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At present, electric vehicles (EV) have entered a stage of rapid development. Meanwhile,
with artificial intelligence (AI) technology fast improving and implementing many inventions
in electric vehicles (EV), almost all EV sold in China are equipped with automatic driving
technology to achieve safer and more energy-saving driving. In order to solve the problem
of anti-collision in self-driving Smart EV under complex traffic, especially at intersections,
most of the existing methods make sequential predictions for the driving level of vehicles,
and it becomes difficult to deal with sudden changes in intentions of other vehicles.
Therefore, a collision risk assessment framework based on other vehicles’ trajectory
prediction is proposed. The framework integrates the solutions of other vehicles’ expected
path planning, uncertainty description of driving process, trajectory change caused by
obstacle intrusion, etc., as well as adopts the Gaussian mixture model to evaluate the risk
according to the probability of collision. It realizes the real-time evaluation of the probability
of collision and makes safe decisions and trajectory planning of the vehicles. After
simulation and verification, it effectively solves the decision-making planning problem of
autonomous vehicles under complicated traffic flow and demonstrates that the method is
better than the current sequential prediction method (SORT\Karlman filter, etc.).
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1 INTRODUCTION

Crossroads are one of the traffic scenes with the most complicated driving conditions. For
autonomous vehicles, it is of great significance to further improve and ensure vehicle safety if
they can sense the intention of other vehicles in advance and predict possible collision risks between
themselves and the other vehicles.

At present, in the problem of collision avoidance in autonomous driving scenes, the trajectory
planning and behavior decision of autonomous driving vehicles mainly need to consider other
dynamic obstacles in traffic scenes. At the same time, including but not limited to the driving
trajectories of the other motor vehicles, to determine the behavior decision and trajectory planning
of the autonomous driving vehicles. The two main methods in the industry for this are planning-
based method and optimization-based control method. Trajectory planning is a typical control
method which includes advance planning based on prior environmental information in addition to
real-time planning based on online space exploration (Wang et al., 2019; Wang and Huang, 2021),
aiming at finding an optimal free path of colliding vehicles. Trajectory planning and collision
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avoidance based on the potential field have also been widely
studied (Gianibelli et al., 2018; Chen and Yu, 2019). This
method avoids collision behavior based on the potential field
and uses the potential field to push vehicles away from certain
obstacles. Planning-based methods are faced with the challenge
of designing suitable collision avoidance paths, and it is difficult
to find suitable optimal paths for a complex dynamic road
condition. On the other hand, optimization-based control
method (MPC) (Rothmund and Johansen, 2019) is also
widely used for collision avoidance of unmanned vehicles.
Collision avoidance is regarded as a coupling constraint, and
the best collision avoidance algorithm is found for vehicles.
There are also some researchers who speculate the upper limit of
collision probability of the minimum collision time TTC
(Shalev-Shwartz et al., 2017) based on the linear space and
time of trajectory crossing to constrain the behavior decisions of
unmanned vehicles such as deceleration and braking. However,
this does not take into account the uncertainty and conservatism
of obstacles, nor does it take into account the risk in the sense of
probability. In recent years, many researchers have used AI
methods to study path planning and collision avoidance of
unmanned vehicles in a complex dynamic scenario, including
the reinforcement learning methods of RL (Q-Learning) (Zhao
et al., 2017) and POMDP (Hsu et al., 2008; Ponzoni Carvalho
Chanel et al., 2012; Ragi and Chong, 2013). According to
environmental rewards, calculate possible actions and get the
next step. Some work has been put forward for a POMDP
solution to model the uncertainty of target trajectory. But this
solution needs to consider a large number of possible action
sequences and the state of other vehicles, which must be
completed in an ideal time and consume a lot of system
resources and computing power. RL methods may suffer
from problems caused by overfitting due to the complexity of
environment and various characteristics of tasks. At the
same time, less environmental knowledge may slow down the
learning speed and cause unmanned vehicles to fall into local
optimum.

The main contribution of this article is to develop a
framework based on the collision risk assessment for obstacle
avoidance in an unknown environment. This method predicts
the environment along with preplanned tracks of other vehicles
and analyzes the uncertainties. It includes other vehicles’
expected path planning, uncertainty description of driving
process, and trajectory change caused by obstacle intrusion.
Through the analysis, modeling, and calculation of uncertainty,
the prediction of other vehicles’ trajectory based on probability
is realized. The risk probability of collision is evaluated based on
the other vehicles’ trajectory. This result can be input to the
decision control module for correcting or changing the motion
planning of the own vehicle and can also trigger other safety
algorithms of the own vehicle such as collision avoidance when
necessary, moreover, ensuring vehicle safety to the greatest
extent along with better driving efficiency.

2 Driving Uncertainty Analysis
Among the four factors that affect vehicle trajectory, the legal driving
direction of the lane and geometric characteristics of the road are

almost constant. This relevant information can be obtained through
maps, high-precision maps, networks, or vehicle perception. The
remaining three factors are uncertain with time and environment,
which is the key and difficult point of other vehicles’ trajectory
prediction. It is also the key and difficult point of collision risk
assessment. In this article, these three factors are summarized as
three kinds of uncertainties that affect the trajectory of other vehicles
and are analyzed, modeled, and calculated.

2.1 Uncertainty of Driving Intention
At present, the intelligent vehicle cannot accurately sense the
driving intention of its driver, so the driving intention of its own
vehicle is uncertain. As shown in Figure 1A, when turning
around, turning left, going straight, and turning right are
allowed in the lane in which other cars travel, the driving
intention of the other cars is strongly uncertain when
compared with that of the own car. Generally speaking, this
uncertainty will decrease as the vehicle travels. For example, when
a vehicle is at an intersection, there are possibilities of turning left,
going straight, and turning around. When the vehicle travels
halfway along the left-turn route, it can be judged that the vehicle
is more likely to turn left. When the vehicle turns left and enters
the other direction lane, the driving uncertainty disappears
completely. Generally, an ego-vehicle’s driving intention will
not change in a driving process, but in a few special cases, the
driving intention may also change. As shown in Figure 1B,
because the ego-vehicle is unfamiliar with the road
environment or misreads the road signs, it may suddenly
switch to the left turn after driving on the straight line for a
period of time.

