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Due to the complexity of unconventional reservoir measurement, log data acquired are
often incomplete, which results in inaccurate formation evaluation and higher operational
risks. Common solutions, such as coring, are typically high cost related while not being
sufficiently representative. In recent years, neural network has received increasing attention
given its strong ability in data prediction. Nevertheless, most neural networks only focus on
one specific feature of the selected data, thus prohibiting their prediction accuracy for
reservoir logs where data are often dominated by more than one key feature. To address
this challenge, a novel multi-channel hybrid Long Short-Term Memory (LSTM) neural
network for effective acoustic log prediction is proposed. The network combines
Convolutional Neural Network (CNN) and LSTM, where CNN is used to extract spatial
features of the logs and LSTM network extracts temporal features with the assistance of an
adaptive attention mechanism implemented for key feature recognition. In addition, the
strong heterogeneity of unconventional reservoirs also increases the difficulty of prediction.
Therefore, according to the characteristics of the unconventional reservoir, we designed
three feature enhancement methods to mine the hidden information of logs. To prove the
performance of the proposed network, a case study is presented with data acquired from
Jimusar Oilfield, one of the largest unconventional reservoirs in China. Four groups of
experiments are conducted, and the proposed network is employed for acoustic log
prediction. The predicted results are validated against measurement (R2: 92.27%,
91.42%, 93.31%, and 92.03%; RMSE: 3.32%, 3.92%, 3.06%, and 3.53%). The
performance of the proposed network is compared to other networks such as CNN,
LSTM, CNN-LSTM, and random forest (RF). The comparisons show that the proposed
network has the highest accuracy level of prediction, which means it provides an effective
approach to complement missing data during complicated unconventional reservoir
measurement and, therefore, could be of significant potential in energy exploration.
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1 INTRODUCTION

As the difficulty of discovering conventional reservoirs increases
year by year, the proportion of unconventional reservoirs in the
field of oil and gas exploration is increasing. Different from
conventional reservoir evaluation, unconventional shale
reservoirs must be stimulated by fracturing to obtain industrial
hydrocarbon flow (Guo et al., 2019;WangH. et al., 2016). The key
rock mechanical parameters of fracturing can only be obtained
through core analysis and acoustic logs (Eshkalak et al., 2014).
However, since core experiments are expensive and time
consuming, acoustic logs are often used to calculate rock
mechanical parameters, such as Poisson’s ratio and Young’s
modulus. However, the scale and quality of the data, especially
for shear wave slowness (DTS), can be easily affected owing to the
complex borehole environment during the operation on site,
which results in an even more expensive cost of obtaining the
reliable DTS logging in contrast to the compressional wave
slowness (DTC).Therefore, the prediction of DTS has been
proposed instead of measurement for saving the cost, which
has drawn interest from both academic and industrial realms
during the last 40 years.

To address this problem, many researchers have tried methods
of generating logs. For example, according to parameters such as
geological parameters, logs are inverted based on physical models,
or logs are obtained by fitting empirical formulas according to
other information of logs. Although these methods are very
convenient and efficient, the established physical models often
greatly simplify the real information of the formation, and the
empirical formulas need to be fitted separately for different
situations (Castagna et al., 1985; Greenberg & Castagna, 1992).
For these reasons, the quality of logs obtained by these two
methods cannot be guaranteed.

In recent years, machine learning (ML) has become the
mainstream method for well logs prediction because of its
advantages of automatically mining the internal relationship of
data. Zhang et al. (2018) established a log reconstruction method
based on LSTM for acoustic log prediction. Based on assembly of
clustering, classification, and regression, Du et al. (2019)
proposed a new method to improve the accuracy of shear
wave estimation. Feng et al. (2021) used random forest to
predict well logs and evaluated simultaneously the uncertainty
of the prediction. You et al. (2021) proposed to use transfer
learning to improve the performance of LSTM and applied the
prediction results to morphology identification and saturation
inversion of gas hydrate. Wang et al. (2021) proposed a spatial-
temporal neural network (STNN) algorithm that combines the
advantages of CNN and LSTM. Also, it successfully predicted
acoustic logs from natural gamma, density, compensated
neutron, resistivity, and borehole diameter logs. Given the
interdependence of the well logs in the depth domain sample
sequence, Shan et al. (2021) proposed a new intelligent
construction method based on the bi-directional LSTM and
CNN. Zhang et al. (2022) used a 1D-CNN to achieve the
prediction of DTS for carbonate and sandstone reservoirs,
demonstrating that the network outperforms traditional
backpropagation neural network (BP) and support vector

