is a non-decreasing function, that is, φ′k(t)≥0,k ≤ K;
Ak(t) represents the envelope Ak(t) ≥ 0; k ≤ K.

The VMD algorithm requires the bandwidth and minimum of
all IMF components. The solution of the constrained variational
problem is constructed as follows:

min
{uk(t)},{ωk}

⎧⎨⎩∑K

k�1

�������zt[(δ(t) + j

πt
) p uk(t)]e−jωkt

�������
2

2

⎫⎬⎭, (3)

where ωk is the central frequency of the kth IMF component, ωk =
φ′k(t); δ(t) is the Dirac function.

In Formula (3), quadratic penalty term and Lagrange
multiplier are introduced to solve the variational problem,
making it unconstrained. The augmented Lagrange function is
obtained as follows:

L{[uk(t)], [ωk], λ(t)} � α∑K

k�1

�������zt[(δ(t) + j

πt
) p uk(t)]e−jωkt

�������
2

2

+
�����f(t) −∑K

k�1 uk(t)
�����22 + 〈λ(t), f(t)

−∑K

k�1 uk(t)〉,
(4)

where λ(t) is the Lagrange multiplier and α is the penalty factor.
The detailed iterative solution steps of modal components

uk(t), central frequency ωk, and λk(t) in Formula (4) can be
referred to as the solution steps in the article by Dragomiretskiy K
and Zosso D (2014). According to the aforementioned principle,
the VMD algorithm is used in MATLAB for waveform
decomposition. According to the study of K and α in an
article by Ma et al. (2020), the number of decomposition and
the penalty factors were set at K = 4 and α = 2000, respectively.
Other parameters in the VMD algorithm are set as the default
values of the algorithm in an article by Liu et al. (2021). The
high-frequency current waveform is taken as an example when
an electric kettle works normally and a series of arc faults occurs.
For the convenience of analysis, the waveform data were

FIGURE 12 | (Continued). EMD decomposition results of high-
frequency current components of series arc fault: (A) IMF1 component. (B)
Spectrum of IMF1. (C) IMF2 component. (D) Spectrum of IMF2. (E) IMF3
component. (F) Spectrum of IMF3. (G) IMF4 component. (H) Spectrum
of IMF4. (I) IMF5 component. (J) Spectrum of IMF5. (K) IMF6 component. (L)
Spectrum of IMF6. (M) IMF7 component. (N) Spectrum of IMF7. (O) IMF8
component. (P) Spectrum of IMF8. (Q) IMF9 component. (R) Spectrum of
IMF9.

TABLE 4 | Central frequencies of IMF components.

IMF component Central frequency (kHz)

Normal Series arc fault

IMF1 0.075 0.675
IMF2 1.050 1.425
IMF3 2.175 2.725
IMF4 4.450 4.450
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normalized, and then VMD decomposition was carried out to
obtain four IMF components, and the corresponding spectrum
of each component was obtained by Fast Fourier
Transformation in MATLAB. The decomposition results are
shown in Figures 9–11. At the same time, the EMD algorithm
was used for the same series arc fault waveform to obtain each

IMF component and its spectrum after decomposition, as
shown in Figure 12.

Figure 9 shows the original current waveform when the
electric kettle is in normal operation and series arc fault
occurs; Figure 10 shows the decomposition result of VMD
algorithm when the electric kettle is in normal operation;
Figures 11, 12, respectively, show the decomposition result of
VMD and EMD algorithms of the same high-frequency
component of the series arc fault. As can be seen from
Figure 12, the EMD algorithm decomposes the high-frequency
signal into nine components, and the IMF1–9 components are
arranged according to the central frequency from large to small.
Among them, both IMF1 and IMF2 appear in the frequency band
around 5 kHz, with an over-decomposition phenomenon. The
center frequency distribution of the IMF2 component is not
obvious, including the frequency band [5000 Hz and
10000 Hz], and there is the phenomenon of mode aliasing. In
addition, it can be seen from the amplitude–frequency diagram of
IMF5–9 components that the component is lower than 1kHz,
which is due to the frequency band attenuation of the RC high-
pass filter, but it is not needed for the high-frequency component
analysis in this article. It can be seen from Figure 11 that the high-
frequency current component is decomposed into four IMF
components by the VMD algorithm, which are independent of
each other without modal aliasing, and the decomposition effect
is significantly better than that of the EMD algorithm. The center
frequency of each IMF based on the VMD algorithm is shown in
Table 4.

TABLE 5 | Energy entropy and variance contribution ratio.

IMF component Normal Series arc fault

Energy entropy Variance contribution ratio Energy entropy Variance contribution ratio

IMF1 0.115 22.753 0.128 25.155
IMF2 0.112 19.142 0.155 22.099
IMF3 0.101 15.769 0.148 18.548
IMF4 0.101 15.858 0.123 11.618

FIGURE 13 | Energy entropy of normal operation and series arc fault.

TABLE 6 | Characteristic vectors of some experimental samples.