2.2 Driving Process Uncertainty
Because people’s perception, attention, operation ability, and
other abilities cannot be as accurate as computers, and the
vehicle’s power system and control system cannot control the
vehicle absolutely accurately, there is always some uncertainty in
the vehicle trajectory during the driving process. This kind of
uncertainty is interfered by the external environment to a
certain extent, for example, talking with the ego-vehicle will
distract the driver’s attention, and fatigue driving will reduce the
ego-vehicle’s driving ability. Another characteristic of this kind
of uncertainty is that it only appears when the vehicle is moving
and disappears naturally when the vehicle is stationary. This
kind of uncertainty is called the uncertainty of driving process in
this article. There are two types of uncertainties in driving
process, each with different characteristics: the first type is
mainly caused by the lack of ability of the drivers or vehicles,
which is objective and inevitable. However, this kind of
uncertainty is often small and occurs randomly near the true
value of the driving intention; the second type is mainly caused
by the ego-vehicle’s inattention. This kind of uncertainty may
accumulate and enlarge and even eventually force drivers to
change their driving intentions. For example, the vehicle
originally wanted to go straight but because of the ego-
vehicle’s mistake, the vehicle continued to turn left and
finally entered the left-turn lane. At this time, the ego-vehicle
had to temporarily change its driving intention to turn left.
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2.3 Track Invasion Uncertainty
Due to the widespread existence of obstacles, vehicles often
cannot drive according to the scheduled route, causing them
to change the driving route constantly. However, obstacles may
appear in any motion at any time and place, so the uncertainty
caused by them is the most complicated and difficult to deal with.
This kind of uncertainty is caused by external objects. In this
article, it is called the uncertainty of other vehicles’ track invasion.
Compared with the uncertainty of driving intention, obstacles
appear to more frequently lead to a higher frequency of vehicle
route change. Compared with the uncertainty of driving process,
the change of driving trajectory caused by obstacle intrusion is
bigger and more significant.

2.4 Trajectory Planning Analysis of Other
Collision Avoidance Effects
In addition to the above factors and uncertainties, there are many
factors that affect the driving of vehicles in reality. The most
common of which are the right-of-way rules. The right-of-way
rules stipulate the priority right-of-way of different vehicles on
the same road in a specific scene. The right-of-way division affects
the running of vehicles and thus the assessment of collision risk.
Based on the actual driving situation, this article focuses on the
influence of vehicle arrival time, vehicle type, and vehicle driving
intention on the right of way. In this article, it is determined that
when a vehicle arrives at a certain position at different times, the
vehicle that arrives first enjoys the right of way, and the vehicle
that arrives later should give way; when the vehicle arrives at a
certain position at the same time, consider the driving intention
of the vehicle, such as turning left and right should be straight;
and if two cars have exactly the same right of way, they are in a
constant competitive state, and the vehicles stop at random for a
period of time and then compete for the right of way again.

Besides the right of way, when vehicles avoid each other, it also
affects each of their driving. In order to make the calculation easy
to realize, when predicting the driving track of other vehicles Vi,
only the influence of the remaining vehicles on Vi is considered
while the influence of Vi on the other vehicles is not considered.
For example, if the driving track of Vi is invaded by Vj, Vi may
change the driving route to avoid Vj. At this time, the influence of
the Vi route change on Vj is no longer considered. If Vj is affected
by Vi and the driving route is adjusted, the influence of Vj on Vi

after changing the route should be reconsidered. So repeated
recursion will fall into an infinite loop.

3 Implementation of Risk Assessment
Framework
The calculation process of the risk assessment framework
proposed in this article can be divided into three steps as a
whole, as shown in Figure 2. The framework needs the injection
of the sensing module and the driving track of the vehicle
generated by the decision control algorithm in the future. The
calculation results of the risk assessment can be returned to the
decision control module for correcting or reestablishing the new
driving track. Other safety algorithms can also be triggered when
necessary such as directly starting the collision avoidance system
when the collision probability is high. The whole calculation
process needs to be iterated in real time while driving according to
the changed environments.

3.1 Grid Modeling of Road Environment
The first step of calculation is to realize the perception of the
surrounding environment. In order to facilitate the calculation,
this article uses a two-dimensional coordinate system to realize
the gridding description of the whole environment space. As
shown in Figure 3, Figure 3A is a realistic intersection simulation
diagram, while Figure 3B is a gridded coordinate space. The
origin of the coordinate system can be chosen arbitrarily when
gridding. It only affects the calculation process and does not affect
the calculation result. In Figure 3, the lower left corner is taken as
the origin of coordinates.

3.2 Uncertainty Modeling of Other Vehicles’
Trajectory
The second step is the focus of the whole calculation. It needs
to deal with the three kinds of uncertainties mentioned above.
Let the current time be t and the interval of iterative calculation
be Δt. Then, the evaluation of the risk of collision between the
own vehicle and other vehicles in the next n cycles has to be
done. Let us assume that there are n other cars at the current
intersection and take any other car V as an example to explain
the prediction and calculation process of its driving track in the
intersection.