regression (SVR). Wang et al. (2022) developed a hybrid
model of CNN and LSTM to predict shear wave velocity. Zeng
et al. (2022) proposed a multi-stage attention mechanism based
on the GRU neural network, which realized the prediction of
DTC. Pan et al. (2022) demonstrated that the XGBoost algorithm
can achieve log prediction by using the grid search method and
the genetic algorithm to optimize the hyperparameters. However,
most of these studies only consider one single feature, e.g., the
temporal or spatial feature of well logs (Pham & Naeini, 2019;
Song et al., 2021). Very few of the studies take into account
multiple features, nor have fully explored the implicit information
between various features. Since many log data are dominated by
more than one feature, this leaves room for prediction accuracy
enhancement (Zhou et al., 2021). For example, during the
reservoir appraisal stage, formation heterogeneity casts a
significant impact on prediction accuracy for various logs.

In view of this, this study further investigates the effect of each
feature of well logs on the prediction accuracy and develops a
neural network for predicting logs of the unconventional
reservoir to reduce the cost of hydrocarbon exploration. This
study proposes a multi-channel Hybrid Feature Enhancement
Network (HFEN) based on CNN-LSTM in the scope of acoustic
log prediction, and the log feature enhancement method is
investigated to enhance fluctuation trends and expand feature
space. The new log feature enhancement method and the extract
of each feature by the hybrid network contribute to the
improvement of prediction accuracy. The proposed HFEN is
validated on field data from Jimusar Oilfield, and satisfactory
results are achieved.

2 WORKFLOW OF THE PROPOSED
NETWORK

2.1 Development Strategy
The sedimentation of the stratum is gradual in time, and the logs
have different responses to the sedimentary characteristics of
different strata. Therefore, the well log is the ordered sequence
along with the depth. LSTM is suitable for predicting data with
time-series features, such as well logs (Zhang et al., 2018; Li et al.,
2019). However, LSTM only considers the trend of log changes
with depth, and the perception of local features is still lacking. The
CNN network uses the convolution kernel to capture the local
correlation features in the logs, but due to the limitation of the
filter size, it is difficult for the network to learn the pre- and post-
dependency of the sequence logs (Shan et al., 2021). Therefore, to
combine the advantages of the two networks, a parallel structure
of CNN and LSTM is proposed in this study, and an attention
mechanism is added to the network. The novel multi-channel
hybrid feature enhancement network (HFEN) structure is shown
in Figure 1.

Existing literature studies have confirmed that introducing
domain knowledge can effectively improve the prediction
accuracy of neural networks (Chen & Zhang et al., 2018;
Downton et al., 2020). Therefore, based on the characteristics
of well logs, domain knowledge is introduced into HFEN. Three
log feature enhancement methods are designed, which make it
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easier for the network to learn the feature of log and improve the
prediction accuracy. In addition, in the training process, each
input feature is treated equally by the neural network, which
means that their contribution to the output is the same. However,
in fact, different input features have different correlations and
similarities with the output, so the attention mechanism is
introduced into the network to adjust the importance of each
feature. (Wang Y. et al., 2016; Li et al., 2020; Wang et al., 2020).
The workflow of the proposed method is shown in Figure 2.