X1 X2 X3 X4 X5 X6 X7

1.457 1.103 2.910 3.210 3.699 0.159 1
1.484 1.105 3.995 4.417 4.828 0.157 1
1.464 1.105 2.893 3.198 3.600 0.157 1
1.495 1.112 2.878 3.201 3.520 0.118 0
1.490 1.110 2.878 3.197 3.509 0.111 0
1.653 1.105 3.976 4.397 4.740 0.159 1
1.591 1.125 3.291 3.703 4.143 0.159 1
1.521 1.105 3.274 3.621 3.975 0.157 1
1.498 1.112 2.964 3.298 3.634 0.140 0
1.500 1.114 3.103 3.458 3.836 0.129 0
7.919 1.648 5.409 8.915 12.354 0.157 1
8.482 1.654 5.901 9.761 13.624 0.154 1
7.035 1.494 6.430 9.610 12.305 0.153 1
3.601 1.258 5.744 7.230 8.6078 0.143 0
3.256 1.214 7.293 8.855 10.028 0.137 0
1.677 1.138 4.328 4.929 5.444 0.158 1
3.675 1.209 9.878 11.94 13.518 0.156 1
16.951 1.238 9.686 16.956 19.847 0.158 1
1.891 1.119 3.740 4.189 4.520 0.136 0
1.886 1.118 3.815 4.269 4.607 0.142 0

FIGURE 14 | Diagnostic flow chart of random forest algorithm.
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FIGURE 15 | Diagnostic results of different types of loads based on random forest algorithm. (A) Effect of random forest algorithm on electric kettle arc fault
diagnosis. (B) Effect of random forest algorithm on resistance arc fault diagnosis. (C) Effect of random forest algorithm on electric drill arc fault diagnosis. (D) Effect of
random forest algorithm on switching power supply arc fault diagnosis. (E) Effect of random forest algorithm on vacuum cleaner arc fault diagnosis. (F) Effect of random
forest algorithm on hair dryer arc fault diagnosis.
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Energy entropy can measure the regularity of time series and
the energy characteristics of signals in different frequency bands
(Jin et al., 2021). When the series arc fault occurs, the current will
change and the energy will also change. The energy entropy of
mth IMF component is calculated as:

HEm � ∑N
i�1(xm(i))2∑K

m�1∑N
i�1(xm(i))2

lg
∑N

i�1(xm(i))2∑K
m�1∑N

i�1(xm(i))2
, (5)

where xm(i) is the value of the ith point of the mth IMF
component, m = 1,2,3, . . . ,K.

sm � varm
varr + ∑K

k�1vark
, (6)

where varm is the variance of mth IMF component, m = 1,2,3, . . . ,
K and varr is the variance of the remainder.

The energy entropy and variance contribution ratio of each
IMF in Figures 8, 9 were calculated according to the
aforementioned formula. Table 5 shows the calculation results.

It can be seen from Tables 4, 5 that the IMF1 component has a
center frequency of less than 1 kHz, which is due to the frequency
band attenuation of the high-pass filter, but it is not needed for the
high-frequency waveform analysis in this article. The frequency of
the high-frequency current waveform in this article is set above
1 kHz, so only the IMF component larger than 1 kHz needs to be
studied. When the center frequency of the IMF component is
greater than 1KHZ, the IMF2 variance contribution rate of the
normal operating current is the largest, and the energy entropy is
0.122. When a series of arc faults occur, the variance contribution
ratio of IMF1 is the largest, and the energy entropy is 0.155, which
increases obviously. The corresponding energy entropy of IMF
with the largest variance contribution ratio was calculated for 100
groups of normal working and 100 groups of series arc fault
samples, as shown in Figure 13.

As can be seen from Figure 11, the corresponding energy
entropy of IMF with the largest variance contribution ratio in

normal operation is less than 0.15, and the corresponding energy
entropy of IMF with the largest variance contribution ratio in
series arc fault is greater than 0.15. Therefore, the energy entropy
corresponding to IMF with the largest variance contribution ratio
can be taken as a characteristic value and denoted as X6.

4 SERIES ARC FAULT DIAGNOSIS

4.1 Construction of a Series Arc Fault
Characteristic Vector
In order to improve the diagnosis ratio of series arc fault and
realize the diagnosis under different load conditions, the load
working state is marked as X7, “0” means normal operation, “1”
means series arc fault, and the series arc fault characteristic vector
is constructed with the six time–frequency characteristic
quantities in this article. The characteristic vectors of some
experimental samples are shown in Table 6.

4.2 Series Arc Fault Diagnosis Based on
Random Forest
Random forest algorithm is an algorithm that integrates multiple
decision trees through the idea of ensemble learning (Li et al., 2020).
Its basic unit is the decision tree. In this article, the decision tree
algorithm selects CART [Jiang et al. (2021), Ali et al. (2012)], and the
Gini coefficient minimization criterion is used for characteristic
selection in CART. The series arc fault diagnosis flow chart based on
random forest algorithm is shown in Figure 14:

In this article, 1000 training samples were selected with 250 for
each load, including 100 normal samples and 150 series of arc
fault samples. Characteristic quantities n = 6. The number of
decision trees is T = 100. The diagnosis model was trained, and
the untrained load samples were tested. Figures 15A–F shows the
diagnostic results of different types of loads based on the random

TABLE 7 | Detection accuracy of the random forest diagnostic model.