FIGURE 1 | Example of driving intention uncertainty. (A) Lane has multiple legal driving directions. (B) Driver temporarily changes driving intention.
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The essence of distribution probability lies in quantifying the
uncertainty of driving intentions of various vehicles. This method
holds that the probability distribution of the expected route is
mainly affected by two factors: first, the statistical results of
historical driving records, and second, the vehicle’s trajectory in
the past period of time. As shown in Figure 4, let the vehicle drive
from s to S0 and enter the intersection at S0. When the vehicle is
located at S0, because the driving track from S to S0 is not helpful in
distinguishing and identifying the driving intention of the vehicles,
the probability of the vehicles traveling on various paths can be

quantified more accurately by using historical statistical data.
When the vehicle is located in S1, it can be considered that the
possibility of turning around decreases while the probability of
turning left along P2 and going straight along P3 increases. When
the vehicle is located at S2, it can be considered that the probability
of turning around and going straight continues to decrease and the
probability of turning left along P2 increases. When the vehicle is
located at S3, it can almost be considered that the vehicle will
definitely turn left. When the vehicle finally arrives at S4, it turns
left. After the turn is completed, the driving intention of the vehicle
is determined to turn left, and the uncertainty is completely
eliminated.

K possible driving paths are planned when the vehicle V enters
the intersection. Assuming that a total of N vehicles have passed
from the S0 position in the past period of time, and the number of
vehicles traveling along route I is Ni, the driving probability Pi �
Ni/N can be assigned to route Pi, and when the vehicle travels
along the expected path, the uncertainty of driving intention can
be estimated and quantified by using the driving trajectory in the
past period of time. As shown in Figure 5, the vehicle enters the
intersection from S0, and arrives at S1 after driving for a period of
time, with a driving distance of L. As P2 and F3 completely overlap
in the L part, the process from S0 to S1 can be considered as
follows: the vehicle has traveled a distance of L length along P2,
traveled a distance of L along P3, and a distance of 0 along P1.
Theoretically, the probability of different expected paths of
vehicles can be calculated by using the following formula:

FIGURE 2 | Overall calculation process of risk assessment framework.

FIGURE 3 | Road space gridding at crossroads. (A) Intersection simulation Ddiagram. (B) Intersection grid modeling results.

FIGURE 4 | Example of vehicle driving.
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N � ∑K

i�1Ni, 1 � ∑K

i�1Pi

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Paround � 0
L + L + 0

Pleft � L

L + L + 0

Pstraight � L

L + L + 0

(1)

However, the above formula is prone to the extreme case of
zero probability, which is inconsistent with the reality. Because
even if the vehicle is located in S1, there is still a certain
probability of turning around, but this probability is smaller
than turning left and going straight. Therefore, the above
formula is adjusted based on Laplace’s smoothing idea to
avoid the situation that the probability is 0 or 1. The
adjusted formula is as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Paround � 0 + 1
L + 1 + L + 1 + 0 + 1

Pleft � L + 1
L + 1 + L + 1 + 0 + 1

Pstraight � L + 1
L + 1 + L + 1 + 0 + 1

(2)

The formula can be extended to the general situation, if the
vehicle has k possible driving intentions at a certain position at
the intersection, and the driving distance under the guidance of
the i-th driving intention in the past period is Li, the driving
probability of the corresponding path under each intention in the
future period is

Pi � Li + 1

∑K
i�1L +K

, 1 � ∑K

i�1Pi (3)

The above method can deal with the general case of path
probability allocation, but there are two special cases to be
explained: 1) when a vehicle enters an unplanned location for
some reason, the distance from the previous location to the
current location should be specially treated when calculating;
2) some planned routes may disappear and some new planned
routes may come into being during the driving process of the
vehicles.

As shown in Figure 6, when the vehicle is located at S1, it
should arrive at S2 at the next moment according to the planned
expected route. However, due to some reasons, such as the ego-
vehicle’s inattention or obstacles at S2, the vehicle actually enters
S3 at the next moment. However, the distance from S1 to S3 does
not belong to any path among P1, P2, and P3, so there will be
ambiguity when using the above formula to calculate the
probability. In order to ensure the smoothness of calculation,
this article stipulates that d should be added to all Li in this case,
and the expected path of the vehicle should be replanned at the
next moment.

In the second case shown in Figure 7, when the vehicle is in S0,
three expected paths are planned, namely P1, P2 and P3.When the
vehicle travels to S1, because the direction of the front of the
vehicle changes, the target area corresponding to P1 is no longer
visible (not within the 180-degree visual field), so P1 disappears
from the expected path and P4 becomes the new expected path. At
S0, because the traffic rules stipulate that the inner lane is not
allowed to turn right, there is therefore no driving intention to
plan a right turn; at S1, with the gradual exposure of the ego-
vehicle’s driving intention, it is more and more possible for the
vehicle to turn right, so a right-turn path is added. Since there is

FIGURE 5 | Calculate the expected path probability by using the traveled trajectory. (A) Vehicle initial position SO. (B) Vehicle driving to S1.

FIGURE 6 | Vehicle driving into unplanned location.

Frontiers in Energy Research | www.frontiersin.org June 2022 | Volume 10 | Article 8882985

hu et al. Uncertainty Intention Assessment for Unmanned EV

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


no P4 path in the process from S0 to S1, the right turn probability
cannot be calculated by the above formula. It is stipulated in this
article that the probability of the disappearing path is no longer
calculated, the initial probability of a new route is calculated.

When calculating the expected path probability, it is not
necessary to calculate the entire driving distance of the vehicle
at the intersection. A time window can be set, and only the driving
conditions within the time window can be considered, for
example, only the driving conditions of the vehicle in the past
3 s can be considered.