In this study, the feature of the log is referred to using three
terms. “Log Feature” is used to represent the fluctuating feature of
the logs derived from the domain knowledge. “Spatial Feature”
represents the spatial feature that exists between logs measuring
different physical properties. “Temporal Feature” represents the
temporal (depth) continuity of the log. For the attention
mechanism, “Other Feature Attention” refers to the
importance of logs with different physical properties, and
“Time Attention” refers to the importance of different log
depths converted to time scale.

2.2 Log Feature Enhancement
The current ML or neural network research focuses on using
high-quality data to obtain highly accurate predictions. However,
due to the strong heterogeneity in unconventional petroleum
resources, the feature mapping relationship between known logs
and missing logs is complex and fuzzy, which will reduce the
reliability of prediction logs. In addition, in the case of a small
input sample size, feature enhancement methods improve the
diversity of the sample by emphasizing its feature space and thus
compensate small sample size. In this regard, feature
enhancement methods guided by domain knowledge are
proposed. The three most representative features (adjacent

feature, boundary feature, and space feature) of the log are
enhanced to strengthen the correlation between the input logs
and the output log and to highlight the details of the log.

Based on the logging principle, in the vertical direction, there
is a correlation between the log value of the reservoir at a certain
point and the log from the adjacent formation (Li et al., 2019), as
shown in Figure 3. Therefore, multiple adjacent depth samples
are combined as the one input of the network, to realize the
adjacent feature enhancement, instead of using conventional
single-point-to-single-point prediction. In this study, the upper
and lower four points of the sampling point are combined as one
sample of input (i.e. five sample points as a whole).

For heterogeneous reservoirs, the vertical variation of formation
physical properties is large, especially between strata with different
properties and types, as shown in Figure 3. Consequently, they
change drastically in different small ranges (different small
geological layers). However, the log is averaged by the logging
tool, which may weaken the reflection of a boundary change,
resulting in the correct characteristics that cannot be shown in the
target prediction log. Boundary feature enhancement refers to the
gradient calculation of the original data in order to make the input
data more clearly reflect the vertical changes in the physical
properties of the reservoir (Hall et al., 2017). The gradient
attribute calculation formula is as follows:

xj
grad,i �

xj
i+1 − xj

i

ti+1 − ti
, i � 1, 2, . . . , n, j � 1, 2, 3, . . . ,m, (1)

where x is the value of the log samples, m denotes the different
logs feature, and n refers to the number of log samples.

The target sweet spot usually contains multiple geological
layers as shown in Figure 4. There is some variance in the

FIGURE 1 | Conceptual overview of the multi-channel CNN-LSTM network.
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logs reflecting the characteristics of each geological formation.
Intuitively, the distribution of log values is different. If the data of
different strata are mapped to the overall stratigraphic interval
according to the traditional normalization method, the accuracy
of the neural network will be limited (Zhang et al., 2018).
Therefore, space feature enhancement is used to solve this
problem, that is, different formation layer spaces will be
mapped to different numerical ranges for adaptive
normalization, which is calculated by Eq. 2. It is worth noting
that this enhancement method can be omitted if there is no
geological layer depth in some cases.

LayerNorm �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi,1 − ximin,1

ximax,1 − ximin,1
, layer1

xi,2 − ximin,2

ximax,2 − ximin,2
+ 1, layer2

xi,3 − ximin,3

ximax,3 − ximin,3
+ 2, layer3

, (2)

where xi,n refers to log sample i in layer n, ximin,n is the minimum
of log sample i in layer n, ximax,n represents the maximum of log
sample i in layer n.