Load Number of samples Correct ratio

Normal Fault Normal sample (%) Fault sample (%) Comprehensive testing (%)

Electric kettle 100 300 100 98.67 99
Electric drill 208 320 98.56 96.88 97.53
Vacuum cleaner 176 240 99.43 97.08 98.08
Resistance 160 208 96.88 99.04 98.64

TABLE 8 | Diagnostic results of switching power supply, hair dryer, and mixed load.

Load Original sample diagnostic model New sample diagnostic model

Number of samples Correct ratio (%) Number of samples Correct ratio (%)

Switching power supply 432 94.91 282 98.93
Hair dryer 464 92.67 214 97.66
Electric kettle + electric drill 448 93.75 198 97.47
Switching power supply + electric drill 400 92.50 150 98.67
Resistance + vacuum cleaner 480 91.67 230 97.82
Resistance + hair dryer 496 91.13 246 97.56
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forest algorithm. From Figures 15A–F, the information shown in
Table 7 can be obtained. The random forest algorithm has ideal
fault diagnosis effects and high diagnosis accuracy for electric
kettles, hair dryers, electric drills, switching power supplies, and
vacuum cleaners.

It can be seen from Table 7 that in the series arc fault detection
model based on random forest, the accuracy ratio of load
detection under a normal working state is higher than 96%.
The fault detection accuracy of load in a series arc fault state is
higher than 96%. The comprehensive detection ratio was above
97%. The detection effect is very good.

In the actual distribution lines, the loads are varied and mixed.
In order to verify the validity of the aforementioned diagnostic
model, series arc fault simulation experiments of switching power
supply, hair dryer, and mixed load are added in this article.
Switching power supply parameters: BSD-36 P-60W, input 220
VAC 50 Hz, and output 36 VDC 60W. Hair dryer parameters:
220 VAC 1600W. According to the time domain and frequency
domain characteristic extraction methods proposed in this article,
the time–frequency characteristic values are extracted, the
characteristic vector is constructed, and a new load training
sample diagnosis model is added based on the random forest
algorithm training, and then the fault diagnosis is carried out. The
diagnosis results are shown in Table 8.

As can be seen from Table 8, in the diagnosis of the new loads
and mixed load types, the accuracy of the original diagnosis model
decreases to 94.91% and 91.13%, respectively, and the detection
effect is lower than that of the original four loads. Therefore, new
loads and mixed loads were added to the original training samples
to optimize the diagnostic model. The results in Table 8 show that
the recognition efficiency of the new diagnostic model has reached
more than 97%, and the recognition effect is significant. For more
load cases, new training samples can be added to improve the
diagnosis model for diagnosis.

5 CONCLUSION

Aiming at the problem of low-voltage series arc faults that are
difficult to identify and cause great harm, this article proposes
a series of arc fault feature extraction method based on VMD
and energy entropy. First, a series arc fault simulation
experimental circuit is built, and the series of arc fault
current waveform data under different loads are obtained,
and the arc characteristic quantity is extracted by VMD

decomposition and Fourier transform. Then, the random
forest algorithm model for training is established, and the
random forest algorithm is used to train the diagnostic model
to identify arc faults. Finally, the feasibility of the method is
verified by MATLAB simulation, and the conclusions of this
article are as follows:

1) The energy entropy corresponding to the IMF component
with the largest variance contribution rate extracted based on
VMD decomposition can effectively characterize the arc fault
feature quantity.

2) The random forest algorithm training diagnosis model based
on five time-domain feature quantities and one IMF
component corresponding to energy entropy as the
frequency-domain feature quantity has good generalization
performance for arc fault identification.

3) The training process of random forest uses a decision tree as
the basic unit to perform simple two-class classification. The
training results show that the recognition rate of series arc
faults has reached more than 97%, and the recognition effect is
remarkable, which can provide analytical ideas for the
improvement of series arc fault diagnosis algorithms and
the research on the safety of people’s livelihood.
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NOMENCLATURE

X1 kurtosis

X2 waveform factor

X3 crest factor

X4 pulse factor

X5 margin factor

X6 energy entropy

X7 arc fault status

xi current sampling sample

E expectation

σ standard deviation

λ(t) Langrange multiplier

α penalty factor

δ(t) Dirac delta function

ωk IMF component center frequency

uk(t) modal components

K the number of modal decompositions

HEm energy entropy

Sm variance contribution rate

varm variance of IMF components

varr variance of remainder

Abbreviations
EMD empirical mode decomposition

IMF intrinsic modal function

CART classification and regression tree

VMD variational mode decomposition
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