Driving intention describes the uncertainty of vehicle
trajectory from a macro perspective, while driving process
describes the uncertainty of vehicle trajectory from a micro
perspective. For the gridded intersection, the driving process
of vehicles is equivalent to entering from one grid to another.
Since the vehicle can travel to any feasible position in theory, it is
also possible to enter a cell from any direction. As shown in
Figure 8A, the vehicle may enter s from any direction of d1–d8.
Similarly, as shown in Figure 8B, the vehicle may leave a cell from
any angle. The essence of driving process uncertainty modeling is
to measure the probability of leaving S from S along D1–D8. The

traveling direction of the vehicle is controlled by the steering
angle of the front wheel, and the direction of entering S affects the
steering angle when the vehicle leaves. Therefore, the uncertainty
modeling of driving process should consider both the direction
when the vehicle enters and the direction when the vehicle leaves.

FIGURE 7 | Add and delete expected paths. (A) Vehicle initial position. (B) Replanning path with change of head direction.

FIGURE 8 | Entry and exit of vehicles relative to a certain cell. (A) Enters a
cell in any direction. (B) Leaves a cell in any direction. Definition: L4 = d, with
Pright = L4+1∑K′

i�1Li+K′
.

FIGURE 9 | Possible driving results around the intention of going
straight.

FIGURE 10 | Example of Gaussian distribution of the steering angle
when going straight.
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Uncertainty can be considered as random error based on
driving intention. As shown in Figure 9, the actual trajectory
of straight vehicles is often not an absolute straight line but an
up-and-down disturbance. In this article, Gaussian
distribution is used to describe the uncertainty of driving
process. The sample of distribution is the steering angle of
the vehicle, that is, the deflection angle of the front wheel
during steering. In this article, negative values are used to
indicate left turn, while a positive value indicates a right turn.
For example, −3 means 3° to the left, +3 means 3° to the right,
and 0° means straight without deflection. For Figure 9, the
corresponding steering angle distribution during driving is
shown in Figure 10.

There are two main reasons for describing the uncertainty of
driving process with Gaussian distribution: 1) Gaussian
distribution is a continuous distribution, and the steering
angle which determines driving intention is taken as the
distribution mean value, which can not only show the
characteristics that the steering angle mainly changes around
the mean value during driving but also allow the vehicle to deflect
to any other direction, and the greater the deviation from the
mean value, the smaller the probability. 2) Gaussian distribution
is symmetrical about the mean, and its sampling probability on
both sides of the mean is equal. This shows the randomness of
driving deviation. As shown in Figure 9, the vehicle may shift
above or below the centerline.

When the vehicle has only one expected path direction at the
next moment, the steering angle distribution during driving from
the current position to the next position can be described by
Gaussian distribution, but there is often more than one expected
path direction. This article uses Gaussian mixture distribution to
deal with this situation. As shown in Figure 11A, when the vehicle
is at S1, there are three possible potential paths. Therefore, it is
feasible to enter the next position from S1 in three directions: D2,
D1, and D8. Let the probabilities in all directions be P2, P1, and P8,
and their specific values can be calculated by the method in the
path probability allocation, in the previous section. Firstly, the
steering angle distributions in the D2, D1, and D8 directions are

FIGURE 11 | The vehicle has multiple expected driving directions. (A) Vehicle with multiple expected driving paths. (B) Vehicle with multiple expected driving
directions.

FIGURE 12 | Probability distribution of Gaussian mixture model
corresponding to the steering angle.

FIGURE 13 | Single expected driving direction.
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modeled, and the corresponding deflection angles are, respectively,
μ2, μ1, and μ8. The variance of the corresponding Gaussian
distribution is σ2, σ1, and σ8, so the steering angle Gaussian
mixture model in the next period from S1 is shown as follows,
with its corresponding distribution graph shown in Figure 12:

{P(X) � P2G(μ2, σ2) + P1G(μ1, σ1) + P8G(μ8, σ8)
1 � P2 + P1 + P8

(4)

Although the probability is assigned to each expected path (the
sum of the probabilities of each path is 1), this result cannot be
directly used to measure the probability of vehicles traveling in all
directions. Because under this result, the probability of the vehicle
traveling beyond the expected direction is 0. As shown in the
following figure, theoretically, there is only one expected S2
direction in Figure 13, but in practice, the vehicle may still
drive up to the light blue position. Combined with the
uncertainty of driving process, this article uses the steering
angular distribution function to calculate the driving
probability of vehicles in all directions.

As shown in Figure 14A, when the vehicle is located at S1,
there are three possible paths, namely D2, DI, and D8. However,
due to the uncertainty of the driving process, there is a certain
probability that the vehicle will drive in the D3 and D7 directions.
As shown in Figure 14B, taking the 180-degree visual field in the
front direction as all possible driving directions, the
corresponding angles of D1, D2, D8, D7, and D3 are α, β, and
γ. If the side length of the cell square is 2, then sin α � 1/

��
10

√
, α �

arcsin(1/ ��
10

√ ) The (radian) angle is about 18.4° (−90° to −72°,
72°–90°). According to the cosine formula of a triangle,
β � arccos(a2 + b2 − c2/2ab), then β ≈ 0.93; it is about 53.1°

(−72° to −19°, 19°–72°).
According to α, β, there is γ ≈ 0.66, which is about 38° (−19°,

19°). After calculating the values of α, β, and γ, combined with the
probability density function of Gaussian mixture distribution, the
corresponding probability areas at different angles can be
obtained, which can be used as the probability of the vehicle
traveling in this direction.

According to the above calculation results, the value of β is
larger than α and γ, which is because the direction angles of D2

and D8 are larger than those of D1, D3, and D7 in this scheme. The
values of α, β, and γ can be adjusted according to the actual
situation, or the variance value can be adjusted in the
corresponding Gaussian distribution, to correct the probability
of vehicles traveling in all directions. Generally speaking, the
values of α, β, and γ and the variance of Gaussian components
corresponding to each direction can be set as required or can be
obtained by simulation and statistics according to the real
situation. Let the probabilities of the preset directions D2, D1,
and D8 in Figure 14A be 0.2, 0.5, and 0.3, respectively, in which
the variance of Gaussian distribution in D1, D3, and D7 is 1.5, and
the variance of Gaussian distribution in D2 andD8 is 2. The values
of the corresponding steering distribution and the corresponding
distribution of α, β, and γ are shown in Figure 15. In this

FIGURE 14 | Multiple expected driving directions and distribution angles. (A) Multiple expected driving directions. (B) Corresponding angle of expected driving
direction.