2.3 Spatial Feature Extraction
CNN is a feed-forward neural network. Existing studies have
shown that the CNN network not only has good performance in
image processing, it also has good performance in natural
language processing (Yang et al., 2016; Kim et al., 2019). In
this study, since the log is typical one-dimensional data, the
convolution kernel can only scan along depth dimension,
therefore, 1D-CNN is adopted. It consists of three layers: an
input layer that accepts raw data, a hidden layer that extracts
characteristics, and an output layer. Generally, the hidden layer
includes a convolutional and pooling layer, which realize spatial
feature extraction and dimensionality reduction, respectively.
Convolution calculation and pooling operation are shown in
the following equations:

FIGURE 2 | Workflow for acoustic prediction using the proposed hybrid feature enhancement network.
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ci � g(xi pwi + bi), (3)
hi � max(ci, ci−1) + bh, (4)

where p is convolution operation; xi is the input of CNN; wi is
weight matrix; bi, bh are the bias; g represents activation function
Rectified Linear Unit (ReLU); ci is the ith output feature map;
max(ci, ci−1) refers to the max pooling subsampling function; hi
denotes the output of max pooling layer.

The algorithm flow of the CNN branch of the hybrid feature
enhancement network is as follows.

Algorithm 1: Convolutional Neural Network

2.4 Temporal Feature Extraction
2.4.1 Attention Mechanism Implementation
The attentionmechanismwas first proposed in the field of human
vision research (Wang Y. et al., 2016; Lin et al., 2019). In recent
years, it has been widely used in engineering applications, such as
restoring the missing sensor response and leak detection in the oil
pipeline network (Hu et al., 2020; Hu et al., 2021). The attention
mechanism allows the network to capture more important ones
from different log features. Its specific implementation method is
to automatically extract the key information of each feature

through calculation and then assign weights according to the
similarity between the input log and the target log. The larger the
weight, the more important the input log is for predicting the
target log. The main role of the attention mechanism introduced
into the network is to improve its ability to capture the dynamic
features of the data and its interpretability. For this study, the
attention mechanism is added to the features dimension and the
time dimension, respectively, and finally, their outputs are
merged as the input vector of LSTM. The following is a
detailed description of them.

Logs acquired at the same depth may have different
importance to the predicted log, which is based on the
physical quantities they measure, and the principle of
measurement. Although, the researcher can judge and choose
which logs are more suitable as input according to the previous
rules. But in neural networks, it is more inclined to be selected by
the network, because it can understand some associations that we
cannot intuitively observe. Typically, the network treats any input
features equally. Therefore, it is necessary to assign higher weights
to logs of greater importance. The method achieved is to
introduce the key feature attention mechanism into the
network, that is, measure the correlation between the input
logs and the target log at the same depth, and extract the
most critical feature information for the output.

X �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
1 x2

1 /
x1
2 x2

2 /
xi
1

xi
2

..

.

x1
d

..

.

x2
d

/
/

..

.

xi
d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (5)

The logging sequence data can be represented as a matrix X as
shown in Eq. 5. The superscript of X represents different logs, such
as DEN, DTC, GR, etc., and the subscript represents the depth value
corresponding to the sample. For simplicity, it is written in vector
X � {x1d, x2d,/, xid}d1 .The set xd � (x1d, x2d, . . . , xid, ) is the values of

FIGURE 3 | The log feature enhancement process includes adjacent feature enhancement, boundary feature enhancement, and space feature enhancement.
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m logs at depth d. The set xi � (xi1, xi2, . . . , xid, ) is the values of ith
log with different depths. The output of the attention mechanism is
calculated by Eq. 6, and the structure is shown in Figure 5.

Sid � VT
s tanh(Wsht−1 + Usxd + bs), (6)

where VT
s ,Ws, and Us represent the weights, and ht−1 is the

hidden layer state at the previous depth; bs is bias.
Then, the SoftMax function is used to normalize the score Sid,

and the feature attention weight coefficient αid is obtained.

αit �
exp(Sid)∑t
i�1 exp(Sid), (7)

The introduction of the time attention mechanism can give the
relationship between the current moment and other times, and
automatically select the key information at different times, avoiding
the loss of information in LSTM due to the long input sequence. The
attention mechanism strengthens the contribution of important
information by assigning different weights to features at different
times, making it easier for the network to capture long-distance
interdependent features in the sequence. Its structure is the same as
that in Figure 5, only the parameters are changed.

tid � VT
t tanh(Wtht−1 + Utx

i + bt), (8)
where VT

t ,Wt , and Ut represent the weights, and ht−1 is the
hidden layer state at the previous depth.