FIGURE 15 | Steering unmixing Gaussian distribution function image.
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example, the probability areas in the D3 and D7 directions
corresponding to angle A are very small, so they are almost
invisible in the figure.

Since the vehicle may enter a certain cell (position) from any
direction, the probability of the vehicle arriving at a certain cell
at time t is the sum of the probabilities of entering the cell in all
directions, which can be used for the evaluation of the later
collision risk. When the vehicle arrives at the t+Δt time
position from the t time position, its probability calculation
includes two steps: 1) based on the direction of the vehicle
entering the current cell at time t, the probability of entering
the next cell from this direction is calculated. In this
calculation, firstly, we were required to establish the steering
distribution based on the driving direction, and then use the
steering distribution to calculate the probability of going to the
next cell and multiplying it with the probability of entering the
cell at t time. 2) Iterative calculation, always entering the
current cell in all directions and driving into the next cell at
t+Δt, and accumulating all the probabilities of reaching a
certain cell at t+Δt to obtain the final probability of entering
the cell at t+Δt.

As shown in Figure 16, if the vehicle could enter s from d4,
d5, and d6 directions at time t and their respective probabilities
be Pd4, Pd5, and Pd6, the final probability of the vehicle reaching
s at the moment of anti-engraving is Ps = Pd4 + Pd5 + Pd6,
which in calculating the position and probability of time t+Δt
is according to the calculation steps introduced above:

1) Firstly, based on the situation that the vehicle enters s based
on d5 direction, the expected driving direction of the vehicle at
t+Δt time is only D1 and the expected deflection angle of the
vehicle when entering s from d5 and leaving along D1 is 0°.
Therefore, the steering distribution of the vehicle in this case is a
single Gaussian distribution with a mean value of 0. Let the
standard deviation of the Gaussian distribution be assumed to be
16 (which can be set according to actual statistical results or
simulation results in specific application), then the steering
distribution of t time entering s along d5 and t+Δt time

leaving s along D1 is shown in Figure 17. Under this
distribution, the probability distribution of vehicles leaving S
along D1, D2, D8, D3, and D7 is the probability area of the steering
distribution at the corresponding angles (the angles
corresponding to each direction have been calculated and
explained in the previous section), which is calculated as Pd1 ≈
0.765, PD2 = PD8 ≈ 0.118, and PD3 = PD7 ≈ 0. Here, the sum of PD1,
PD2, and PD8 is greater than 1 due to rounding, not calculation
error. The value of PD3, PD7 is 0 because of the limited calculation
accuracy. Theoretically, their values are all greater than 0. Based
on the above results, it can be obtained that the probability of the
vehicle entering S from d5 at t time and entering S1 at t+Δt time is
PS1 = Pd5 × Pd1; the calculation of S2, S8, S3, and S7 is entered and
then analogized to Psi = Pdi × PDi.

2) Because it is possible for a vehicle to enter S from d4, d5, and
d6, the probabilities of entering S1 at t+Δt are calculated in these
cases, the probability of the vehicle at S1 at t+Δt is the cumulative
sum of the probabilities in all cases, Pt+Δt

S1
� ∑Pt

(S,di)P
di
Dj, where

Pt+Δt
S1

means the probability of reaching S1 at time t+Δt, Pt
(S,di)

indicates the probability of reaching S along di direction at time t,
which corresponds to Pd5, Pd4, and Pd6 in Figure 16. In the above
example, Pdi

Dj indicates the probability of entering S along the di
direction.

Combining the above two calculation steps, based on the
uncertainty of path planning and driving process, the
probability formula of the vehicle arriving at S at t time is as
follows Pt

S � ∑8
i�1Pt

di. The result can be used to evaluate the risk of
collision at time t and position S. At t+Δt, the probability of the
vehicle arriving at Sj is as formula, PdiDj is the path probability
according to the planned path, the steering distribution of driving
vehicles leaving S at time t is obtained, and then the probability
area of the corresponding direction is obtained by using the
distribution function.

FIGURE 16 | Entering and leaving a cell in multiple directions.

FIGURE 17 | Gaussian distribution of vehicles when D5 enters D1 and
leaves. and leaving along D1 direction, which corresponds to PD1 in the
previous example.
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In theory, vehicles can travel to any position in any direction,
which not only makes trajectory prediction difficult but also
increases the amount of calculation greatly. However, through
analysis, it can be found that most of the calculations are at a very
low level of probability. Therefore, this part of the calculations is
almost meaningless to the final risk assessment and can be
optimized by probability pruning and truncation (to reduce
the calculation amount and improve calculation efficiency). As
shown in Figure 18, dark green is the expected driving direction
of the vehicle, that is, the planned path direction, while the other
directions are unexpected driving paths caused by the uncertainty
of driving process. If the probability of driving from the current
cell to the next cell on the expected path decreases by 0.6 times,
the probability of reaching a specific cell from t1 to t4 becomes 0.6,
0.36, 0.216 and 0.130, respectively. These probability values
correspond to the most likely driving path of the vehicle,

which is very valuable for risk assessment. However, under the
other two paths, the probability value decreases exponentially and
quickly drops to a very low level, such as 0.0001 > 0.00001, etc.,
and the probability value will only be lower after further
calculation. In theory, the probability value of reaching any
position at any time will be very low but not zero, but the
probability value below a certain level is almost meaningless
for practical application. If a collision probability of
0.00000000001 is evaluated, it can be almost considered that
the collision will not occur. In this article, the threshold Rlow is set
as the minimum value of probability pruning truncation. When
Rlow is less than or equal to, the calculation will be cut off to
reduce the amount of calculation. As shown in Figure 18, it can
be set that when the probability of the vehicle arriving at s =
0.0001, the probability of leaving from S and arriving at the new
cell at t5 will no longer be calculated.

FIGURE 18 | Very low probability value of unexpected direction.

FIGURE 19 | Vehicle running in loop.

FIGURE 20 | Pruning and truncation of vehicle running probability. (A) t
time entry diagram. (B) All feasible directions at t1. (C) Feasible direction after
pruning at t1 time. (D) Possible position at t1. (E) All feasible directions at t2. (F)
Feasible directions after pruning at t2.
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Probability truncation can not only reduce the amount of
calculation but also avoid many meaningless calculations. As
shown in Figure 19, the expected path of the vehicle is marked by
dark green, but it is possible for the vehicle to enter the upper
right cell at t2 under the driving process uncertainty. Then, under
the influence of driving process uncertainty, the vehicle may form
a circle along the diamond; as shown in the figure, the gray arrow
indicates the direction. This situation can continue indefinitely
with the expansion of the time window, but under normal
circumstances, almost no driver will drive the vehicle around
the intersection.

A direct manifestation of probability truncation is that the
sum of probabilities of vehicles arriving at all positions at time t is
less than 1 (without considering the loss of calculation accuracy
and rounding), and the value of probability sum will gradually
decrease with time. As shown in Figures 20A–C, the vehicle
enters S at time t along the straight direction, theoretically departs
from S, and reaches Si, S2, S3, S8, and S7 at t1. Let the probability be
P1–P8. If only SL, S2, and S8 are left to reach after probabilistic
pruning, then the sum of probabilities of vehicles arriving at each
feasible position at t1 is the sum of P1, P2, and P8, which is
obviously less than the sum of P1–P8 and less than 1, which is the
probability loss caused by pruning and truncation. Furthermore,
the theoretically accessible positions at t2 and S1, S2, and S8 are
shown in Figure 20E. After pruning, only the cells as shown in
Figure 20F are left. The probability values of all accessible
positions of the vehicle at t2 are also determined by P1′–P8′.
The sum becomes P1′, P2′, and P9′. In addition, there is a
probability loss. The loss of probability can be understood as
the cost of precision due to reducing the amount of calculation.

The uncertainty of driving intention and driving process
mainly aims at the uncertainty of vehicle interior and driver,
while the uncertainty of trajectory invasion focuses on the impact
of real-time change of the external environment on vehicle
trajectory. When obstacles (possibly, motor vehicles, bicycles,
motorcycles, pedestrians, suddenly dropped goods, etc.) intrude

into the expected driving position of the vehicle, the vehicle will
be forced to respond, such as make detours and stops, all of which
will change the vehicle’s trajectory and thus change the time,
location, and probability of collision with the vehicle.

In this article, we define trajectory intrusion from two aspects
of time and space. In time, it includes the current time or future
time in the time window. In space, it refers to the position where
the current or future time of the obstacle overlaps with the
possible entry position of other vehicles. As shown in Figure
21, if the other vehicle is located at s at the current moment, it
may drive along D1, D2, D3, D4, and D5 directions. The barrier is
located at S4, and it could be heading for S3 at the next moment.
When other vehicles drive into S4 from S along the direction of D4

because the position of obstacles at the current moment overlaps
with the possible driving position of other vehicles at the next
moment, the track of the other vehicles at S4 is invaded at the next
moment. When other vehicles enter S3 from S along the direction
of D3, it is possible to drive into S3 at the next moment due to
obstacles. Therefore, the track of its car in S3 is also invaded at the
next moment. In short, if the obstacle is located at A at the
moment, and if other vehicles drive to A at the next moment, then
A is considered as a trajectory intrusion; if the obstacle and other
vehicles are likely to drive to point B at the next moment, then
point B is also a trajectory intrusion. In some special cases, such as
different rights of way classes between vehicles, it can be
considered that the tracks of vehicles with a higher right of
way will not be invaded because they enjoy the right of way.
At this time, only the tracks of vehicles with a lower right of way
are invaded.

When encountering the track invasion, the actions taken by
the vehicle is to stop and wait, that is, the vehicle stays still at the
current position until the obstacles leave and then resumes
driving, or detour, that is, the vehicle does not stop but travels
in a nonintrusive direction to bypass the obstacle. Trajectory
intrusion changes the route of vehicles, and the route and its
probability are determined by path planning and steering
distribution. Therefore, the trajectory intrusion will change the
original steering distribution of the vehicle and the probability of
driving along each direction. When a vehicle enters the next cell
with a probability greater than the cutoff probability, it may be
necessary to delete or add new paths and reallocate the
probability of each path. So, trajectory intrusion uncertainty
modeling should be combined with path planning and steering
distribution to quantify different situations.

Here, the probability of obstacles reaching the intrusion
position is taken as the rejection rate, and the steering
distribution is regenerated by the rejection sample. As shown
in Figure 22A, at time t, other vehicles are located at S, obstacles
are located at S4, and obstacles may be located at S3 at the next
time. S4 and S3 are both the positions where the tracks of other
vehicles are invaded at the next moment. Let it have three
expected driving directions, say D2, D3, and D4 and the
distribution probabilities of the three expected paths are PD4 =
0.3, PD3 = 0.5, and PD2 = 0.5, respectively, and their steering
distribution is shown in Figure 22B. It can be seen that the
probability areas in the D3 and D4 directions are large and the
driving process in the D4 direction is uncertain, so the Gaussian

FIGURE 21 | Example of trajectory intrusion.
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distribution variance in the steering D4 area is large, and it is
“stout” on the graph. D5 and D1 are not preset directions,
therefore, the corresponding probability area is small, and the
eye flesh is almost invisible.