The time weight, βid , is calculated by tid through Eq. 7, and
after obtaining two attention matrices, bring them into Eq. 9 for
the calculation to obtain an attention matrix that considers both
features and time.

γ � αid ⊙ βit, (9)
where ⊙ is the dot product operator.

Then, the input of the LSTM network can be obtained from
the following equation:

~X � {γ1dx1
d, γ

2
dx

2
d, . . . , γ

i
dx

i
d}Dd�1, (10)

Figure 6 shows the update of the input features importance by
the attention mechanism. Figure 6A shows the default
importance assigned by the network to each input feature
when the attention mechanism is not introduced. Figure 6B
shows that the importance of each input feature is automatically
updated after the attention mechanism. The importance of DTC
is the strongest in prediction, which can also be explained at the

FIGURE 5 | The structure of key features attention mechanism module,
where VT

s ,Ws, and Us represent the weights; xd refers the ith feature of input;
ht−1 is the hidden layer state at the previous depth; αid is attention weight
coefficient, and xid is input log sequence.

FIGURE 4 | Schematic diagram of target formation depth for different wells, which is the known information in the research field.
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physical level because DTC and DTS are both acoustic logs and
they have great similarities.

2.4.2 Temporal Feature Extraction
Traditional neural networks have high accuracy in dealing with
complex relational mappings, such as CNN and BP, but they
cannot effectively deal with historical dependencies of data. To
address this problem, recurrent neural networks (RNN) are
proposed, which can process dependencies using information
accumulated in previous time steps, thereby improving
prediction accuracy. But RNN can only handle short-term
dependencies, otherwise, there will be a gradient explosion
problem. Therefore, LSTM, a recurrent neural network
improved by RNN, is proposed. It is a kind of recurrent

neural network proposed by Hochreiter & Schmidhuber
(1997). LSTM contains a special gate structure (input gate,
output gate, and forget gate), which enables a powerful
memory function (Mosavi et al., 2019; Ardabili et al., 2022).
It has been widely applied in the text analysis, sentiment
analysis, speech recognition, and other fields (Long et al.,
2019; Rehman et al., 2019; Xie et al., 2019). The log is the
typical sequential data, so it is suitable to use LSTM to predict it.
Eq. 11 represents the gate mechanism information related to the
LSTM network.

it � σ(Wxixt +Whiht−1 + bi),
ft � σ(Wxfxt +Whfht−1 + bf),
Ot � σ(Wxoxt +Whoht−1 + bo),
~Ct � tanh(Wxcxt +Whcht−1 + bC) ,
Ct � ft ⊙ Ct−1 + it ⊙ ~Ct,
ht � Ot ⊙ tanh(Ct) ,

(11)

whereWxi,Wxf,Wx0, andWxc represent the weight vector from
the input layer to the input gate, forget gate, output gate, and cell
state, respectively; Whi,Whf, Wh0, and Whc represent the weight
vector from the hidden layer to the input gate, forget gate, output
gate, and cell state, respectively. b denotes the bias of the LSTM
network; ⊙ denotes the dot product operator.

The algorithm flow of the LSTM branch of the hybrid feature
enhancement network is as follows:

Algorithm 2: Long Short-Term Memory

FIGURE 6 | (A) The importance of each feature by default. (B) The importance of each feature after the attention mechanism algorithm.

FIGURE 7 | Feature merge process.
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2.5 Feature Merge Process
For different networks, pertaining feature extraction methods
could vary considerably, therefore, it is important to deploy
proper methods to enhance prediction accuracy (Li et al.,
2019). In HFEN, the CNN branch extracts the spatial feature
of sequence data, while the LSTM branch extracts the temporal
feature. The two features are consequently merged as input for the
fully connected layer, the output of which is the predicted log.
Figure 7 shows the complete process of feature merge. As shown
in the following, the data acquired from the CNN branch is
processed via matrix transformation as shown in Eq. 12, this is to
ensure initial data out of CNN and LSTM are of the same
dimension for sequential processing, which is commonly
referred to as data merging, as shown in Eq. 13. In this step, a
concatenate layer is employed. Then, the merged features are

mapped to the output space through the fully connected layer,
and the output is obtained, in this case, predicted logs.