Let the probabilities of obstacles reaching S4 and S3 at time t be
P01 = 0.7 and P02 = 0.6, respectively, and P01 and P02 are D4,
sampling steering with rejection rate in the D3 direction, and
relearning steering distribution with sampled samples as shown
in Figure 23. In the figure, the red dotted line indicates the
steering distribution before rejecting sampling, and the blue solid
line indicates the new steering distribution learned after rejecting

sampling. It can be seen from the figure that the probability areas
in the D4 and D3 directions decrease to a certain extent, while the
probability areas in the D2 direction increase greatly. The
probability areas in D1 and D5 directions increase slightly.

Although the new steering distribution can be obtained by taking
the probability of obstacles reaching a certain position as the
rejection rate, the simulation test shows that the discrimination
between many new distributions and the old distributions is not
obvious enough. As shown in Figure 24, let the arrival probabilities
of obstacles in Figure 24A be P01 = 0.3 and P02 = 0.2, and the
distribution probabilities of vehicles along the planned paths D4, D3,
and D2 before sampling rejection be PD4 = 0.3, PD3 = 0.5, and PD2 =
0.2. With P01 and P02 as rejection rates, the obtained steering
distribution after sampling is shown in Figure 24B, and the
curve difference between before-sampling and after-sampling is
not obvious. Especially, along the D3 direction, the probability of
the vehicles entering is hardly affected by obstacles, but in fact, P01 =
0.3 and P02 = 0.2 are already relatively high probability values. This
shows that it is not enough to show the influence of obstacles on the
driving track by directly using the probability of arrival of obstacles
as the rejection rate. In this article, it is considered that squeeze
operation can be performed according to a certain mapping rule Poi,
to realize the influence of obstacles on the vehicle trajectory.

The squeeze mode can be flexibly selected according to the
situation. For example, the analytic equation of a circle can be the
squeezed function, and the value curve of Poi can be extruded into
the circular arc shape. As shown in Figure 25A, the red straight
line is the original Poi, according to the equation of circle, (x − 1)2

+ y2 = 1 y = √(1 − (x − 1)2). The rejection rate after Squeeze is
shown as the blue curve. Figure 25B shows the steering
distribution generated by the rejection rate sampling after
squeeze, which shows that the distribution difference is more
obvious. Except for the equation of the circle, other functions that
map Poi to the range of 0–1 can be used as squeeze functions, such

FIGURE 22 |Obstacle intrusion and original steering distribution of vehicles. (A) Expected driving direction of vehicles and position of obstacle intrusion. (B)Original
steering distribution of vehicles.

FIGURE 23 | Newly generated steering distribution after rejecting
sampling.
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as deformed log function, logistic function, sigmoid function, etc.,
and the rejection rate is amplified in different ways by different
functions. To influence the new steering distribution.

It is also a common in driving to choose to stop when facing
obstacles, so it is necessary to allocate probabilities between stopping
and detouring. Let Δt be the time of iterative calculation of risk
assessment, Pwait, Pbypass, then there is 1 = Pwait + Pbypass, indicating
that it is possible for other vehicles to stop moving in the next time.
In reality, the probability of stopping is related to the distribution of
obstacles. If the possibility of obstacles invading the track is high or
more positions in the track are invaded by obstacles, the possibility
of stopping and so on will increase accordingly. As shown in
Supplementary Figure S1, there are five possible driving
directions within the visual field of other vehicles 180, and the

probability of each direction can be obtained from the steering
distribution before it refuses to sample, which is set as PD1–PD5. In
extreme cases, these five directions may be invaded by obstacles. Let
the invasion probability be P01–P05. If the values of P01–P05 are all 1,
it is determined that the vehicle will be surrounded by obstacles at
the next moment, then the probability of the vehicle stopping at this
time is 1 to ensure driving safety. If the values of P01–P05 are all 0, it is
determined that no obstacle will invade the trajectory of the other
vehicles at the next moment. Then, the probability of the vehicle
stopping should be 0, which accords with the driving habits of
people. Because PD1–PD5 are calculated from the same steering
distribution, there are 1 � ∑5

i�1PDi. However, P01–P05 may be
invaded by five different obstacles, so there are 5 � max∑5

i�1Poi

because there must be 0 ≤ Pwait ≤ 1, where Pwait can be calculated

FIGURE 24 | There is no obvious difference in the distribution of new and old steering. (A) Expected driving direction of vehicles and position of obstacle intrusion.
(B) New and old steering distribution.

FIGURE 25 | Squeeze the arrival rate of obstacles to get the rejection rate. (A) Squeeze the equation of a circle (B) Squeeze the steering distribution.
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from the weighted sum of P01–P05, and the calculation formula is
Pwait � ∑5

i�1PDiPoi, corresponding to Pbypass = 1 − Pwait.
The overall flow chart of calculation framework is shown as

Supplementary Figure S2.

4 CALCULATION AND SIMULATION
RESULTS

In this section, the calculation and simulation process are
illustrated in the form of images. The simulation and
verification are done using MATLAB and evaluated and verified
using PreScan + CarSim. The calculation results show that the
uncertain trajectory of interactive vehicles at intersections can be
better predicted and analyzed, and the collision avoidance decision
of unmanned vehicles can be better realized.

As shown in Supplementary Figure S2A, let us assume that
there are three vehicles under the intersection at time t, namely,
ego-vehicle and other vehicles v1 and v2; let us assume that there
are general social vehicles with the same right-of-way level.
Supplementary Figure S3B combines the sensing information
of the sensing module. The driving intention uncertainty modeling
method is used to plan the possible driving routes of other vehicles.
Assume that the planning result is that the auto-driving vehicle vL
has three possible paths, which correspond to turning around,
turning left, and going straight, as shown in the green cell of
Supplementary Figure S3B; V2 has a possible path (to simplify the
explanation process, assume only one path), and the corresponding
straight path is shown in the purple cell of Supplementary Figure
S3B. Combined with the vehicle regulation and control module,
the driving track of the vehicle in the future is obtained as shown in
the blue cell in Supplementary Figure S3B.

Enlarge the red circle in Supplementary Figure S3B as shown.
Before vl reaches S, the three paths coincide, so the vehicle has only
one expected heading direction. From time t to time t1, the possible
driving direction of vl is shown in Supplementary Figure S4A, in
which orange indicates the expected driving direction and blue
indicates the unexpected but feasible direction. At this time, the
steering distribution of vl is a single Gaussian distribution. Let the
variance of the Gaussian distribution be 12 when vl goes straight,
and its steering distribution is shown in Supplementary Figure
S4B. According to the previous introduction, if the steering angle is
greater than 0, it means turning right, less than 0 means turning
left, and equal to 0 means going straight, including α3~(90°, −72°),
α2~(72°, −19°), α1~(19°, 19°), and P1 = 0.887, P2 = 0.057, P8 = 0.057
by using the distribution probability area. the probability of taking
values of P3 and P7 is extremely small. Below 10–9, pruning and
truncation according to probability can be ignored. Therefore, the
possible position and probability of tl time vl are shown in
Supplementary Figure S4C, and the dark shaded area is the
unreachable area after probability pruning.

Since V1 may enter the unexpected paths as S2 and S8, it is
necessary to replan the trajectory of V1 synchronously. At the end of
t1, the three possible positons of V1 should be calculated at t2.
Supplementary Figures S6A–C show the possible driving directions
of vl at t2 when it is located in three positions. Pay attention to the red
S position, which may enter from three different directions by vl.

They are from S2 to the right, S8 to the left, and S1 straight. At this
time, the probability of vl finally entering S at t2 should be calculated
according to the probability accumulation introduced above. The
steering distribution at S2, S8, and S1 is as shown in Supplementary
Figure S6B, which shows that the probability of entering s from S2 is
p = 0.057 × 0.057˜0.0032. The first 0.057 is the probability of arriving
at S2 at t1, and the second 0.057 is the probability of arriving at s from
S2 at t2. Similarly, the probability of entering S from S8 is 0.0032. The
probability of entering S from S1 is p = 0.887 × 0.887˜0.787. Here, if
the truncation probability is 0.01, then 0.0032 is discarded directly
because the value is too small, so the probability of reaching s is
about 0.787.

From amacro point of view, after considering the uncertainty of
driving process based on driving intention uncertainty, some new
vl possible positions are added, as shown in bright green in
Supplementary Figure S7. The turning direction and right
turning direction plan out a new driving path, and in the
straight direction is finally unified to the original path. This
describes that there are random left and right offsets in the
straight line, but under the intention of going straight, the ego-
vehicle quickly corrects the offset and returns to go the straight line.

Suppose VL is located at s at a certain time, and there are no
obstacles in all directions of travel at the next moment. The steering
distribution at s is shown in Supplementary Figure S8. There are
three expected driving directions, namely, the probability in D2

direction is P2, the probability along D1 direction is P2, and the
probability of driving along D8 direction is P8. And we know the
expectation of the Gaussian component in the straight direction
is μ1 = 0°, α2, α8 direction is μ2 = −45°, μ8 = −45°. There are P2 =
0.3, P1 = 0.5, and P8 = 0.2. At this time, the steering distribution
Gaussian mixture model corresponding to VL is shown in
Supplementary Figure S8B, and it is assumed that the
random offset of the vehicle going straight is small, and the
variance of the D1 direction component is σ1 = 6. The random
deviation of D2 driving in the turning direction is slightly larger,
σ2 = 8. The shift of d8 in the right turn direction is larger than
that in D8, σ3 = 10. In this case, PD2 = 0.300, PD1 = 0.500, PD8 =
0.198, and the probability of the other directions is lower than
the truncation probability and ignored.

Finally, the driving situation of VL when encountering
obstacles is considered. As shown in Supplementary Figure
S9, the vehicle is located at s at time t, and it is possible for
the vehicle to go to S2 at time t1, and it is possible for vehicles with
obstacles to go to S2 at time t1. At this time, the possible trajectory
evolution of VL is shown in Supplementary Figure S10.

5 CONCLUSION

Crossroads are one of the most complex and difficult driving
scenarios for autonomous driving. This article proposes a
collision risk assessment framework for unmanned vehicles based
on the prediction of other vehicles’ driving trajectories with driving
uncertainty. The framework is used to calculate the collision risk,
collision position, and time between the vehicle and other vehicles in
real time under the complex traffic environment of intersections,
and the results can give more safe decision to optimize the driving
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trajectory of the vehicle. The results can also trigger other safety
algorithms of the vehicle in case of emergency such as collision
avoidance.

Through analysis, this method highlights that vehicle collision
risk assessment lies in the prediction of other vehicles’ driving track,
which is mainly affected by road geometry, driver’s driving
intention, driver’s operation, and vehicle control system’s ability
and traffic environments. Among them, there are large uncertainties,
except the geometric features of roads, which are the difficulty of
unmanned vehicles. In this article, the characteristics of three kinds
of uncertainties and their relationship with other vehicles’ driving
tracks are analyzed in depth. Different modeling methods are
proposed for each kind of uncertainty which is quantitatively
described by probability. Finally, the calculation process of the
three kinds of uncertainties is unified so as to obtain the time-
related collision risk assessment framework of unmanned vehicles.
The risk assessment framework can provide safer trajectory planning
and collision avoidance input constraints for unmanned vehicles.
Thereby, this will be improving the overall safety of unmanned
vehicles greatly.
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