Flatten layer: Matrix(None,N,M) → Matrix(None,N × M),
(12)

Concatenate layer: Matrix(None,N × M),Matrix(None,W)
→ Matrix(None,N × M +W),

(13)
where Matrix (None,N,M) represents the matrix of features;
(None,N,M) represents the shape of the matrix, None
represents the size of the first dimension, N represents the size
of the second dimension, and so on.

3 NETWORK FEASIBILITY VALIDATION
USING FIELD DATA
3.1 Field Background and Dataset
Introduction
The data are collected from the Jimusar Shale Oilfield (referred to as
JSO). The Jimusar Shale Oilfield in the Junggar Basin, West China,
is an important unconventional oilfield and typical shale oil
reservoir that covers a surface area exceeding 300,000 acres, as
shown in Figure 8. (Guo et al., 2019). Abundant shale oil was
discovered in the Permian Lucaogou Formation. The Lucaogou
Formation has the characteristics of large burial depth, poor
physical properties, strong heterogeneity, and high crude oil

FIGURE 8 | (A) Location of Junggar Basin and (B) location of wells.

FIGURE 9 | Experimental datasets and schemes for predicting DTS.
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viscosity, and the reservoir lithology is complex and changes rapidly
vertically. This results in highly nonlinear relations between logs
reflecting different geophysical properties. Due to oilfield
environmental factors and cost factors, there is a situation in
which the log is missing in the measurement. The method
proposed in this study can complement the missing log, which
is of great significance for the reservoir analysis, production
operations, and even cost reduction.

Figure 9 shows the relevant data and schemes used in the
experiment. The existing logs from four wells are applied to

conduct experiments. These logs include density (DEN), natural
gamma (GR), deep resistivity (RT), compressional wave slowness
data (DTC), and shear wave slowness (DTS), with a sampling
interval of 0.125 m. DEN, GR, DTC, and RT are used as input for
the prediction of DTS.

3.2 HFEN Utilization and Parameter Setup
The HFEN network is utilized to predict DTS based on
aforementioned data . The structure of the HFEN is
presented in Figure 10 for the given scenario. The network
includes a CNN branch and an LSTM branch. In order to
identify relevant network parameters, it is critical to search for
the optimized balance between accuracy and efficiency.
Table 1 shows the finalized parameters for the designated
network. The CNN branch contains two CNN layers with a
kernel size of three and a max pooling layer with a size of 2. In
the LSTM branch, there are two LSTM layers with units of 128

FIGURE 10 | The structure of utilized HFEN for JSO.

TABLE 1 | Neural network parameters.

Neural network parameters for JSO

CNN layer
CNN_1 kernel size 3
CNN_2 kernel size 3
Max Pooling size 2

LSTM Layer
LSTM_1 units 128
Dropout_1 odds 0.3
LSTM_2 units 64
Dropout_2 odds 0.3

Output Layer
Dense 1

TABLE 2 | Comparison of HFEN-predicted results to measurement.

Experiment RMSE (%) R2 (%)

HFEN for Well 1 3.32 92.27
HFEN for Well 2 3.92 91.42
HFEN for Well 3 3.06 93.31
HFEN for Well 4 3.53 92.03
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and 64, and two Dropout layers. Finally, the dimension of the
output layer is set to 1, since the predicted results are one-
dimensional data.

3.3 Performance Evaluation Indicators
Root mean square error (RMSE) and coefficient of determination
(R2) are selected as evaluation indicators in this study, as shown in
Eq.14 and 15. The R2 reflects the proximity of the real values and
the predicted results. The smaller RMSE, the smaller the deviation
between the predicted value and the real value.

R2 � SSR

SST
� SST − SSE

SST
� 1 − SSE

SST
, (14)

TABLE 3 | Comparison of HFEN-predicted results with other methods.

Experiment Network RMSE (%) R2 (%)

Well 1 CNN 10.57 79.20
LSTM 8.16 81.04
Base CNN-LSTM 5.59 85.80
Random Forest 5.39 87.79
HFEN 3.32 92.27

Well 2 CNN 11.81 76.91
LSTM 11.45 78.90
Base CNN-LSTM 6.79 84.75
Random Forest 8.13 82.68
HFEN 3.92 91.42

Well 3 CNN 7.71 84.31
LSTM 11.96 72.76
Base CNN-LSTM 5.54 85.38
Random Forest 6.21 88.68
HFEN 3.06 93.31

Well 4 CNN 8.06 83.65
LSTM 10.21 79.86
Base CNN-LSTM 6.36 85.98
Random Forest 5.83 85.40
HFEN 3.53 92.03

FIGURE 11 | HFEN vs. Measurement in well 1.

FIGURE 12 | HFEN vs. Measurement in well 2.

FIGURE 13 | HFEN vs. Measurement in well 3.

FIGURE 14 | HFEN vs. Measurement in well 4.
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where SST is the sum of squares of the difference between the original
data and the mean; SSE is the sum of squares of the errors between
the fitted data and the corresponding points of the original data.

RMSE � �����
MSE

√ �
����
SSE

n

√
�

������������
1
n
∑n
i�1
(yi − ŷi)2√

, (15)

where yi refers to real log value; ŷi is predicted log value;

3.4 Performance Evaluation of Hybrid
Neural Network
To verify the performance of HFEN, the leave-one-out method is
used to conduct experiments, namely the experimental method in
Figure 9. The comparison of HFEN with measurement is shown
in Table 2. Specifically, in the four experiments, the RMSE of the
HFEN prediction compared to the measurement are 3.32%,
3.92%, 3.06%, 3.53%, and the R2 are 92.27%, 91.42%, 93.31%,
92.03%, respectively. Figures 11–14 show the actual
measurements of DTS and the predicted DTS via the HFEN
network. The black and purple lines represent the actual
measurements and prediction of HFEN, respectively. It can be
observed from Figures 11–14 that the proposed HFEN achieve a
good fitting between the predicted and the measurements. Even
though the reservoir in the study area is highly heterogeneous and
the geological conditions are complex, the trend of the prediction
still matches the trend of the measured data, which shows the
advantage of the HFEN network.

The prediction results are compared to a few common
machine learning algorithms (CNN and LSTM) to verify the
ability of HFEN to capture the temporal and spatial features of
the logs. The comparison results are shown in Figures 15, 16
and Table 3. The results show that compared to stand-alone
CNN and LSTM networks, the prediction results of HFEN have
improved significantly. The comparison is made with the base
CNN-LSTM network (under the same experimental
conditions, except that the feature enhancement methods
are not used) to verify the effectiveness of the feature

enhancement methods in HFEN. The comparison results are
shown in Figures 11–14. The green line in the figure represents
the prediction results of base CNN-LSTM. The results
demonstrate that compared to the base CNN-LSTM
network, the RMSE is reduced by 2.27%, 2.87%, 2.48%, and
2.83%, and the R2 is improved by 6.47%, 6.67%, 7.93%, and
6.05%. It is also compared with the popular integration
algorithm, random forest (Breiman, 2001), to verify the
performance of HFEN. The results show that the prediction
accuracy of HFEN is higher than that of random forest. In
addition, the prediction results of the proposed method also
show advantages compared with similar studies (Wang and
Peng, 2019; Wang et al., 2021; Mehrad et al., 2022). Compared
to a previous study regarding the JSO field (Song, et al., 2021),
HFEN provides results that are closer to actual measurements
with lower errors which prove that the network is effective.

The comparison between base CNN-LSTM and HFEN is used as
an example to further analyze the performance of HFEN. In general,
the results of both HFEN and base CNN-LSTM reflect the trend of
the measured values, as shown in Figures 11–14. However, in terms
of numerical accuracy, the novel HFEN is significantly better than
the CNN-LSTM model (especially as shown in Figures 12, 14).
From 4010 to 4015m in Figure 11 and 3490–3525m in Figure 14,
the prediction of the base CNN-LSTM model has a large deviation
from the actual measurement log, while the predicted result of
HFEN is similar to the actual measurement log. The characteristics
of the logs of these two experiments are that the logs change greatly
due to the influence of formation heterogeneity and the presence of
hydrocarbon. The reason for the good performance of HFEN is that
the multi-channel hybrid network effectively extracts the spatial and
temporal features of logs, fully coupling the features in the logs of
different physical measurement principles. In addition, the feature
enhancement method extends the feature space of the logs so that
the input logs contain more features, and enhances the correlation
between the input logs and the target logs, making the networkmore
capable of handlingmutation points and the prediction results closer
to the actual measurement. This proves that HFEN can accurately
predict log trends and values for engineering demand.

FIGURE 15 | Comparison of predicted results (RMSE) between HFEN
and other networks: CNN, LSTM, base CNN-LSTM, and random forest.

FIGURE 16 | Comparison of predicted results (R2) between HFEN and
other networks: CNN, LSTM, base CNN-LSTM, and random forest.
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4 CONCLUSION

A novel multi-channel CNN-LSTM hybrid network is proposed
in this study to improve acoustic log prediction in
unconventional reservoirs where acquired data is often
incomplete. To verify the performance of HFEN, the log data
of Jimusar Shale Oilfield are taken as an example to conduct
experiments and analyses. Compared with the actual
measurement, the R2 of the four experiments are 92.27%,
91.42%, 93.31%, and 92.03%, and the RMSE are 3.32%, 3.92%,
3.06%, and 3.53%, respectively. This proves that the prediction is
successful, and the predicted log has a high degree of similarity
with the actual measurement log, which can accurately describe
the formation properties and meet the subsequent engineering
application requirements. All evaluation metrics of HFEN
outperform the separate CNN and LSTM networks. The
prediction results also demonstrate that the temporal and
spatial features of the well logs are critical to the prediction
accuracy, and HFEN can extract these two features effectively.
The feature enhancement method boosts the input log features, to
reflect fluctuating data trend and expand the feature space of the
log to increase the diversity of log features for a small input
sample size, thus improving the accuracy of the prediction. Future
research will focus on the investigation into measurement-related
physics processes to further enhance the feasibility of the current

network as well as considering application towards other
measurements, e.g., resistivity, nuclear, and NMR, to obtain a
comprehensive evaluation of the reservoir and, therefore, reduce
hydrocarbon exploration cost.
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NOMENCLATURE

b Bias

bi-LSTM Bi-directional long short-term memory

BP Backpropagation neural network

CNN Convolutional neural network

ct Cell state

d A depth value of the log

DEN Density

DTC Compressional wave slowness

DTS Shear wave slowness

ft Forget gate

GR Natural gamma

GRU Gated recurrent unit

h Hidden state

i Number of different log types

it Input gate of lstm

JSO Jimusaer shale oilfield

layer Geological layer

LSTM Long short-term memory

max The maximum value of a sample value

min The minimum value of the sample value

RMSE Root mean square error

RNN Recurrent neural network

RT Deep resistivity

SSE The sum of squares of the errors

SST The sum of squares of the difference between the original data and
the mean

STNN Spatio-temporal neural network

SVR Support vector regression

t Time

tanh Tanh activation function

w Weight

x Log sampling points

X Input sequential data

xgrad Log after gradient calculation

α Attention weight coefficient at different time

β Attention weight coefficients of different logs

σ Sigmoid activation function
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